
KTH Royal Institute of Technology
School of Information and Communication

Technology

Degree project in Distributed Computing

Topology-Aware Placement of Stream Processing Components
on Geographically Distributed Virtualized Environments

Author: Ken Danniswara
Supervisors: Ahmad Al-Shishtawy, SICS, Sweden

Hooman Peiro Sajjad, KTH, Sweden

Examiner: Vladimir Vlassov, KTH, Sweden

Abstract

Distributed Stream Processing Systems are typically deployed within a single data
center in order to achieve high performance and low-latency computation. The data
streams analyzed by such systems are expected to be available in the same data
center. Either the data streams are generated within the data center (e.g., logs,
transactions, user clicks) or they are aggregated by external systems from various
sources and buffered into the data center for processing (e.g., IoT, sensor data, traffic
information).

The data center approach for stream processing analytics fits the requirements of
the majority of the applications that exists today. However, for latency sensitive
applications, such as real-time decision-making, which relies on analyzing geograph-
ically distributed data streams, a data center approach might not be sufficient. Ag-
gregating data streams incurs high overheads in terms of latency and bandwidth
consumption in addition to the overhead of sending the analysis outcomes back to
where an action needs to be taken.

In this thesis, we propose a new stream processing architecture for efficiently an-
alyzing geographically distributed data streams. Our approach utilizes emerging
distributed virtualized environments, such as Mobile Edge Computing, to extend
stream processing systems outside the data center in order to push critical parts of
the analysis closer to the data sources. This will enable real-time applications to re-
spond faster to geographically distributed events. We create the implementation as a
plug-in extension for Apache Storm stream processing framework.

Acknowledgment

I am deeply thankful to my supervisors, Ahmad Al-Shishtawy and Hooman Peiro
Sajjad for the chance of working together and for their continuous support and
encouragement on this master thesis work. Working with them give me a great
experience and many pleasures.

I would also like to give gratitude to European Master of Distributed Computing
(EMDC) coordinators for giving me the opportunity to experience their two years
master programme. All my EMDC classmates: Sana, Igor, Bilal, João, Fotios,
Daniel, Sri, Gayana, Gureya, Bogdan, and Seckin.

My final gratitude is for my parents and my sister that always supporting me from
afar.

Stockholm, 30 September 2015

Ken Danniswara

Contents

1 Introduction 1
1.1 Motivation & Problem Definition . 1
1.2 Approach . 2
1.3 Contribution . 3
1.4 Structure of the Thesis . 3

2 Background 5
2.1 Stream Processing . 5

2.1.1 Apache Storm . 6
2.2 Edge Cloud / Cloud on Edge . 10

2.2.1 Carrier Cloud . 11
2.2.2 Cloud-RAN . 12
2.2.3 Community Network Cloud 14

2.3 Emulation Software: CORE Network Emulator 14

3 Apache Storm on multi-cloud environment 17
3.1 Multi-cloud environment for Geo-distributed sources 17
3.2 Apache Storm on Multi-cloud . 19

3.2.1 Integrated Storm instances 19
3.2.2 Centralized single Storm . 20

3.3 Storm deployment in data-center with Heterogeneity network latency 21
3.3.1 System configuration . 22
3.3.2 Test case . 22

3.4 Evaluation on multiple data-center / different network subnet 24
3.4.1 Case 1: No latency . 24
3.4.2 Case 2: Latency on management nodes 25
3.4.3 Case 3: Latency on the central network 27
3.4.4 Case 4: Latency on cloud nodes 28

3.5 Evaluation on Community Network emulation 29
3.5.1 Placement of Management components 30
3.5.2 Worker nodes placement . 33

3.6 Discussion . 35

4 Geo-Distributed Apache Storm design 37
4.1 Real-time Storm Application in multi-cloud deployment 37
4.2 Scheduling and Grouping . 39

4.2.1 Current scheduler and grouping 39

Contents

4.2.2 Geo-scheduler . 39
4.2.3 ZoneGrouping . 42

5 Implementation 47
5.1 Geo-scheduler . 47

5.1.1 TaskGroup in Storm Topology 48
5.1.2 Geo-scheduler implementation 48

5.2 ZoneGrouping . 51
5.2.1 ZoneGrouping in Storm Topology 53

5.3 Guidelines . 53
5.4 Considerations . 54

5.4.1 Scalability . 55
5.4.2 Fault tolerance . 55

6 Evaluation 57
6.1 Network Topology . 57
6.2 Storm Topology . 58
6.3 Implementation validation . 60

6.3.1 Geo-Scheduler . 60
6.3.2 ZoneGrouping . 61

6.4 Performance evaluation . 63
6.4.1 Network traffic . 64
6.4.2 Latency-sensitive application 65

7 Conclusion 69
7.1 Discussion . 69
7.2 Future Work . 71

viii

List of Figures

1.1 Four domains of Stream processing 2

2.1 Stream processing, each green circle is a processing unit 5
2.2 Apache Storm Master-Worker Architecture 8
2.3 Communication between Zookeeper and Supervisor Nodes 8
2.4 Task distribution inside Worker process 9
2.5 Intel carrier cloud system architecture (Simplified from [18]) 11
2.6 Top: Traditional mobile network with BBU-Unit on each location.

Bottom: Multiple BBU-unit pooled in a single location 12
2.7 Microcloud in Community Network 14
2.8 Architecture of CORE network emulator 15
2.9 Example of CORE-GUI application; Currently showing IPv4 Routes

widget from node N11 on runtime 16
2.10 CORE Distributed emulation. GREP is used for connection between

different emulations . 16

3.1 Sample of distributed Cloud-RAN between different Stockholm area,
some crowded area can have multiple C-RAN instances 18

3.2 Sample deployment of multiple Storm instances in multi-cloud. Third-
party server is needed to manage this deployment 19

3.3 Sample deployment of single Storm with distributed components in
multi-cloud. Cloud with Zookeeper act as manager for other clouds . 20

3.4 Netty performance benchmark Storm topology 23
3.5 Network topology for experiment 1, The three circled areas are the

location of the given latency for each case 23
3.6 Case 1: Average tuple processing latency for every 2 seconds period . 24
3.7 Case 1: Number of Workers running the topology 25
3.8 Case 2: Average tuple processing latency every 2 seconds period . . 26
3.9 Case 2: Number of Workers running the topology 26
3.10 Case 3: Average Tuple processing latency every 2 seconds period . . 27
3.11 Case 3: Number of Workers running the topology 27
3.12 Case 4: Average tuple processing latency every 2 seconds period . . 28
3.13 Comparison of 30ms latency from Case 3 and all clouds in Case 4 . . 28
3.14 Community network nodes topology 29
3.15 Number of tasks running at run-time. Nimbus and Zookeeper located

on EdgeNodes . 32

List of Figures

3.16 Number of tasks running at run-time. Nimbus and Zookeeper located
on SuperNodes . 33

3.17 Average time until all tasks assigned to workers and acknowledged by
the Zookeeper . 33

3.18 Average nodes traffic for different Bolt placement scenario 34
3.19 Average nodes traffic for Shuffle and Local grouping. Bolt tasks as-

signed randomly between the available worker nodes 35
3.20 Average nodes traffic for Shuffle and Local grouping. Bolt tasks only

assigned on Cluster of SuperNodes 35

4.1 Hierarchical computation with multiple result stages. 38
4.2 TaskGroup categorization for a Storm Topology. 41
4.3 Source cloud with different type of data source. LocalTask deployed

into Source cloud with corresponding source 42
4.4 Problem with default shuffleGrouping: TaskGroup is parallelized into

different cloud. The Spout will keep sending tuples to every Bolt for
load balancing . 45

5.1 Topology example for TaskGroup deployment. LocalTask are de-
ployed on the Tasks between the input until Bolt that emitting Partial
result. 54

6.1 Multi-cloud Topology. The topology consist of three Edge Clouds and
two centralized clouds . 58

6.2 Storm Topology used for the validation evaluation. Input: Two sources
collected by each respective Spouts. Output: partial and global results. 59

6.3 Outbound traffic rates from each clouds 62
6.4 Inbound traffic rates from each clouds 62
6.5 Task deployment for Centralized Scheduler 63
6.6 Network topology with 9 EdgeClouds 64
6.7 Average network traffic in the system with different scheduler 65
6.8 Average Tuple processing time to receive partial result 66
6.9 Average Tuple processing time to receive global result 67

x

List of Tables

2.1 Requirements for Cloud Computing and Cloud-RAN applications (Taken
from [14]) . 13

3.1 Hardware specification . 22
3.2 Range of network link quality for community network emulation . . 30
3.3 Storm.yaml configuration for the experiment 31
3.4 Management Nodes location on each run 31

6.1 Different data source and location 58
6.2 TaskID information . 61
6.3 Scheduler result - Location of the assigned TaskIDs 61

Listings

5.1 storm.yaml with custom scheduler 48
5.2 Spout and Bolt declaration in Storm Topology 48
5.3 TaskGroup Class . 49
5.4 Cloud name in each Supervisor . 49
5.5 Spout and source cloud pairings . 50
5.6 looking for stream dependencies on each Bolt Class 50
5.7 Creating a list of cloud dependency to this GlobalTask 50
5.8 Sample of CloudLocator class function to choose the best cloud . . . 51
5.9 "prepare" method in ZoneGrouping 52
5.10 Result from custom scheduler . 52
5.11 chooseTasks method in ZoneShuffleGrouping 52
5.12 Example of adding Task with ZoneGrouping 53

1 Chapter 1

Introduction

1.1 Motivation & Problem Definition

Distributed stream processing system (DSPS or Stream Processing) [15] has be-
come one of the research trends in Big Data concept alongside batch processing.
With batch processing approach, we are able to do computations from very large
amount of data. Examples include querying from a database, massive image pro-
cessing, or data conversion. Based on the nature of static datasets, batch processing
appears to be an ideal technique, both in terms of data distribution, task schedul-
ing, and distributed batch processing frameworks. But, this traditional concept of
store-first, process-second architectures are unable to keep up with large volume of
arriving data in a very short period. To process each data individually on-the-go
and calculate the result in real-time, stream processing is the most suitable solu-
tion.

Looking through at the use cases of stream processing, we divide it into two types
based on the system response time. Even though the use of stream processing
is generally focused on fast or low-latency processing, some use cases like Twit-
ter trending topic analytics are not considered latency critical application. Couple
seconds or even a minute of latency is still acceptable for the user. However, in
global market exchanges or electronic trading, a process latency of one second is
most of the time unacceptable. In this thesis, we are going to focus on the latency-
critical application where the results are expected to appear in the range of millisec-
onds.

Other way to categorize the different application of stream processing is the loca-
tion of the data sources. Currently, a common use of stream processing application
is to receive the stream from databases or message brokers, often parallelized for
scalability. The raw data sources from many locations are collected into an inter-
mediate pooling system before it is processed. We called this as centralized source
location.

1 Introduction

While it is convenient to process data from single location, the growth of the data
source emitter: Mobile phones, Internet-Of-Things (IoT) devices, or sensors that
are spread in different location creates another problem if we want to do real-time
processing. Data source that is located far from where the stream processing com-
putation takes place will suffer from the high-latency communication. By using the
new EdgeCloud concept, it is possible to collect and perform stream processing
directly on each source location. As now the sources are not previously gathered
before processed, we generalized those scattered resources as Geo-distributed data
sources.

Figure 1.1: Four domains of Stream processing

From two categorization above, Figure 1.1 shows our visualization of different ap-
proach to build a stream processing application. In this thesis, we focused on latency-
sensitive / real-time application where we distributed the data processing based on
the data source locations. According to our observation, research in this area is still
relatively new.

1.2 Approach

We started by looking at the new concept of Edge Cloud model. Edge Cloud consists
of multiple small data-center / clouds that has a very good prospect to be able to pro-
cess the distributed data sources in a more efficient way. Then we analyze one of the
stream processing frameworks, namely Apache Storm, focusing on its performance
when deployed distributively in this model. The focus on this part is to identify
the possible bottleneck that could reduce the performance. The results are used as
a cornerstone for our proposal to create a better deployment of Storm components
(Storm scheduler) for Geo-distributed Edge Clouds. The implementation for the

2

1.3 Contribution

Apache Storm addition is created by using Storm plug-in API. With this addition,
we are expecting a higher performances and better response time for latency-sensitive
application compared to using the default deployment.

1.3 Contribution

We have created a new type of Apache Storm scheduler and stream distribution
protocol for a deployment in multiple data-centers or clouds. This addition promotes
the locality for Geo-distributed sources where each data will be processed in the
closest location from where it generated which can significantly reduce the effect of
high-latency connection in the backbone network.

The result is presented as an Apache Storm plug-in. There is no modification on
the default Storm release (version 0.9.3) even though there is a need to add third-
party information to make the scheduler able to run as expected. In the future, we
hope that this project will be integrated to the main Storm deployment branch to
implement more complex scheduling system.

With this research, we are also contributing to open-source stream processing com-
munities, especially Apache Storm community, to create a proof-of-concept of deploy-
ing a single Storm instances on a multiple heterogeneous cloud deployment.

1.4 Structure of the Thesis

Chapter gives the necessary information and components used in our work: stream
processing, Apache Storm, Edge Clouds, and CORE Network Emulator. Chapter
explains the motivation and idea to deploy Apache Storm in a multi-cloud environ-
ment. We did some experiments with two different network environments to observe
the performances and find the possible bottlenecks.

Chapter discusses the possibility and considerations of running a real-time applica-
tion in multiple data-center or cloud model. As a result, in this chapter we propose
a new scheduler and stream Grouping that will work in this cloud model. Chapter
explains the implementation of our algorithm and discusses some features that are
not implemented because of time restriction. Chapter evaluates the performance
of our proposed scheduler and stream Grouping compared with the Storm default
implementation.

Chapter concludes the thesis report by discussing our proposed Scheduler and stream
Grouping, and considerations as well as directions for future work.

3

2 Chapter 2

Background

2.1 Stream Processing

In-memory stream processing has become one of the trends in Big Data concept
alongside batch processing. The disadvantage of batch processing is it cannot pro-
vide low latency responses needed when the data is continuously arriving to the sys-
tem. To process each data individually and get the result in real-time, the stream
processing is the more suitable solution.

In stream processing, the data treated as streams of events or Tuples. The stream
travels from its point of origin and passes through different processing units without
saving the immediate results in permanent location first. In this way, the data is
processed as they arrived, passed to the next one, and makes the result possible to
be presented in almost real-time.

Figure 2.1: Stream processing, each green circle is a processing unit

Stream processing is usually deployed in a single data-center or cloud. This is be-
cause placing the components in different location via network connection could
create a latencies when sending the Tuples which in turn could reduce system per-
formance.

2 Background

2.1.1 Apache Storm

Apache Storm is an open-source stream processing project launched in 2012. Storm
is created by BackType and then acquired by Twitter in 2011 for their main real-
time processing jobs. By 2014, 60 companies have used and/or experimented with
Storm [22].

We choose Apache Storm than the other open-source stream processing frameworks
because of several considerations. First of all, Apache storm can be seen as a ma-
ture project. It started in heavy development from 2011 and still continuing under
Apache open-source hood until the current time this Thesis is being worked on 2015
(In the last six months, Storm have undergone several major updates). In the term
of technical consideration, Apache Storm is the most suitable from the new envi-
ronment as they provide a very robust and stateless pure-stream processing to be
able to be deployed in multi-cloud environment. There is also a possibility to run
mini-batch streaming or stateful process with Trident, an extension that runs on top
of Storm. As the core system is still the same, our modification on the lower-part of
Storm will still be used without breaking the current instance.

Processing stream in Apache Storm is based on user-defined flow graph called Storm
Topology. A topology consists of processing elements (PE) and how each tuples
will move along between PE. Usually, the process starts from the PE that han-
dles the stream source and tuple creations (Spout), to number of different PEs
(Bolts) until the last one that did not emit more streams. The Topology is submit-
ted to a running Storm instances with the default nature of ’Always Run’, where
it is expected to run indefinitely until it is stopped by user command or system
faults.

Apache Storm structure is based on multiple loosely-coupled components managed
by a third party coordination server (Apache Zookeeper). Zookeeper is another
Apache open-source project for maintaining services needed by distributed appli-
cation such as naming, configuration information, synchronization, and providing
group services [24]. The Storm components are divided based on master-slave ar-
chitecture. One component will act as a leader that assign and control jobs to the
other worker components. Below are the explanations of Apache Storm component
terms:

1. Nimbus : Nimbus is a leader component in Storm. A process is started
by the user deploying Topology in the Nimbus, where it will distribute the
assignments to the Workers inside the Supervisor machine. Nimbus find the
list of living Supervisor and their location from Zookeeper. Nimbus itself is
run as a Java daemon and do not perform any computation process.

2. Supervisor : High-level worker component in Storm. Supervisor is run as
a Java process and deployed once in each machine, physical or virtual. Each

6

2.1 Stream Processing

living Supervisor that is connected to the Zookeeper is able to receive assign-
ments from Nimbus. Supervisor is called high-level worker because it does not
do any computation by itself, but rather creates and manages multiple Work-
ers to do the computation. As the Supervisor is a different Java process from
the Workers, the Workers can still run normally even when the Supervisor is
down without interrupting the processed stream, at least until the connection
timeout between Supervisor and Zookeeper is reached.

3. Worker : Java process created by the Supervisor in the same machine. Worker
receives tasks from Nimbus and then creates the Executor thread to run the
tasks.

4. Executor : Executor is a thread inside worker running a task. There can be
any number of Executor thread inside a single Worker process. By default,
each Executor will only have one task, meaning if a worker needs to run 10
Tasks, then there will be 10 Executor threads.

5. Task : Task is a real implementation of stream Processing Elements (Bolt and
Spout) created in the user Topology

6. Bolt : Bolt is a Storm Processing Element that receive an input stream and
is able to produce any number of output stream. Bolt can receive stream
from another Bolt or Spout. Bolt consists as a logic computation like a Java
class that will be able to do any function. In Stream Processing, Bolts usually
perform simple tasks like filtering, streaming aggregation / joins, write to
databases, connect to another applications, and so on.

7. Spout : Spout is a special type of Bolt that became the source of the stream.
Spout cannot receive a stream from another Bolt / Spout, but is dedicated to
read and create Tuples from outside Storm system like message brokers (Kafka
or RabbitMQ), web API (Twitter API), databases (HBase, HDFS, Cassandra),
text files (system logs), or any other source.

Visualization of storm components described above can be seen in figure 2.2 &
2.3. Figure 2.2 gives the bird-eye view of the Storm master-worker architecture.
Each node can be located in a single machine (Local deployment) or distributed in
different machines (Cluster deployment). From this picture, we can see that initially
both Nimbus and Supervisors nodes status are managed via Zookeeper. Figure 2.3
gives more detail on the computation machine or Supervisor nodes. Single machine
only need one Supervisor process to register themselves in the Storm cluster. Max
number of workers that can be created are based on Supervisor configuration and
cannot be changed in the runtime. Each worker can only run the tasks from single
topology, as seen in figure 2.4. The Executor thread to run the assigned tasks is
called inside each worker. By default Storm scheduler, the tasks will be distributed
in a round robin way. There are different studies to create more complex scheduler.
This part will be discussed more in the next chapter.

7

2 Background

Figure 2.2: Apache Storm Master-Worker Architecture

Figure 2.3: Communication between Zookeeper and Supervisor Nodes

Apache Storm advantages that are important to be focused on this thesis work is
it’s robustness and scalability. Every Nimbus, Supervisor, and Worker components
are independent Java Virtual Machines process (JVM) that expected to be able to
stop working anytime (fail-fast) without affecting the whole Storm system: Dead
Workers will be restarted by their Supervisor in the same machine. Dead Supervisor
process won’t affect Workers assignments and the stream of the tuple can still keep
continuing for a short time. If a Supervisor downtime is exceeded the timeout by
the Zookeeper, the whole machines are considered dead and all tasks assignments
from the dead supervisor will be reassigned to other machine/Supervisor by Nimbus.
In the case of dead Nimbus, The whole Storm process will keep running as long as
the Zookeeper is alive. In the Apache Storm guidelines, Nimbus, Zookeeper, and
Supervisor Java processes are supposed to be handled and automatically restarted
by a 3rd-party control system like Supervisord [8]. The Zookeeper nodes should
also run in multiple machines for better fault tolerance and easier consensus solving
problem (odd number with minimum of 3).

8

2.1 Stream Processing

Figure 2.4: Task distribution inside Worker process

Apache Storm loosely-coupled component also create better throughput scalability
to handle different amount of input data rate or stream flow. Every Processing
Elements or Tasks can be paralleled into different amount and distributed to different
Workers. Parallelization level on each Task usually depends on the capability to
handle the speed of incoming stream, process, and send the result stream to the next
Task. When over-provisioning Tasks are possibly less harmful, under-provisioning
tasks can be very bad for the whole Storm performance. Slower processing rate
compared with the stream input rate will create a bottleneck in the system and create
queue of unprocessed Tuples. This is where increasing parallelization is important
to distribute the flow rate of a stream.

To make sure the Task parallelization did not affect the correctness of the result,
Storm has seven types of Grouping protocol of how the stream is distributed between
two or more Tasks.

• Shuffle Grouping : Tuple distributed in round-robin to every Task object
receiving the stream. This Grouping guarantees each task to receive same
amount of Tuple.

• Field Grouping : The stream is divided by the fields specified in the Group-
ing. Tuple that has same field value will always sent into the same Task. Field
grouping can be used for creating stateful computation on a Task as every
Tuple arrives will have the same field attribute.

• LocalorShuffle Grouping : This Grouping will prioritize sending the Tuple
into the next Task that is located in the same Worker process. If there are no
aimed Task in the same Worker, it behaves like Shuffle Grouping. LocalOr-
Shuffle Grouping is used for a no latency Tuple transmission between Tasks as
intra-worker communication is done inside single Java process without using
any network protocol.

9

2 Background

• Partial Key Grouping : Similar with Fields Grouping with better load
balance between two or more bolts that are receiving same field value.

• All Grouping : Each Tuple in this stream are replicated to all receiving
Tasks.

• Global Grouping : All Tuple in this stream will be sent to a single Task
with lowest ID.

• Direct Grouping : Special type of Grouping where the sender Task decides
which Task will receive the Tuple. It has different stream implementation
where it needs to assign the receivers Task ID.

2.2 Edge Cloud / Cloud on Edge

In the concept of network infrastructure, network edge is a term for part of the
network that is close to the end user. For example, network edge can be a telecom-
munication operator company base stations network where mobile phone directly
connected into, or connection between local Internet Service Provider (ISP) routers
before it connected to the higher network tier. Network edge have less latency
compared with the connection to the rest of Internet as the location is relatively
close to the user and less number of network hops [13]. Moreover, bringing part of
the computation to the network edge is believed to be able to reduce the network
load where the rest of the process is located. This process is called edge comput-
ing.

One of the current researches on edge computing is to create a cloud from edge infras-
tructure. There are three samples of implementing Cloud on Edge or Edge Cloud:
on mobile carrier network infrastructures (Section 2.2.1), Telecom base stations (Sec-
tion 2.2.2), and Community Network (Section 2.2.3). Each implementation have a
different purpose and deployment methods (network topology & cloud resources),
but with the same concept of enabling application to be put on top of or beside
their main utilities.

There are two reasons why it is fundamentally make senses to move the computation
to the Edge Cloud: Firstly, the new concept of Internet-of-things (IoT) where IP
based networking will be embedded to all type of devices, appliances, consumer elec-
tronics, and small sensors. Newest fifth-generation (5G) mobile network also helps
enabling the concept by improving the network capabilities even further. However,
when all of the devices are connected, the amount of data these systems are gen-
erating will keep increasing, which will burden the existing network. Making the
computation as close as possible to where the data is generated can significantly re-
duce the data that moving through the network and decrease the number of network
traffic bottlenecks.

10

2.2 Edge Cloud / Cloud on Edge

Secondly, moving the computation to the edge is more suitable for real-time and
latency-critical type of application. Each device will have different performance
based on the location or network hops. Distributing this computation to the edge
will significantly reduce the latency and better response time. Moreover, if each Edge
Cloud server only processes the data from limited area (geographical distribution),
the load on each server will be lower than the single centralized cloud.

Edge Cloud can be used as a single cloud instance or to be combined with current
centralized cloud infrastructure. With part of the services located on the Edge, we
can enhance the cloud experience by segregating the local information based on
the location, while the centralized cloud infrastructure is still maintained for global
computation or aggregation.

2.2.1 Carrier Cloud

Figure 2.5: Intel carrier cloud system architecture (Simplified from [18])

Carrier Cloud is one of the emerging cloud models located on the network edge. In
carrier cloud, mobile telecommunication operator hosts Cloud Computing services
on their carrier network infrastructures. Growth of the network and variety of new
technologies are the main reason for the companies [2] to change their hardware
nodes. Single-function machines / carrier-grade routers and switches are evolving
into the general purpose CPU hardware with abstraction of the network function
(Network Function Virtualization & Software Defined Network). In figure 2.5, single
Ethernet switch with Xeon R⃝based processor provides virtualized network compo-
nent under Open vSwitch, while OpenStack run in the same machine. With the

11

2 Background

cloud platform available in the system, lots of improvement and new features can
be made. In 2014, Nokia and Intel build a partnership with UK mobile operator EE
to upgrade the base station with Intel-based server[7].

2.2.2 Cloud-RAN

Figure 2.6: Top: Traditional mobile network with BBU-Unit on each
location. Bottom: Multiple BBU-unit pooled in a single

location

Cloud-RAN (Radio Access Network) is a new model for base stations mobile net-
work. The idea of cloud-RAN is first initiated by IBM with the name of Wireless
Network Cloud (WNC) [19]. The concept of Cloud-RAN is to apply cloud-computing
technologies on structures behind mobile network architecture. In mobile network
architectures, every base station tower is accompanied with two structures: RRH
(Remote Radio Head) that processes the DAC (Digital-to-Analog) and ADC (Analog-
to-Digital) conversion from/to the tower antenna and BBU (Baseband Unit) or
DU (Data Unit) that works more on computation like sampling, mapping, Fourier
Transform, and transport protocol. In this thesis we will not discuss about both
structures in detail, but we will focus on the network relation between these compo-
nents.

The differences between traditional and Cloud-RAN mobile network architectures is
the modification of Baseband-Unit (BBU), as can be seen in figure 2.6. In traditional
mobile network, every base station tower has a dedicated BBU-Unit. This concept

12

2.2 Edge Cloud / Cloud on Edge

have disadvantages on cost and power consumption needed for each base station
because number of BBU machine must follow the number of RRH tower. Also, com-
munication between BBU takes more time as the information needs to be sent to the
Backhaul network first. In cloud-RAN, multiple BBU for multiple base stations are
combined into single BBU pool. This pool will then act as a single cloud system that
controlling multiple RRH / base station in a single time. Communication between
BBU will then occur less often as the unit located in the same place. Based on load
information, over-provisioning or under-utilization can be avoided where increasing
or decreasing number of BBU machines also became easier as the administrator can
control the centralized and on-demand system.

Table 2.1: Requirements for Cloud Computing and Cloud-RAN
applications (Taken from [14])

IT - Cloud
Computing

Telecom - Cloud
RAN

Client/Base
station data rate

Mbps range, bursty,
low activity

Gbps range, constant
stream

Latency and
Jitter Tens of ms < 0.5 ms. jitter in ns

range

Lifetime of
information Long (Content data)

Extremely Short (data
symbols and received

samples)
Allowed recovery
time

s range (Sometimes
hours)

ms range to avoid
network outage

Number of clients
per centralized
location

Thousands, even
millions Tens, maybe hundreds

This Cloud-RAN network is an example of Cloud on the edge. From the previous
paragraph, We could imagine a single deployment of BBU pool as one cloud system
and the connection between multiple BBU pool is a connection between clouds via
backhaul network. Every cloud has information on their own quota and computa-
tion power which makes deploying third-party software a possibility. The deployed
software can be used for enhancing the main mobile network system. For exam-
ple, the system could have traffic distribution, Trans-receiver selection, Functional
component to physical mapping, and make decisions from previous configurations.
Table 2.1 from [14] give us the insights of the requirement needed for application in-
side the Cloud-RAN system. While number of the clients can be lower than normal
cloud computing application because the cloud are distributed in different location,
there is a demand for very-low latency and short-life processed data span. We be-
lieve that real-time processing like Stream Processing will be suitable to run inside
Cloud-RAN system.

13

2 Background

2.2.3 Community Network Cloud

Community network is a local communication infrastructure in which a community
of citizen build, operate, and own open IP-based networks[12]. Community net-
work is mainly used for Internet sharing solution in an area without or have a bad
quality connection to commercial telecom operators. In addition, community net-
work can provide different services like web space, e-mail, distributed storage[21],
or cloud services[12]. As explained in those papers, the most suitable design to
deploy cloud in wireless community network is a set of microclouds. Each micro-
cloud is a cloud resource that is defined by geographical zone and connected to
each other by a super-node. Group of microclouds in community network is similar
with the concept of edge cloud where each end-users are located in an area with
connection to the relatively closest cloud. Each microcloud is able to communi-
cate with each other or connect to the bigger cloud located outside the community
network.

Figure 2.7: Microcloud in Community Network

2.3 Emulation Software: CORE Network Emulator

CORE network emulator is an open source network emulation framework tool devel-
oped by Network Technology research group, part of Boeing Research and Tech-
nology division, in United States Naval Research Laboratory (NRL)[1]. CORE
is a derivative project from Integrated Multiprotocol Network Emulator/Simulator
(IMUNES) where the concept of lightweight virtual network instances is presented
into FreeBSD 4.11 or 7.0 operating system Kernel[10].

14

2.3 Emulation Software: CORE Network Emulator

Figure 2.8: Architecture of CORE network emulator

CORE basic architecture can be seen in Figure 2.8. On the top there is a CORE-
GUI application where the user can directly interact to create topologies. User can
place nodes with different capabilities (Routers, PCs, Servers, Switches, etc) and
draw network links between the nodes. User can also control the quality (maximum
bandwidth, bit-error rate, latency, and latency jitter) for every network links between
two nodes, be it both ways or one direction only.

In execution time, CORE-GUI uses their own CORE-API to give instruction to the
CORE services that is connected to via TCP socket-based connection. The GUI
itself can be run in different machine with the services. In the run-time, CORE-
GUI also has multiple features like customizable widgets to show basic information
without opening the interactive shell on each nodes, seen in Figure 2.9. There are
also start-up scripts and mobility scripts to send any command to multiple nodes in
the run-time.

Under the CORE-GUI, main system of CORE is run as python services. This
services is responsible to instantiating Vnodes and virtual network stack in the lower
layer. Vnode technology used by CORE is Linux OpenVZ containers. Each Vnode
container has private file system and security control. Other features like disk size or
memory quota are disabled and shared with the hosts machine. Each Vnode has their
own Linux kernel namespaces with clone() system call. New process or application
run inside the Vnode will be forked from the Vnode main process and still can be
seen as single different process from the host machine. For the virtual network stack,
CORE create pairs of veth (Virtual Ethernet) in the host machine for every links.
Linux Ethernet bridging is then used to connect the veth together. This way, host
machines network interfaces could also bridge to any veth.

15

2 Background

Figure 2.9: Example of CORE-GUI application; Currently showing IPv4
Routes widget from node N11 on runtime

CORE proposes the scalability on the size of topology with the possibility of dis-
tributed emulation. From one CORE-GUI controller, it is possible to run exper-
iments where some of the nodes are running in different machines and the links
between this two nodes will be seen as a dashed line (Figure 2.10). In the figure,
all nodes have a machine hostname as the name prefix (sky2 or sky4) that shows
where the nodes are emulated.

Figure 2.10: CORE Distributed emulation. GREP is used for connection
between different emulations

16

3 Chapter 3

Apache Storm on multi-cloud
environment

Deploying Apache Storm in multiple clouds has its own challenge. Apache Storm
systems are usually deployed in one location, i.e. single cloud or data-center. This
is because the nodes in a single data-center are connected each other by high
bandwidth network connections. This deployment ensures a high performance be-
cause a big-data stream processing is desired to be scalable and highly parallelized.
Stream processing is also expected to generate high network traffic as the Tuples
are processed by multiple computation nodes which can be located on different
nodes.

This chapter focuses on exploring Storm capability to be able to run the system in a
distributed network environment with multiple data-centers or cloud instances. First
we explained the motivation of why we should use a distributed Storm in network-
on-the-edge, based on current trend of Geo-distributed sources. We generalized
different Edge Cloud model into single model called multi-cloud and then find the
best way to deploy Storm components in this model. We also have a hypothesis of
what will be the performance bottleneck in this type of Storm. Therefore, we present
our experiment to attest the correctness of our hypotheses.

3.1 Multi-cloud environment for Geo-distributed sources

In this era, modern data sources are essentially automatic, distributed, and con-
tinuous [16]. While some research focused to gain more information by increasing
the data source rates, another factor that creates higher throughput is because the
numbers of the object emitting data are also rapidly increasing. User mobile phones,
wearable devices, environmental sensors, etc. are enhanced to be smarter, able to
connect directly to their data pool via Internet by using an IP-based or mobile net-
work connection. The sources can be located in multiple buildings, cities, regions,
countries, or any specified location. This concept creates the term of geographically
distributed (Geo-distributed) data sources.

3 Apache Storm on multi-cloud environment

When the data source is Geo-distributed, finding best data-center or cloud location
to run latency-critical or real-time application is a challenging problem. Deploying
an application in a single location may not satisfy the response time needed on dif-
ferent place. The same reasoning also applies when using a single cloud services that
located across high-latency network (Internet) where intangible latency will appear.
We are looking for an approach to collect the data and perform the computation lo-
cally based on the location of the sources. Data from any location will be computed
in the closest cloud, which makes same latency and response time regardless of the
location.

Faced with this problem, we are looking at the new concept presented by several
research where the physical network devices located closer to the sources can be
modified to deploy a cloud application known as Edge Cloud, explained in Chapter
2.2. This concept is in accordance with our need where the cloud location is also
distributed by the location of the sources. Figure 3.1 gives the example of distributed
Cloud-RAN connected to each other.

Figure 3.1: Sample of distributed Cloud-RAN between different Stockholm
area, some crowded area can have multiple C-RAN instances

Each Edge Cloud model has different network topology and how the clouds are
connected to each other. But, aside from the differences we are focused on the con-
cept that Edge Cloud itself is a set of multiple clouds that are scattered in different
location. We generalized this concept into multi-cloud model. The similarity of
different multi-cloud model is the clouds are able to communicate with each other
via their own network (ex: private telecoms network) or high-latency network (In-
ternet). This generic approach of multi-cloud model is also assumed to be able
to run any application particularly Apache Storm or any stream processing frame-
work. By generalizing different network topology into single model, it will be easier

18

3.2 Apache Storm on Multi-cloud

to address the features and problems when deploying Apache Storm in the next
section.

3.2 Apache Storm on Multi-cloud

Based on the model of Edge Cloud discussed in previous section, we found two dif-
ferent way to deploy Apache Storm on multi-cloud model. The first way is to deploy
different Storm instances on each cloud. In this deployment, all clouds will have
its own computation and management components. The second way is to deploy
a single Storm instances for all the clouds. In this deployment, the components
are distributed into multiple clouds or sites. We will discuss both advantages and
disadvantages on each deployment.

Figure 3.2: Sample deployment of multiple Storm instances in multi-cloud.
Third-party server is needed to manage this deployment

3.2.1 Integrated Storm instances

Deploying multiple Storm instances in multi-cloud environment have the advantage
of component robustness. In this deployment, the communication between the Work-
ers to Nimbus and Zookeeper occur on each cloud. This design avoids sending the
heartbeats between the cloud where the communication can be unreliable. Any fault
tolerant or scalability process also handled on each cloud. Another advantage of de-
ploying stream processing in this deployment is the computation result in a cloud

19

3 Apache Storm on multi-cloud environment

will only base on stream that coming to that cloud. This effect of result locality is
one of the important consideration later on.

To manage the deployment of multiple Storm instances, we need a Storm manager
that is able to control all of Storm components on every cloud. This manager should
be able to add / remove Storm components, deploying Storm Topology, monitoring,
and handles different clouds (different performance / cloud provider).

Furthermore, when we want to combine the process from multiple Storms, then there
is a need to make some adjustments from the basic Storm usage. In the Topology
deployment phase, the user or the third-party storm manager needs to send the
Storm Topology to multiple Nimbus component on all clouds. Result streams from
Every Storm will need to be sent directly to other Storm instances to continue
the process, or pooled into an intermediate location. This means we need another
message broker system to be able to collect all results. If the computation need to
be done in multiple clouds (multiple Storm instances), there is a need to control all
of the stream traffics from one cloud to another. Using a third-party system rather
than direct communication between the Workers could create a high possibility of
system bottleneck.

3.2.2 Centralized single Storm

Another way to deploy Storm instances in multi-cloud model is to only use single
storm instance in the whole system. Rather than having management component
(Nimbus and Zookeeper) in each cloud, the Storm components are located in different
place, as can be seen in Figure 3.3. For example, the Nimbus and Zookeeper are
deployed in a cloud that has high bandwidth and good latency to other clouds and
the Supervisors are deployed in every other clouds.

Figure 3.3: Sample deployment of single Storm with distributed
components in multi-cloud. Cloud with Zookeeper act as

manager for other clouds

20

3.3 Storm deployment in data-center with Heterogeneity network latency

This deployment does not need to have any third-party manager like the previous
deployment. As long as the Supervisors in all clouds are able to communicate with
the Zookeeper in other cloud, the Storm will be working normally like a single
data center deployment. Even though the physical machines are located in different
sites, communication and data transfer between Worker nodes are controlled by the
Storm as long as both Supervisor nodes are also able to communicate. There is
no need to have a third-party system to handle the inter-cloud messages. Another
advantage with a single Nimbus administrating the whole system, the user are able
to create and design more complex topology and utilizing different cloud for different
roles.

The major problem in this type of deployment is the unreliable inter-cloud commu-
nication. This Storm must be able to handle any possibility of inter-cloud latency
or bandwidth limitation that could affect the system availability and ultimately, its
performance.

Based on both advantages and disadvantages, we choose the centralized Storm rather
than multiple Storm instances. Multiple storm instances are easy to manage, but
need lots of modification from the view of the administrator who is managing the
instances and changing the Storm user experiences because they need to distribute
the query rather than creating a single Storm Topology. On the other side, single
Storm management where the components are distributed needs minimum or no
changes from the default Storm release. The user or any view from the outside still
see the system as a single Storm instances while behind the curtain the components
are geographically distributed. However, the study of cloud network heterogene-
ity and inter-data center connection will affects the components availability and
overall performance should be studied further. This will be our focus in the next
section.

3.3 Storm deployment in data-center with Heterogeneity
network latency

In this section, we are exploring whether the heterogeneity of inter-data center con-
nection inside multi-cloud Storm deployment will affects the performance and avail-
abilities of Storm components or not. There are two evaluation scenarios deployed
inside CORE network emulator:

• First, a configuration of 5 different cloud locations (different network subnet)
with 2 machines / nodes on each network. All clouds are connected to each
other via core or back-haul network. In total there are 10 machines emulated.

21

3 Apache Storm on multi-cloud environment

• Second, an emulation of 50 community network nodes using the information
from Guifi.net community network[3].

3.3.1 System configuration

Every nodes and network links are created inside CORE network emulator in single
machine. At first, the writer attempted to run CORE with distributed emulation
to get better load balancing for the emulated nodes. When the writer start running
the experiment in distributed environment, there is a problem of packet limitation
size of GRE tunnel between multiple CORE daemon. After some workaround, the
writer chooses to run the experiment in single machine. The machine specification
are explained in Table 3.1 below:

Table 3.1: Hardware specification
Component Specification
Brand HP ProLiant DL380 server
Processor 2 x Intel Xeon X5660, 24 threads total
RAM 44 GB
Storage 2 TB
Operating System Red Hat Enterprise Linux (RHEL) 6

Every virtual node has one instance of Apache Storm running, except one node
that hosts Zookeeper instance. Each node with Supervisor component will only
host a single Worker to make sure the Task are distributed between nodes, not
between Workers inside a single machine. Every Worker are set to reserve 512
megabytes of memory. This amount is expected to be able to be provided on each
node.

3.3.2 Test case

Test case used on this experiment is based on the idea of yahoo performance test
benchmark topology for Storm Netty[4]. The benchmark was initially created for
testing the performance of Netty IO framework[6] for inter-Worker Tuple movement,
changing the previously used ZeroMQ on Storm version before 0.9.0. This Storm
topology focused on the movement of the Tuples inside the network without any pro-
cess occurred on each Bolt. This is related with this experiment where we wanted
to see the effects of latency on different part of the network and ignoring the com-
putation or process happened on each tasks.

The design of the topology can be seen in Figure 3.4. Based on user input, the
topology will create 1 type of spout and N level of processing bolts. Both spout

22

3.3 Storm deployment in data-center with Heterogeneity network latency

and bolts will be then parallelized by the amount of user provided. For example,
number of parallelization on both spout and bolts in Figure 3.4 is 3. Processing flow
in this topology is started by each Spout creating Tuple with a certain size and rate
specified by the user and sent to the Level 1 Bolt (L1_Bolt). Every Bolt on each
level will send the received Tuple to the Bolt with a higher level until it arrives on
the last level N Bolt (LN_Bolt). As there are no computation happening on each
Bolt, this test case is suitable to measuring the latency of the Tuple movements in
the network.

Figure 3.4: Netty performance benchmark Storm topology

Figure 3.5: Network topology for experiment 1, The three circled areas are
the location of the given latency for each case

23

3 Apache Storm on multi-cloud environment

3.4 Evaluation on multiple data-center / different network
subnet

The focus on this experiment is to analyze the heterogeneity of network latency that
cloud affect the availability of the Storm components and the system performance.
Different amount of network latencies are placed in different location on the network
links shown in Figure 3.5. The experiment is divided into four different cases. Each
case has different focus on which links are affected by some amount of latency: No
latency in the whole system (base case), between the computation nodes to the
management nodes (Nimbus and Zookeeper) (I), latency on the central network
that is connecting the data-centers (II), and where each data-center has different
latencies when connected to the other data-center (III).

3.4.1 Case 1: No latency

This first case is the baseline for the other case where there are no latency applied
on all links. This setting can also be seen as data-center deployment where all of the
nodes are connected via high-speed connection without legible latency.

Figure 3.6: Case 1: Average tuple processing latency for every 2 seconds
period

24

3.4 Evaluation on multiple data-center / different network subnet

Figure 3.7: Case 1: Number of Workers running the topology

Figure 3.6 explains how long it takes to process Tuple from the time it is generated
in the Spout until arriving in the last Bolt. Every step in the x-axis shows the
average processing latency of the Tuples on every 2 seconds period. In the first
minute, the Tuples still have unstable high peak latency because some Tuples are
dropped and restarted while new Workers and Executors are still being spawned
on each Supervisors. After the first minute, the average latency stabilize to around
10.15 milliseconds. Figure 3.7 shows the number of Worker processes spawned by
Supervisor and registered in the Zookeeper. After 10 seconds all Workers are running
and ready to process the stream.

3.4.2 Case 2: Latency on management nodes

In this Case, we are adding some latency in the network link connecting management
nodes with the remaining data-centers where the Supervisors is located. There are
three amount of latencies tested: 15, 30, and 45 milliseconds. The result is then
compared with the base case without latency (Case 1).

25

3 Apache Storm on multi-cloud environment

Figure 3.8: Case 2: Average tuple processing latency every 2 seconds
period

Figure 3.9: Case 2: Number of Workers running the topology

With the modification of latency to Nimbus and Zookeeper with the rest of Super-
visors, Figure 3.8 shows that there are no effects on the Tuple process latency. No
visible changes happened even after the latency set into 500 ms for each heartbeat
from Supervisors and Workers to the Zookeeper. In Figure 3.9 it is apparent that
the startup phase of the Workers is expected to have some delay for higher latency
because of slower communication with Nimbus. 500ms latency created twice as much
startup phase time compared with 0ms latency.

26

3.4 Evaluation on multiple data-center / different network subnet

3.4.3 Case 3: Latency on the central network

Figure 3.10: Case 3: Average Tuple processing latency every 2 seconds
period

Latency in case 3 is located in the network between the routers connecting the clouds.
This case is based on the idea of each cloud is connected into high-latency network.
There are three different latency run for this case: 15, 30, and 45 milliseconds.
Connection between nodes that has higher number of router hops will produce more
latency for each packet or Tuple sent.

Figure 3.11: Case 3: Number of Workers running the topology

From Figure 3.10, increasing latency in the core network creates significant effect for
the average Tuple latency. By the addition of 15 milliseconds latency, the average
of Tuple latency suddenly increased by 7 times from 10 into around 75 milliseconds.
The Tuple processing time kept increasing until 18 times higher than normal for 45
milliseconds core network latency. This shows that moving Tuple between clouds

27

3 Apache Storm on multi-cloud environment

will affect the performance and should be minimized. Slower starting phase has the
same reason with Case 2 where the communication between Workers and Nimbus
are taking more time as the latency increased (Figure 3.11).

3.4.4 Case 4: Latency on cloud nodes

Last case in this experiment is to analyze the effect of combining clouds that have
high and low latency at the same time. There are 4 types of latency placement: 30
milliseconds latency into 1 data-center (n9 & n10), 2 data-centers (n9,n10,n13,n14),
3 data-centers (n5,n6,n9,n10,n13,n14), and all data-centers.

Figure 3.12: Case 4: Average tuple processing latency every 2 seconds
period

Figure 3.13: Comparison of 30ms latency from Case 3 and all clouds in
Case 4

As we can see in Figure 3.12, when each cloud is introduced to a latency one by one,

28

3.5 Evaluation on Community Network emulation

the average processing time increased by around 20 milliseconds. The consistent
increment is expected because the Storm default Scheduler is based on round-robin
load balancer. While the scheduler will distribute same amount of Tuples on each
bolt, the bolt in higher latency cloud will need longer time to process rather than
low latency cloud. This will affect the whole system because the normal speed bolt
in low latency cloud will they need to wait Tuples from slower bolt on high latency
cloud. With higher number of high latency Cloud, the average Tuple computation
time will also increases.

3.5 Evaluation on Community Network emulation

In this section we are observing Apache Storm performance on community network
cloud. The concept of community network cloud are explained in chapter 2.2.3. This
experiment has been published in a research paper with title of "Stream Processing in
Community Network Clouds" and presented on August 2015 [17].

Figure 3.14: Community network nodes topology

From the previous discussion, community network cloud can be considered a multi-
cloud deployment. The physical devices where the cloud resources are located are
distributed and connected via unreliable network. Some resources can be located
close (physically or good connection) together and create a high connectivity cluster,
as can be seen in Figure 3.14. Each physical device can connect to end-devices like
user PCs or wireless sensors to collect the data. This is similar with how the geo-
distributed sources are explained before. The challenge to deploy Apache Storm or
any stream processing on this type of cloud is its network characteristics. Community
networks have a very heterogeneous link quality, especially latency and bandwidth,
which makes it important to have different consideration compared to deployment
on a data-center.

In this experiment, we are looking at how the different location of the Storm com-
ponents inside the community network cloud will affect the performance. First, we
evaluate how the different placement of Nimbus and Zookeeper affects Storm start-
up time to schedule the tasks to the Supervisors. We also observe the stability of
the node connection to the Zookeeper while the process is running. Second, we
evaluate the behaviour of Worker components based on node connectivity and two
types of Storm stream Grouping: Shuffle and LocalorShuffle Grouping. We make
an assumption that each node will be able to host at least single Storm instances
(Nimbus, Zookeeper or Supervisor).

The sample topology of the community network used in this experiment are col-
lected from small part of Guifi.net[3] on the area of QMP Sants-UPC in Barcelona,

29

3 Apache Storm on multi-cloud environment

Spain. Before emulating the network topology to CORE network emulator, we
manually filter nodes that are disconnected, dead, or did not have monitoring infor-
mation available. In total we are able to collect and run 52 nodes with 112 network
links.

Table 3.2: Range of network link quality for community network emulation
Latency (ms) Bandwidth (Mbps)

Maximum 84.3 91.6
Minimum 0.31 0.12
Average 3.06 31.9

To emulate network links, we use the nodes and network data collected from the
monitoring system for 24 hours. Then we create an estimation of the link quality by
calculating the average bandwidth and latency on each link. This information makes
the evaluation have different focus from previous section because latency and band-
width limit are fixed by the collected data. Ranges of the link quality are presented
in Table 3.2. While the average latencies of the links are considered good (3 mil-
liseconds), some links suffered with maximum latency of 84 milliseconds. Similar to
the condition with bandwidth limitation, some nodes have a very limited bandwidth
with less than 1 Megabytes per second. Some part of the network can suffer if traffic
from Stream processing is more than the available bandwidth.

Storm Topology used in this evaluation are the identical with the previous section,
Yahoo storm-perf-test benchmark (Chapter) with three levels of Bolts. In the first
time we tried to run Storm on this network, the system did not work. The problem is
a connection timeout error between the Supervisors and the Zookeeper. We expected
this problem to happen because the links have a very different quality. To overcome
the effect of bad connection, we need to modify Storm configuration file (Storm.yaml)
to increase timeout time and reduce heartbeat rate. The modification is presented
in Table 3.3. We increased some of the configuration values that controls the fault
tolerance by 2, 5 times from default by trial and error. When the values are set to
2, 5 times higher, the majority of the Workers can connect to the Zookeeper and
start processing the stream.

3.5.1 Placement of Management components

Management components have two main duty: To deploy Tasks into each Supervisor
nodes and maintaining status of all nodes whether they are still alive or not. Even
though the bandwidth used in their communication is small, but bad connection
could create numerous false-positive node state. We are looking at whether the
placement of both Nimbus and Zookeeper are the crucial factor or not to consider
in this type of cloud.

30

3.5 Evaluation on Community Network emulation

Table 3.3: Storm.yaml configuration for the experiment
Parameters Storm Default value Modified value
Worker Heartbeat frequency (secs) 1 10
Worker timeout (secs) 30 80
Supervisor heartbeat frequency (secs) 5 20
Supervisor timeout (secs) 60 150
Nimbus task timeout (secs) 30 80
Nimbus monitor frequency (secs) 10 40
Zookeeper session timeout (milisecs) 20000 50000
Zookeeper connection timeout (milisecs) 15000 40000

We categorize the nodes based on their degree of connectivity. This categorization
is created to consider two different locations of the nodes. A node with 5 or more
direct connection is called SuperNode; whereas a node with less than 5 connections
is called EdgeNode. The SuperNodes are able to connect to any other nodes easily
because there are lots of connections available. On the other side, EdgeNodes is
a remote nodes with few connection and need to rely on other node with limited
connectivity. According to our categorization, 52 nodes presented in Figure 3.14 has
22 SuperNodes and 30 EdgeNodes.

From all of the available nodes, we choose 30 nodes to become worker nodes and
run Supervisor instance. The Supervisor nodes are selected so the Supervisor in-
stances will be spread evenly in the whole network based on Figure 3.14. Supervisor
locations are permanent because we want to focus only on the different placement
of Nimbus and Zookeeper for each run. Nimbus and Zookeeper are located in sin-
gle node different from each other. In total there are 32 nodes running Storm
components. Using 32 from 52 available nodes seems to be able to represent the
network.

Table 3.4: Management Nodes location on each run
Run ID Nimbus Zookeeper

SuperNodes
Run-1 n47 n50
Run-2 n20 n21
Run-3 n44 n48

EdgeNodes
Run-1 n2 n3
Run-2 n27 n31
Run-3 n5 n6

For a total of six repetitions, we put the Nimbus and Zookeeper on both type of
category (EdgeNodes and SuperNodes) three times each. Runs on the same category

31

3 Apache Storm on multi-cloud environment

are located in different nodes. The location of Nimbus and Zookeeper are shown on
Table 3.4.

Figure 3.15 and 3.16 show a detailed view on state of tasks in each run for different
placements of the management components. Tasks are considered "running" when
the process are created in the worker node and able to receive / process a Tuple.
"Max Executors" is the total number of Tasks that should be running. Tasks that
located in the node with good connection quality will achieve the "running" state
faster than the Tasks that located in bad connectivity nodes. On Figure 3.15, there
are a lot of unstable tasks that keep on disconnecting after some time. In the example
of Run-2, the system are unable to register all of the Tasks to the zookeeper even
after 140 seconds. If we continue following the graph time, in the end Run-2 is able
to reach the max Executor line after 214 seconds / 3.5 minutes, while some nodes
keep disconnecting all the time. On the other hand, Figure 3.16 shows us a very
stable result compared with Figure 3.15. Just by placing the management nodes
in high connectivity nodes, we will obtain better stability. Some Tasks take longer
time to register themselves because they are located very far from the management
nodes.

Figure 3.17 display the average scheduling time of every run. Scheduling time is the
time required for all Tasks to achieve "running" state. In the default Storm instance,
usually scheduling time is called once when the user deploys Topology for the first
time. The scheduler are also called when the system reached the ’Rebalance’ state.
In the complex and resource-aware scheduler created by Aniello et al.[11], the Tasks
are often need to be moved from one Worker to another. The reason is because
the scheduler will find the best Task allocation that fulfills the parameter provided
(ex. less traffic or highest Tuple rate per second). As the scheduling time will be
recalled more often, it is important to make this scheduling time a consideration
when deploying the Tasks in multi-cloud environment.

Figure 3.15: Number of tasks running at run-time. Nimbus and Zookeeper
located on EdgeNodes

32

3.5 Evaluation on Community Network emulation

Figure 3.16: Number of tasks running at run-time. Nimbus and Zookeeper
located on SuperNodes

Figure 3.17: Average time until all tasks assigned to workers and
acknowledged by the Zookeeper

3.5.2 Worker nodes placement

Inside the community network, sources are distributed on all the nodes. Assuming
that we know on which nodes the sources are located, our idea is to allocate Storm
Tasks on those nodes. This concept is quite different from deployment on the data-
center where raw data are usually pooled into a message broker system such as
Kafka or no-SQL databases such as Hbase or Cassandra.

In this second experiment, we choose 29 nodes to serve as Worker nodes and 2 static
SuperNodes location for Nimbus and Zookeeper. On each Worker nodes we put sin-
gle Spout Task to generate the Tuples. In each placement, we also select 10 from 29
Worker nodes to host the Bolt Tasks. In the end, there are 10 nodes with collocated
Bolt and Spouts Tasks, and 19 Nodes with only Spout Tasks.

We are measuring the amount of in-out network traffic by placing Bolt Tasks in
different location. We capture the network traffic of 52 nodes using Linux ifstat

33

3 Apache Storm on multi-cloud environment

utility. This information allows quantifying how Stream Processing will affect the
whole network, not only the nodes that host the Storm components. There are two
type of Bolt placement: Random Placement and Cluster Placement. In Random
Placement we choose 10 from 29 nodes with Spout Task randomly. However in
Cluster Placement, we choose 10 SuperNodes that have high connectivity with each
other to form a cluster of Bolts.

Figure 3.18 shows the average network traffic for two different placements. Bolts in
Cluster Placement generate 30% less traffic compared with Random Placement. This
is because the network traffic in Cluster Placement are circulated within the cluster,
in contrast Random Placement makes the Tuple need to travel further through
higher number of network hops between Bolts, and passed some nodes that did not
run any Storm component.

Figure 3.18: Average nodes traffic for different Bolt placement scenario

Second thing to explore is to see the effects of different Storm stream Grouping mech-
anism to the amount of network traffic generated. We compared Shuffle Grouping
and LocalOrShuffle (Local) Grouping because of their similarities (Explained in Sec-
tion 2.1.1). The advantage of Local Grouping is a Task will send the Tuple to the
next processing Bolt that located in the same Worker with the sender. This Group-
ing are expected to do local communication as much as possible and did not affect the
network traffic. The result are shown in Figure 3.19 & Figure 3.20. In both figures,
the Shuffle Grouping method has a slightly higher traffic than Local Grouping, but
did not create a significant difference. This is because the number of Worker hosting
Bolt Task is significantly (around 1

3
) lower than number Worker hosting Spout Task.

Therefore, there are only a few Bolts doing the Local Grouping whiles other Spout
only Workers will still send the Tuples with Shuffle Grouping.

While Local Grouping is promising to create a locality and reduce inter-Worker traf-
fic in data-center deployment, this Grouping is not very useful for a Geo-distributed
deployment with different number of parallelization between the Tasks and heteroge-
neous network environment. If we try to distribute the Bolts and Spouts as close as
possible to location of the data sources, we should consider the balance between the
numbers of Bolt and Spout Tasks. If the parallelism factor for bolts is equal or close

34

3.6 Discussion

to the parallelism factor for spouts when using the local-or-shuffle grouping, more
data can be processed locally to reduce the network traffic. On the other side, if the
parallelism factor of bolts is less than the parallelism factor of spouts, then stream
processing consumes less computing resources; however, the positioning of the bolts
becomes important to reduce the inter-Worker communication. This problem is the
motivation to create a better scheduler and stream Grouping that is able to consider
these kind of environment.

Figure 3.19: Average nodes traffic for Shuffle and Local grouping. Bolt
tasks assigned randomly between the available worker nodes

Figure 3.20: Average nodes traffic for Shuffle and Local grouping. Bolt
tasks only assigned on Cluster of SuperNodes

3.6 Discussion

The experiments in this chapter is focused on evaluating Apache Storm perfor-
mance and components availability when deployed in multiple data-center with
heterogeneous network quality. We focused on different latency and bandwidth
limit on each network links. From the result of both experiments we could get
some insights to be put into consideration to create a more efficient Task deploy-
ment.

35

3 Apache Storm on multi-cloud environment

First, the delayed or high latency on the network between management components
(Nimbus and Zookeeper) and Supervisors in general only affects the process startup
time. When the topology is running, Zookeeper only need to receive small heartbeat
messages from the Supervisor nodes and similar with Nimbus for monitoring pur-
poses. So the high latency even until 500ms tested (1 second for round-trip) are not
affecting the system. But in case of very high latency and small bandwidth like in the
second evaluation, using default Storm configuration will result in many disconnec-
tion between Zookeeper and Supervisors. Some workaround in the configuration is
able to handle these issues with the drawback of fault tolerance.

The other important result is the effect of Heterogeneous latency between data-
centers with Supervisor/Worker being able to affect the Storm throughput. A single
area that perform slower than the others (straggler) could reduce the performance
of the whole system. This is because the default Storm is focused only on balanced
load, both on Tasks deployment (scheduler) and stream distribution. The effect of
the straggler can also be amplified if their computation rate is slower than the rate
of the incoming stream which creates a queue.

There also a need to make the scheduler to be aware on the submitted topology.
Deploying an adjacent Tasks in the same data-center or close to each other could
have less inter data-center communication which reduce the network traffic and
bandwidth consumption. Furthermore, doing some part of the computation inside
a single data-center could also produces faster partial result.

36

4 Chapter 4

Geo-Distributed Apache Storm
design

This Chapter is focused on creating a better way to deploy Storm components in
multi data-center environment. By analysing the results from previous chapter, we
seek a different way to deploy the Storm components. We introduce our concept of
Tasks scheduling that fulfill the focus of our work; Real-time stream processing where
data sources are geographically distributed. We are looking at a Storm Topology
that have hierarchical process or multiple result stages. Also, we are introducing a
new stream distribution for Storm (Stream Grouping) to support the needs of intra
data-center communication and reducing network traffic.

4.1 Real-time Storm Application in multi-cloud deployment

In the experiment discussion section of previous chapter (Section 3.6), we already
pointed some problem that happened when the Apache Storm components are dis-
tributed in multiple data-centers with different location, especially if there are some
latency or bandwidth limitation on network links between the data-centers. To im-
prove performance, there is a need to modify some part of Apache Storm to be able
to avoid those problem.

If we use default Storm scheduler designated for single data-center, the major prob-
lem occurred will be the uncertainty of computation time for each Tuple. This
happened because the scheduler do not have location awareness for every Tasks
that actually process each Tuple. A Task could receive a Tuple from the same ma-
chine, different machine on the same data-center, or from a different data-center.
A real-time or latency sensitive stream processing performance will suffer with this
uncertainty. To satisfy the necessity of real-time, every data sources should be pro-
cessed with the same amount of time regardless of its location. With the assumption
of the system knows the location of the data sources, we are trying to approach the

4 Geo-Distributed Apache Storm design

problem by deploying the Tasks in the same place or in the closest data-center as pos-
sible on where the sources are collected. This creates a multiple partial processing
on each data-center location.

Figure 4.1: Hierarchical computation with multiple result stages.

Processing Geo-distributed data sources result partially in multiple data-centers
does not mean we are abandoning the current cloud deployment. The partial result
from many processes can be aggregated to the ’central’ cloud to achieve result in the
global scale. The generalized concept of partial results and global result are shown
in Figure 4.1. Usually, in the case of processing Geo-distributed data sources, there
is no need to wait for aggregated results from every location. Instead, the users or
objects can act or create decision based on partial result from their location. For
example, an accident information from car traffic data in different cities will only
be needed on the location where it happens. In this case, we only consider the part
that needs the real-time result is only the location-based partial result, where the
global result is more tolerant to any delay.

The combination of partial and global computation creates a hierarchical partial-
global process. For example, the global process can assign the centralized cloud to fo-
cus on slower stream processing like batch aggregation, database logging, or publish-
ing interval results while the partial process located close to the data sources are able
to process latency-sensitive computation that gives real-time responses or results.
This design will provide the heterogeneity combination of both high-performance
clouds and Edge Clouds that have less performance.

To implement this hierarchical process, we need to create some modification on
how to distribute the Task and controlling the data stream flow as discussed above.
In the next section, we explained our new Storm Scheduler, Geo-Scheduler and
StreamGrouping that is suitable for the hierarchical process.

38

4.2 Scheduling and Grouping

4.2 Scheduling and Grouping

4.2.1 Current scheduler and grouping

Storm default scheduler and Grouping is based on the idea of load balancing. The
default Scheduler will try to distribute all of the Tasks where in the end each Worker
will have the same amount of Task. While in the concept or data stream distribution,
the default ShuffleGrouping works by sending Tuples equally to all destination Tasks.
This is working well in a single data-center deployment to create a balanced load and
network traffic. In multi-cloud deployment, we cannot rely on this load balanced con-
cept because we are expecting the scheduler to have more awareness on each Worker
location and deploying the task on the designated location.

A cloud is assumed to be able to run Storm instances. Each cloud can run one or
more Supervisor based on the number of machines available (virtual or physical).
The idea for the new scheduler is to understand that the number of Workers each
cloud could hosts depends on their capability. With this information, the scheduler
did not need to see each Worker as an individual object, rather looking at groups
of workers on each location. We named this broader viewpoint as a cloud-level
viewpoint. With cloud-level viewpoint, a scheduler will need to distribute the Tasks
into a cloud rather than directly to each Worker. Also, with this viewpoint the
scheduler is able to create a distinction between each cloud to deploy a job based
on its capability. The ability of categorizing the clouds is important for hierarchical
Stream Processing applications.

While the new scheduler is able to distribute the tasks into multiple locations, we
also cannot rely on the default Groupings provided by Storm because they do not
have any location awareness. If these Groupings are used on multi-cloud deploy-
ment, we expect to get plenty of inter-data center communication. To minimize
or eliminate inter-data center communication, we need to have a Grouping protocol
that understands their location in a cloud and only distribute streams inside a single
cloud.

4.2.2 Geo-scheduler

Our proposed scheduler is based on the multi-cloud or Geo-distributed clouds envi-
ronment described in the previous section. Storm components (Nimbus, Zookeeper,
Supervisors) are deployed on multiple clouds instances located on different location.
We make the assumption where all of the Supervisor nodes inside a cloud can con-
nect to other nodes in different cloud. This can be achieved for example with public
IP or virtual Network (VPN) access to all nodes.

One main concept of the Geo-scheduler is to see the Storm topology from a different
view. The current Storm Topology consists of Spouts and Bolts with the directed

39

4 Geo-Distributed Apache Storm design

links between them to represent the stream processing flow. Based on the hierarchi-
cal process explained in the previous section, we are trying to add an abstraction
layer on the top of default Topology by assigning and categorizing multiple Bolts and
Spouts into different group called TaskGroup. The current TaskGroup implemen-
tation is focused on the topology that is producing two type of results, the partial
and global result. Group of Tasks that is required to be located close to the data
source or doing a low latency computation are categorized as the LocalTask group.
LocalTask is highly parallelized to different number of clouds and is able to maintain
the locality of the process on each single cloud even though multiple clouds are run-
ning the same Tasks. Usually LocalTask are highly related with producing partial
result. On the other hand, other Tasks that are focused on the data aggregation
from the result of multiple LocalTask instances are categorized in the GlobalTask
group.

The example of assigning and categorizing Storm Topology into TaskGroup can be
seen in Figure 4.2. First, a Spout Task must always be located in a LocalTask,
which means a LocalTask will at least consist of a single Spout Task. The reason of
this is because we want to pair the LocalTask to the clouds where the corresponding
data sources are located. Following the concept of Edge cloud, each cloud will acts
as a data pool or message broker that is able to collect raw data sources from the
surrounding location. We call this type of cloud as Source cloud. Source cloud
are able to host one or multiple types of data sources. This makes it possible to
put different LocalTask on a single Source cloud, as is shown on Figure 4.3. Every
LocalTask will be automatically parallelized by any number of registered Source
clouds.

To maintain the locality feature of LocalTask, Every Bolt that is located in a Lo-
calTask will only process the Tuple stream from Spout / Bolt from the same cloud.
Eventually, some Bolts will be in charge to aggregate or compute all of the local data
from the LocalTask instances. These Bolt Tasks need to be registered as GlobalTask
group.

While LocalTask will be parallelized and deployed in the Source clouds, placement
mechanism for GlobalTask is not provided directly from outside information. The
GlobalTask concept is to receive the stream from multiple LocalTask clouds (Edge
Clouds) in different location. To get the best performance of GlobalTask, it is the
scheduler duty to choose the most suitable cloud. The idea is derived based on paper
by [11] and [20], in those paper the focus is to find the most suitable Supervisor
node based on network condition and Supervisor capability. The difference in our
case is we are looking at the Storm system in the data-center view, not as a single
machine/Supervisor level. By specifying different locations that are able to host the
GlobalTask, Geo-scheduler is in charge to find the most suitable cloud based based on
any given info: Average latency between clouds, bandwidth limitation, computation
power, centralized location, etc. In the current version, we made a simple decision
system that is based on latency between the clouds. But this decision system part

40

4.2 Scheduling and Grouping

Figure 4.2: TaskGroup categorization for a Storm Topology.

of the scheduler is highly extensible for adding any variable needed to make the
decision.

To support the dynamic parallelization of LocalTask to any number of source clouds,
we also introduce a new parallelization level on the Storm Topology. In the default
Topology, each Task has the parallelization hint value describing how many Tasks
will be paralleled between the Workers. We called this worker-level parallelization.
To support the TaskGroup concept that we are distributing group of LocalTask,
we need to count the parallelization based on how many clouds will receive the
LocalTask. This is called the group-level parallelization. In summary, Group-level
is the number of clouds that receives the LocalTask, and then each cloud will receive
Tasks based on the worker-level parallelization. For example, a LocalTask consists
of 1 Spout, 3 Bolt_A (worker-level), and 1 Bolt_B. This means a single source
cloud will receive 5 Tasks. Then, this number of Task will need to be multiplied by
group-level parallelization. If there are 5 clouds in different location that need to be
deployed, there will be 5 Tasks multiplied by 5 Clouds; 25 Tasks distributed in the
whole Storm system.

The Geo-scheduler algorithm is shown in Algorithm 1. This scheduler needs three in-
formation to be able to run correctly: Tasks that already grouped to the TaskGroup,
list of data-centers participated in the scheduling, and location of the Source cloud.
In the latest version of the scheduler, it is the user responsibility to distribute the
Task into LocalTask or GlobalTask. There can be many improvements to automatize
this part by analyzing the user Topology as a graph problem model. The Schedul-
ing process is divided into deploying LocalTask and GlobalTask. For LocalTask, the
deployment location is based on the Spout Task and the location of the respective

41

4 Geo-Distributed Apache Storm design

Figure 4.3: Source cloud with different type of data source. LocalTask
deployed into Source cloud with corresponding source

Source clouds (line 5). When a Source cloud is discovered, all the Tasks inside that
LocalTask will be assigned into that cloud. This is done for any number of Source
clouds and create a parallelized deployment of LocalTasks.

To choose the most suitable data-center location for GlobalTask, there is a need
to know the location of the deployed LocalTasks first. From the concept of partial-
global computation discussed before, the first Bolt in the GlobalTask basically always
receives the stream from one or more LocalTasks. By reading the stream information
of these Bolts, the scheduler are able to find all of the data-centers location that
became the dependencies for the GlobalTask (Line). The results are then saved in
a list of dependencies. Based on this list, the scheduler will choose the best data-
center to receive the Tuples and continue the processing from all of the LocalTasks.
In the sample of Algorithm 2, we tried to decide based on highest network link
values between the data-centers. The programming implementation for this part is
highly modifiable to add different methods and comparison based on any available
information.

4.2.3 ZoneGrouping

After the Tasks are deployed on the designated clouds, the next part that we need to
do is make a modification of Storm Grouping system. The modification is needed to
reduce the inter-data center communication between the parallelized Tasks. Figure
4.4 shows the nature of default Storm ShuffleGrouping where it does not handle
situations where two parallelized tasks are deployed in different location. Without

42

4.2 Scheduling and Grouping

Algorithm 1 Network-aware Scheduler
INPUT:
ε = {ei} (i = 1...E) ▷ Set of Tasks
εl = {< ei, lt >} (i = 1...E, lt = L1, L2, .., Ln) ▷ Set of LocalTasks
εg = {< ei, gt >} (i = 1...E, gt = G1, G2, .., Gn) ▷ Set of GlobalTasks
θ = {ci} (i = 1...C) ▷ Set of Clouds
θs = {es, {cs}} (es ∈ ε, cs ∈ P (θ)) ▷ Map of SpoutID with the source cloud location

1: ▷ LocalTask placement
2: for each L (LocalTask) ι in εl do
3: get all Tasks {e} from ι
4: for each spout esp in {e} do
5: get all cloud value {cs} from θs, with esp as the key
6: Assign Tasks {e} in all {cs}
7: end for
8: end for
9:

10: ▷ GlobalTask placement
11: for each G (GlobalTask) ι in εg do
12: get all Tasks {e} from ι
13: for each Task eg in {e} do
14: {Cd} ← Get all clouds where Task eg is dependent to
15: end for
16: c ← FindBestSuitableCloud(Cd)
17: Assign all {e} in c ▷ All tasks is located in single cloud
18: end for

43

4 Geo-Distributed Apache Storm design

Algorithm 2 Find Suitable Cloud for global group
INPUT:
Vc1,c2 (c1, c2 = 1...C) ▷ Connection values between cloud cc1 and cc2
θ = {ci} (i = 1...C) ▷ Set of Clouds

1: procedure FindBestSuitableCloud(CloudDepedencies Cd)
2: lc = NULL
3: lcval = 0
4: for Each cloud c in θ do
5: val ← values between {Cd} and c
6: if lcval ≤ val then ▷ When c is a better cloud
7: lc ← c
8: lcval ← val
9: end if

10: end for
11: return lc
12: end procedure

any modification, each Spout Task will try to balance the load and send the Tuple
to the bolt that located in different cloud.

Some possible ideas to achieve this local cloud computation is by using field Grouping
or direct Grouping. With field Grouping we can categorize the Tuple to have a field
of ’cloud name’. With this additional information we can group the computation of
the Tuple based on cloud name, creating a locality of the result. But the inter-data
center problem is still occurring because we are unable to set the location of each
parallelized Task. For example with Figure 4.4, Tuples that generated in cloud A
will always sent to the same one instance of LocalBolt A, rather than sending to
both LocalBolt A instances. But the location of the LocalBolt A can be different
from the Spout A which creates another inter-data center communication. As for
direct Grouping, locality and location of the Task can be controlled. But it is not
scalable solution as we need to manually set each Task sender and receiver pairs
one-by-one.

Based on this problem, we created our own custom Grouping called ZoneGrouping.
ZoneGrouping is the concept of controlling the stream of Tuple to be limited based
on the cloud location of the sender Task. Rather than sending a Tuple to all possible
recipients on many clouds, with ZoneGrouping the receiver is the only recipient that
is located in the same cloud.

The basic step of ZoneGrouping is to map the location of the sender Task with
the receiver Tasks. After that, the system will be able to choose the destination
Tasks that reside in the same location (same cloud). The step of ZoneGrouping
is shown in Algorithm 3. For a proof-of-concept we created two implementation

44

4.2 Scheduling and Grouping

Figure 4.4: Problem with default shuffleGrouping: TaskGroup is
parallelized into different cloud. The Spout will keep sending

tuples to every Bolt for load balancing

Algorithm 3 ZoneGrouping abstraction
for Task st in source tasks do

Get cloud location cls from st
for Task dt in destination tasks do

if Cloud location cld from dt equals cls then
set dt to receive the stream from t

end if
end for

end for

of ZoneGrouping: ZoneShuffleGrouping and ZoneFieldGrouping which works on
similar mechanism with shuffle Grouping and field Grouping. The implementation
of ZoneShuffleGrouping will be explained in Section 5.2.

45

5 Chapter 5

Implementation

This chapter will be focused on the technical implementation on both Geo-scheduler
and ZoneGrouping as a plug-in module in Apache Storm. To create all of the
modules, we use Storm extension API that is available in Java programming lan-
guage.

First, we will explain the outer part of the Geo-scheduler. How to use the custom
scheduler and modification needed when building Storm Topology while applying
the TaskGroup concept. Then we are going deeper to the implementation of Geo-
scheduler; TaskGroup Class, LocalTask and source cloud pairings, and choosing
cloud for GlobalTask.

Next, we explain how ZoneGrouping could perform a stream distribution inside a
single cloud only. There is also description of an information needed by ZoneGroup-
ing that is collected from Geo-scheduler. In the end of the section, we describe
how to use ZoneGrouping by using custom Grouping mechanism in Storm Topol-
ogy.

Finally, we also discuss the distributed system concepts that is important to consider
when implementing the module but is not yet implemented or evaluated because of
the time limitation or outside the thesis scope.

5.1 Geo-scheduler

Storm scheduler is located on the Nimbus instance. The scheduler will run as long
as the Nimbus instance is running, waiting for a Topology to be scheduled. By
default, Storm has their own EvenScheduler class that focused on balanced Task
distribution between all Workers. To add a custom scheduler, we need to add a JAR
file containing the Scheduler class to Storm library folder and specifying its name
in Storm configuration (Storm.yaml). An example is shown in Listing 5.1. Storm
pluggable features makes the scheduler changing process very convenient without the
need to recompile Storm’s main source code. However, the Nimbus process needs to
be restarted if we want to update to the custom scheduler.

5 Implementation

1 ...
2 storm . scheduler : " scheduler . GeoScheduler "
3 ...

Listing 5.1: storm.yaml with custom scheduler

5.1.1 TaskGroup in Storm Topology

Assigning Tasks to TaskGroups will need to be done by the user when creating the
Storm Topology. Listing 5.2 shows the addition made when creating a Task inside
the TopologyBuilder instances. To add Spout or Bolt to a TaskGroup, we only
need to add group information by using the addConfiguration method provided
in the class TopologyBuilder. addConfiguration receives a key-value information.
By specifying the key as ’group-name’, Geo-scheduler will assign this Task to the
TaskGroup that have the same name with the value. It is important to have distinct
name for each TaskGroup.

The advantage by only using addConfiguration method is that the user can still use
the default or other scheduler without any change on the system. Other scheduler
will just ignore additional information and run Storm normally without any side
effects.

1 TopologyBuilder builder = new TopologyBuilder ();
2 . . .
3 builder . setSpout (" messageSpoutLocal1 ",
4 new SOLSpout (_messageSize , _ackEnabled), 4) /*4 Shows worker - level

parallelization */
5 . addConfiguration ("group -name", " Local1 ");
6 . . .
7 builder . setBolt (" messageBoltGlobal1_1A ",
8 new SOLBolt (), 4)
9 . shuffleGrouping (" messageBoltLocal1_1 ")

10 . addConfiguration ("group -name", " Global1 ");

Listing 5.2: Spout and Bolt declaration in Storm Topology

5.1.2 Geo-scheduler implementation

Creating custom scheduler in Storm is based on implementing IScheduler interface
on Storm-core library. IScheduler has two main method: Prepare and Schedule.
Prepare will be called once when Nimbus is started and Schedule will be called
periodically, or if there are some faults or Rebalance event that trigger the system
to re-run the scheduler.

In the previous chapter (section 4.2.2) we already explained the concept and types
of TaskGroup: LocalTask and GlobalTask. Listing 5.3 shows the implementation of
each TaskGroup. Each Task specified by the user will be placed to the respective

48

5.1 Geo-scheduler

TaskGroup with their Worker-level parallelism hint. Spout, as an exception, will only
be located in a LocalTask because we want to make the partial process only happened
in the LocalTasks. Last variable, boltDependencies, is used for GlobalTask to find
the cloud location of LocalTasks and find the most suitable location based on its
dependence.

In addition, TaskGroup also have the variable clouds to save all the cloud names
where it will be located. This consideration is different from the view of a cloud that
actually hosts a TaskGroup, not the opposite. The reason is because TaskGroup is a
fixed component while the cloud can be added or removed at any time in the run-time.
It is also because we are doing the deployment loop based on TaskGroup not based
on the list of clouds; LocalTask first and then GlobalTask.

1 class TaskGroup {
2 public String name;
3 public List <String > clouds ;
4 public Map <String ,Integer > boltsWithParInfo ;
5 public Set <String > boltDependencies ;
6 }
7

8 class LocalTask extends TaskGroup {
9 public Map <String ,Integer > spoutsWithParInfo ;

10 }
11

12 class GlobalTask extends TaskGroup {
13

14 }

Listing 5.3: TaskGroup Class

There are two information that need to be added to make the scheduler work effi-
ciently; specifying the cloud name on each Supervisor and location of source clouds.
First information is needed to specify the cloud location of each machines and sep-
arate machines from each other. A step-by-step process to implement this is shown
on one of the Storm contributor, xumingming[9], shown on Listing 5.4. Supervisors
in one cloud must have identical name and unique for each clouds. Preventing the
scheduler to mixed up the Supervisors in the process. The second information is
to implement the pairing between source clouds and the Spout we explained in the
previous chapter. Currently the pairings are saved on a text file that is located in
the same place with Nimbus instance. This is shown on Listing 5.5. One of the
future works is to add the Supervisor modification to make this information avail-
able on the Zookeeper rather than text file. With this change, the scheduler will
be able to receive the most up-to-date information when there is a change on the
clouds.

1 >Storm.yaml
2 . . .
3 supervisor . scheduler .meta:
4 name: " SUPERVISOR_NAME "
5 cloud -name: " CLOUD_NAME "

49

5 Implementation

6 . . .

Listing 5.4: Cloud name in each Supervisor

Other than these two informations, in the future the scheduler is planned to be
able to retrieve information on a cloud’s performance. For example the bandwidth
limitation between clouds, computation quota (memory / processor limit) on each
cloud, or any other information to create smarter scheduler based on available infor-
mation.

1 >Scheduler - SpoutCloudsPair .txt
2 messageSpoutLocal1 ;CloudEdgeA , CloudEdgeB
3 messageSpoutLocal2 ;CloudEdgeB , CloudEdgeC

Listing 5.5: Spout and source cloud pairings

Geo-scheduler will start the process by categorizing each Task to their TaskGroup
based on the value of "group-name" on each Task. The scheduler also retrieves the
Spout and source clouds information. After task assignations are complete, the next
step is the TaskGroup deployment to the clouds. LocalTask and GlobalTask have
different ways to select the clouds where it will be deployed. As we discussed be-
fore, each LocalTask will be deployed on their source clouds. This is done by using
a key-value list; the key is the spout name and value is the list of source clouds.
When a Spout is deployed in a LocalTask, the list of source clouds with the key
similar with the Spout are also registered in the same LocalTask. On the other side,
GlobalTask has a harder problem to do the deployment based on the Algorithm 2 in
Chapter 4.2.2 for choosing the most suitable cloud. First, every Bolt in a GlobalTask
need to check their stream dependencies to the previous LocalTask. A stream or
GlobalStreamId is the identity of a relationship between two Tasks that is needed
when the sender need to send a Tuple to the receiver. This is done by saving sender
TaskID of each stream to the list (Listing 5.6).

1 for(GlobalStreamId streamId : inputStreams)
2 {
3 schedulergroup . boltDependencies .add(streamId . get_componentId ());
4 }

Listing 5.6: looking for stream dependencies on each Bolt Class

With the Bolt dependencies information, GlobalTask are able to find the location
of the clouds that hosts the sender TaskID and create a list of cloud dependency
(Listing 5.7).

1 for(String dependentExecutors : globalTask . boltDependencies)
2 {
3 if(executorCloudMap . getValues (dependentExecutors) == null)
4 continue ;
5 else

50

5.2 ZoneGrouping

6 cloudDependencies . addAll ((List <String >)
7

8 executorCloudMap . getValues (dependentExecutors));
9 }

Listing 5.7: Creating a list of cloud dependency to this GlobalTask

Finally GlobalTask will be able to call a function inside the CloudLocator class
(Listing 5.8) while specifying all of the available clouds and the cloud dependency
list. The function will return the name of a single cloud where the GlobalTask will be
deployed into. We made two sample implementation to locate the best cloud based
on network latency between clouds: Average and MinMax[5].

1 public String getCloudBasedOnLatency (CloudLocator .Type type ,
2 Set <String > cloudNameList , Set <String > cloudDependencies)
3 {
4 String choosenCloud = null;
5 . . .
6 // do computation here
7 . . .
8 return choosenCloud ;
9 }

Listing 5.8: Sample of CloudLocator class function to choose the best
cloud

The final part of the scheduler is to assign the Tasks inside the TaskGroup to the
Worker instances inside the clouds. The idea for this part is actually similar with the
basic concept of Task deployment in Storm to multiple Workers. The process begins
by taking a TaskGroup and all clouds assigned to it, one by one. The scheduler
is then able to collect the Tasks from the TaskGroup and the Workers from the
selected cloud. From this view, we are actually looking at a single data-center
deployment: Multiple Tasks into a cluster of Workers. The Tasks are deployed
into the Workers with round-robin method, starting from the Spouts followed by
the Bolts. This process is then carried out for each TaskGroup and their assigned
clouds.

5.2 ZoneGrouping

Our new ZoneGrouping is created by implementing CustomStreamGrouping ab-
stract class. CustomStreamGrouping has two main method: prepare and chooseTasks.
prepare method will be called once when the scheduler is finished deploying the Task
to the Worker and chooseTasks method is called each time a task wants to send a
Tuple.

Implementing the correct stream Grouping to do local cloud distribution is a bit
tricky. Each StreamGrouping object are bound to the relation between two Tasks in

51

5 Implementation

a Storm Topology, but there are no information about location of the real objects in
the system. Listing 5.9 shows the prepare method example of CustomStreamGrouping.
source in line 4 gives all IDs on the sender task and targetTasks in line 2 gives the
IDs of the receiver task. To find the cloud location of the tasks, we are relying
on our custom scheduler to provide this information. The prepare method starts
by reading the result of the scheduler and create a list of every tasks location on
the cloud, including all of the parallelization. For example from Listing 5.10, ID
28-31 is the parallelization of "SpoutA" Task that is distributed into CloudEdgeA
and CloudEdgeB.

1 public void prepare (WorkerTopologyContext context ,
2 GlobalStreamId stream , List <Integer > targetTasks) {
3 . . .
4 for(Integer source :
5 context . getComponentTasks (stream . get_componentId ())) {...}
6 . . .
7 }

Listing 5.9: "prepare" method in ZoneGrouping

1 CloudEdgeA ;29 ,28 ,20 ,19 ,17
2 CloudMidA ;14 ,15 ,10 ,11 ,8 ,9 ,12 ,13 ,5 ,6 ,7 ,4
3 CloudEdgeC ;32 ,35 ,26 ,23 ,22
4 CloudEdgeB ;31 ,30 ,21 ,16 ,18 ,34 ,33 ,27 ,24 ,25

Listing 5.10: Result from custom scheduler

With all of these available information, we are able to make a sender-receiver pairings.
But the second problem is, there should be no complex, time wasting computation
in chooseTasks method, because this method will be called for each processed Tuple.
Slow process will make a lot of queue and reduce system performance. That is why
we create a matching table called taskResultList in the prepare method. When the
chooseTasks method is called (listing 5.11), we can just do a simple lookup based on
ID of the sender (senderTaskId) as the key and get the value of the entire receiver
IDs.

1 public List <Integer > chooseTasks (int senderTaskId , List <Object > values
)

2 {
3 // Matching the sender ID with all target ID
4 // located in the same cloud
5 List <Integer > result = taskResultList .get(senderTaskId);
6 . . .
7 return result ;
8 }

Listing 5.11: chooseTasks method in ZoneShuffleGrouping

52

5.3 Guidelines

5.2.1 ZoneGrouping in Storm Topology

ZoneGrouping must be used for every Task pair inside the same LocalGroup, and
provided manually by the user. This disadvantages occurred because the Scheduling
system is a different component with stream Grouping. Scheduler is called once when
the topology is deployed or if there are any re-balancing event, but Grouping is used
in the runtime of a Topology. Our future plan is to integrate both custom Scheduler
and ZoneGrouping to the main Storm deployment branch. In this case, the system
can be triggered automatically to use the ZoneShuffleGrouping rather than default
shuffleGrouping when we want to use the local-global TaskGroup in multi-cloud
environment.

In the current version of the ZoneGrouping, the users can put the Grouping in
the similar way when pairing the Tasks in the Storm Topology. The code exam-
ple is shown in Listing 5.12. Top part gives the example of calling default Storm
ShuffleGroouping and the bottom part shows how to set the ZoneShuffleGroup-
ing.

1 // Default shuffleGrouping
2 builder . setBolt (" messageBoltGlobal1_1A ", new SOLBolt (), 4)
3 . shuffleGrouping (" messageBoltLocal1_1 ")
4 . addConfiguration ("group -name", " Global1 ");
5

6 // Custom ZoneShuffleGrouping
7 builder . setBolt (" messageBoltLocal1_1 ", new SOLBolt (), 4)
8 . customGrouping (" messageSpoutLocal1 ", new ZoneShuffleGrouping ())
9 . addConfiguration ("group -name", " Local1 ");

Listing 5.12: Example of adding Task with ZoneGrouping

5.3 Guidelines

In the current implementation, user must specify the TaskGroup for every Tasks
manually. To assist in understanding the concepts and providing ideas on which
TaskGroup each Task should be deployed into, We created some information and
consideration guidelines for creating a good deployment. There is no exact rule on
the deployment because it depends on how many process that need to be processed
in the same location where the data source is located to receive partial results as
fast as possible.

As described previously, We are focused on the Topology that has multiple result
stages; Partial and global results (Figure 4.1). The Partial computation are expected
to process the Tuple separately based on where the data sources are emitted, even
when the same type of data sources are located on many locations. At very least, the
LocalTask will consists of a single or multiple Spouts. Every Spouts have a direct

53

5 Implementation

association with the input stream, so the location of the Spouts must be in the same
data-center / cloud with the related data source.

Choosing the TaskGroup for Bolt Tasks are based on the closest result (Partial or
Global) needed on the Topology graph. Bolts that used for processing Partial result
should be located in the the same LocalTask with the predecessor Spout or Bolt
that has been assigned to a TaskGroup. On the other hand, if a Bolt is expected to
do an aggregation process from multiple Bolts doing Partial results then this Bolt
are considered to be put into GlobalTask.

Figure 5.1: Topology example for TaskGroup deployment. LocalTask are
deployed on the Tasks between the input until Bolt that

emitting Partial result.

The example of the deployment for this type of Topology can be seen in Figure 5.1.
A good way to start choosing the location of each Task is to follow the directed
graph, work on Spouts first until the furthest Bolt. In the figure, there are two pairs
of sources and its Partial result. We divide both spouts into different LocalTasks
because each have different type of data source. In another case there is also a
possibility of two Spouts will be located in the same LocalTask to be processed
together. Bolts working on Partial computation will follow the same LocalTask as
the previous Tasks. Every Bolts with blue-based color will be processing yellow
type input in the same cloud location and parallelized depending on the distributed
sources location. Bolts with green-based color for processing the red type input will
be deployed similarly. In the end, the pink Bolt that is in charge on receiving stream
multiple LocalTask will need to be assigned to a GlobalTask along with all of the
successor Tasks.

5.4 Considerations

In this section, we are going to discuss some part that is important to take a look at
when deploying Storm with our new scheduler and Grouping but have not thoroughly

54

5.4 Considerations

tested. Some are tested on the go during the process of checking the correctness of
the scheduler and Grouping.

5.4.1 Scalability

The scalability goal of our Geo-scheduler is to focus on geo-distribution of the Lo-
calTask group. Each LocalTask is parallelized to any number of clouds provided.
If on the runtime there are new clouds with the related source registered in Storm
system, the scheduler will trigger the system to run the scheduler again. While
the other TaskGroup is already deployed, the scheduler will put new instance of
LocalTask inside this new cloud. There should be no effect of the current sys-
tem.

For the GlobalTask, in the current development, there is no need to deploy Glob-
alTask in more than one cloud. This comes with consideration that GlobalTask is
located in a cloud with high performance and good intra-cloud scalability so there
are no need to deploy GlobalTask in multiple cloud.

5.4.2 Fault tolerance

We are considering two case of fault tolerance in our system. First is for when a
cloud loses some part of the computation power. There is a possibility that some
physical machines are down or there are failures inside a cloud. The Storm system
will see this as reduced number of Supervisor in the runtime. In this case, Storm has
their fault tolerance as written in their Apache Storm manual. When a Supervisor
is down for too long, all of the assigned Tasks in that Supervisor will be moved to
another Supervisor. With our Geo-scheduler, the expected action is to handle this
problem by moving the Tasks from the dead Supervisor to another Supervisor that
is located in the same cloud.

The second case is when we are looking at a bigger size of faults; when the Storm
loses a connection to a whole cloud. This can happen when the network is down
or something happened in the whole data-center. This situation is seen in the Geo-
scheduler as losing a single object of TaskGroup. When this happened on a cloud
hosting LocalTask, the cloud is removed from the list of source cloud, which means
there will be no effect on the scheduler or Storm itself. The only visible effect is
there is no data or Tuple emitted from that cloud location. If the dead cloud is
hosting the GlobalTask group, then the scheduler will need to do a re-scheduling
process to choose another cloud to host the GlobalTask.

55

6 Chapter 6

Evaluation

This chapter focused on evaluation of the correctness of our Geo-scheduler and
ZoneGrouping as a proof-of-concept to increase the performance of real-time stream
processing with Geo-distributed sources. First, we explained the network topology
used to connecting multiple clouds hosting Storm computation nodes (Workers).
We are also explaining the Storm topology with TaskGroup used as the test-case.
The results are divided into two main parts: Validate our implementation of the
scheduler and measure the performances for a specific test-case with hierarchical
computation-based Storm Topology.

6.1 Network Topology

In this experiment, we created an emulation of multi-cloud network model, shown
in Figure 6.1. Following the concept of Geo-distributed sources, there are three
clouds where the sources are located. Information of the data source types and their
location are shown in Table 6.1. EdgeCloud A is able to collect type "1" from their
surroundings, EdgeCloud C is able to collect type "2", and EdgeCloud B is able to
collect both. As we explained before, the information of the source locations are
important to deploy the Tasks in the most efficient place. Two remaining clouds
(Central cloud A & B) is the current cloud model deployed in a data-center. These
clouds did not have any data sources attached to them.

The clouds are located on different areas and connected to each other with some
latency in the network. We call the clouds with sources by EdgeCloud because of
their distributed location and have smaller computation power than the Central
Clouds. The computation power in our case is counted based on the number of
physical machines that can host Storm components to become a ’compute node’. In
Figure 6.1, each EdgeClouds have 2 physical machines and 4 for each Central Clouds.
To get more isolated information of the traffic between the clouds, we reserve the
Central Cloud B to only host management components. There will be no Task
deployed and any computation in this cloud.

6 Evaluation

All of machine nodes, routers, and network links are emulated by using CORE
network emulator running under inside a physical server located in KTH. The spec-
ification of the machine are similar with the experiment in chapter 3.3, shown in
table 3.1.

Figure 6.1: Multi-cloud Topology. The topology consist of three Edge
Clouds and two centralized clouds

Table 6.1: Different data source and location
Source type Cloud
Source 1 EdgeCloud A, EdgeCloud B
Source 2 EdgeCloud B, EdgeCloud C

6.2 Storm Topology

Based on the LocalTask and GlobalTask of the TaskGroup, we are focusing on Storm
Topology that is embracing the computation with partial-global hierarchy where the
sources are geographically distributed on different clouds. The topology are shown
in Figure 6.2. The Topology is divided into three types of Task component: Spout,

58

6.2 Storm Topology

normal Bolt, and result Bolt. Each Spout is set to generate a 500 bytes Tuple with
a constant rate of 450 Tuple per second. The normal Bolt is basically not doing
any computation and directly pass each incoming Tuple to the next Bolt. One
thing to note is that each normal Bolt will dump 40% of the Tuple from the input
stream. This is following the concept of filtering or aggregating in Stream Processing
where the output stream rates is usually have smaller rates than the input stream.
The third Task type is The result Bolt that acts as the sink or destination where
the processing time for each Tuple is collected. Based on hierarchical computation,
there are two result Bolts: "LocalBoltResult" is the sink that is expected to generate
partial result from the stream process to the outside system and "GlobalBoltResult"
that generate the global result, the aggregate result from all partial results on all
clouds.

Figure 6.2: Storm Topology used for the validation evaluation. Input:
Two sources collected by each respective Spouts. Output:

partial and global results.

Each LocalTask is assigned to one of the data source types. Spout in LocalTask
A will collect the data from source "1" and Spout in LocalTask B is assigned to
source "2". Every LocalTask will do some computation and produces the partial
result. The partial results are expected to report the Tuples only from the same
source location, so it is important to make sure there are no Tuples from other same
LocalTask being counted. The computed Tuple from all LocalTasks are then com-

59

6 Evaluation

bined into GlobalTask A. The aggregated results will be emitted from the GlobalBolt
Result.

One of the sample use cases that have similar idea with this Topology can be
seen on [16]. This paper discussed the idea of a distributed clustering algorithm
with both Partial and Global result. Unfortunately, we do not have the time to
apply an implementation of this algorithm in this thesis work. But it will be a
very interesting future work to see the result precision and effect of the perfor-
mances.

With our storm modification design, users could create a normal Storm Topology
while adding some GroupTask information needed for the scheduler. On the Topol-
ogy shown on Figure 6.2, the Tasks are divided into 3 TaskGroup. Two LocalTasks
are divided based on different Spout and all of the following bolts. On each Lo-
calTask there is also a Bolt that produce results on each cloud. GlobalTask is
assigned to combine the results from all LocalTasks, regardless of location and num-
ber.

6.3 Implementation validation

6.3.1 Geo-Scheduler

The Storm scheduler works in the startup phase after the Topology is deployed
by the user. All of the scheduling process is done inside the Nimbus component
in Central Cloud B. The result is then deployed to all other clouds hosting the
Worker / compute node. The process starts by creating Task objects from the given
Topology as much as its total amount of parallelization (Multi-level parallelization
are described in section 4.2.2). As a result, the Tasks are created with unique
TaskID number. Based on our previous Topology, the results of each Task and their
TaskIDs are shown in Table 6.2. These Tasks will be distributed on the clouds by
using different type of scheduler.

We compared both default EvenScheduler and our custom Geo-scheduler. Based on
the information of the sources, we want the scheduler to deploy the LocalTask A on
the location of Source "1" and LocalTask B on Source "2". The scheduling results are
shown by the Table 6.3. Our Geo-scheduler deploy each Bolt and Spout in the ex-
pected clouds. Both EdgeCloud A & B receives the same amount of LocalTask A and
EdgeCloud B & C receives the same amount of LocalTask B.

The EvenScheduler also deploys the Task as expected. There are no consideration
on the location of the Tasks, focusing only on the balanced number of Task between
each Worker. The distribution is done in a round-robin way as we can see it from
the pattern of the TaskID. Central Cloud A get more Tasks because of their higher
number of Workers than the EdgeClouds. This deployment will be inefficient for our

60

6.3 Implementation validation

Table 6.2: TaskID information
Task name Total Task IDs

parallelization
Spout A 4 25-28
Spout B 4 29-32
LocalBolt A1 4 13-16
LocalBolt A2 4 33-36
LocalBolt B1 4 19-22
LocalBolt B2 4 37-40
LocalBolt Result A 2 17-18
LocalBolt Result B 2 23-24
GlobalBolt A 4 1-4
GlobalBolt B 4 5-8
GlobalBolt AB 2 9-10
GlobalBolt Result AB 2 11-12

cases because the Tuple will do a lot of inter-data center movements when streamed
from one Bolt to the next Bolt. More detailed evaluation on the inter-data center
traffic is explained in next section.

6.3.2 ZoneGrouping

After the task is deployed to the respective cloud, now we are evaluating the cor-
rectness of the stream Grouping to be able to process Tuples pooled from the same
cloud location (Partial processing). We compared the default Storm shuffleGroup-
ing with our ZoneGrouping by looking at the inter-data center network traffic for
about 100 seconds of running Topology. The traffic are collected by using Linux
ifstat tool. The information collected are the size of the traffic coming inside to
the cloud (inbound) and outside from the cloud (outbound). While the network
is an emulated one and there are no traffic usage other than Storm, we consider
the inbound and outbound traffic as the inter-data center communication where the
Tuples are moving between the Bolts that located the other cloud. Communication
between different Workers that is located in the same cloud (intra-cloud) are consid-
ered stable with high-speed latency-less connection [23] and is not measured in the
experiment result.

The outbound traffic are shown in Figure 6.3. From this graph we can see that
ZoneGrouping deployments are sending less inter-data center Tuple stream than

Table 6.3: Scheduler result - Location of the assigned TaskIDs
Cloud name EvenScheduler Geo-scheduler
EdgeCloud A 4,9,14,19,24,29,34,39, 14,15,17,25,28,33,34
EdgeCloud B 1,8,11,18,21,28,31,38, 13,16,18,19,20,24,26,27,29,32,35,36,38,40
EdgeCloud C 2,5,12,15,22,25,32,35 21,22,23,30,31,37,39
Central Cloud A 3,6,7,10,13,16,17,20,23,26,27,30,33,36,37,40 1,2,3,4,5,6,7,8,9,10,11,12

61

6 Evaluation

Figure 6.3: Outbound traffic rates from each clouds

EvenGrouping. Another important achievement is the inbound traffic shown in Fig-
ure 6.4. On default shuffleGrouping, EdgeClouds are receiving traffic (Tuples) from
another cloud where it should not happen. We want each LocalTask to only process
data from their own location. In this case, our implementation of ZoneGrouping
works as intended. There are no sighted communications between EdgeClouds. The
network traffics seen are from only Central Cloud A task that hosts the GlobalTask
and receives Tuples from all EdgeClouds.

Figure 6.4: Inbound traffic rates from each clouds

62

6.4 Performance evaluation

We have shown the correctness on both of our implementation on Geo-scheduler and
ZoneGrouping. Next we describe the performance evaluation compared to default
Storm configuration.

6.4 Performance evaluation

Figure 6.5: Task deployment for Centralized Scheduler

The main purpose of the performance evaluation is to analyse how the different
Task deployment on multi-cloud environment could affects the whole network traffic,
bandwidth usage, and system response time for real-time or latency-sensitive stream
processing application.

We made a comparison between three types of Apache Storm scheduler. First we
are using the default Storm scheduler (EvenScheduler). This scheduler do a round-
robin deployment for all Tasks and try to balance amount of Tasks between all
Workers regardless of the location. For the second type of scheduler, we look back
at the concept where all of the computation are done in a single cloud / data-
center. This is how the current Stream processing works where the data itself is still
geographically distributed. We call it the Centralized deployment. The sample of
how the Tasks are deployed in this scheduler is shown in the Figure 6.5. While the
data sources are geographically distributed, the Spouts and result Bolts are deployed
on the EdgeClouds while other processing Bolts are located in the Central Cloud.
Finally, the third scheduler to compare is our implementation of Geo-Scheduler and
ZoneGrouping combination.

To be able to see the effects of the scalability when doing stream processing with Geo-
distributed data sources, we expand the multi-cloud deployment shown previously
in Figure 6.1 to bigger network size with more EdgeClouds. Rather than only using

63

6 Evaluation

3 EdgeClouds, in total we are using 9 EdgeClouds and 2 Central clouds. This
new cloud deployment is shown in Figure 6.6. In these EdgeClouds, we deployed
five different quantities of data sources; 4, 7, 10, 13, and 16 data sources. On
every data source sizes, we set the specific amount on each Task parallelization to
make sure the system run with the same computation load and same amount of
Tuples.

Figure 6.6: Network topology with 9 EdgeClouds

6.4.1 Network traffic

The first metric to measure is the amount of network traffic in the whole system
when running the Storm Topology. A high amount of traffic means more bandwidth
used by Storm and makes the system more vulnerable to network bottleneck. High
traffic will also means the Topology are taking a lot of bandwidth that could interfere
with other application that relies on the network connection. The result are shown
in Figure 6.7. With higher number of data sources deployed, we were expecting that
more Tuples to be processed in the system. In all cases, the EvenScheduler deploy-
ment always use the most bandwidth. This is because the location of the Task is
not controlled which makes too many inter-data center communication. Centralized
scheduler has less traffic than EvenScheduler because the whole computation is lo-
cated in one place. The only traffic used is when sending the stream of data sources
from all EdgeClouds to the central cloud and giving back the partial results that

64

6.4 Performance evaluation

need to be received by LocalResult Bolts on each EdgeCloud. By using ZoneGroup-
ing deployment, the partial result computation is done on every EdgeClouds, so the
only traffic needed is to send the stream from localTasks to the GlobalTask. With
this scheduler, we reduced the network traffic by around 3.5 times when compared
with EvenScheduler for 16 data sources.

Figure 6.7: Average network traffic in the system with different scheduler

Another insight that we can deduce from the graph is the increment of the traffic
when we add more data sources. By adding three data sources each (six for both
types), the ZoneGrouping only adds to the network traffic by around 1500 Kbps
compared with EvenScheduler that adds around 8500 Kbps. The importance of
these results are the scalability of the traffic generated by stream processing can be
escalated as the real scenario of a geo-distributed deployment is expected to have
have tens or maybe hundreds of EdgeClouds with different type of data sources
and more heterogeneous network connection. Running stream processing in these
deployments will be an interesting subject to explore further.

6.4.2 Latency-sensitive application

More performance metrics that are important to evaluate is the advantages of hav-
ing hierarchical Storm Topology with the real-time application. Real-time appli-
cation requires a very low latency, which is one of the focuses on using Local-
Tasks. By processing data in the same place as much as possible, Figure 6.8
shows the average Tuple processing time when emitted from the Spout until it
reaches the result Bolt (LocalBolt-Result) on the same location to emit the par-
tial results.

65

6 Evaluation

With Geo-Scheduler the LocalTasks are located directly with the data sources so
there are no network latency affecting the Tuple process time to produce partial
result. The Centralized deployment has an extra latency because they are doing
the partial process in the Central Cloud and then need to send back the partial
result to each EdgeClouds. In return, centralized deployment gives a very good
processing time for global result as everything are processed in single location. The
small reduction on the partial result that happened when adding the number of data
sources from 4 to 16 are caused by taking the average latency between EdgeClouds
to the Central Cloud.

The EvenScheduler surprisingly have almost similar Tuple processing time with Cen-
tralized scheduler for partial result. However, it has a very high processing time for
getting the Global result compared to both Geo-Scheduler and Centralized scheduler.
In overall, Geo-Scheduler achieve the fastest processing time for Storm Topology
with hierarchical process that has both partial and global result. This is because
the Geo-Scheduler tries to minimize the inter-data center network communication
as much as possible.

From all of the results, we found out that modification on Storm scheduler and
stream Grouping method are able to improve the stream processing performance for
a Topology with hierarchical process where each clouds need a fast result from their
own local information and an aggregated global result from all of the participating
clouds.

Figure 6.8: Average Tuple processing time to receive partial result

66

6.4 Performance evaluation

Figure 6.9: Average Tuple processing time to receive global result

67

7 Chapter 7

Conclusion

7.1 Discussion

To conclude this thesis report, we sum up our work and contributions in this section.
First, we are looking at the current trends of stream processing deployment. While
stream processing is able to do high speed low-latency computation, the system
is usually deployed in a single cloud or data center. However, if the data sources
are distributed in different location, it is hard to find a single location that able to
achieve the satisfaction level for all users. For example, when processing latency-
sensitive application from numerous amount of smart phones or Internet-of-Things
devices, actors that are located far from the computation server or have slow con-
nection will experience higher response time compared with others that have good
connection.

This thesis focused on the deployment of stream processing that is able to main-
tain the response time regardless the location of the sources. To be able to do this,
we observed the ongoing research of Edge Clouds: micro clouds or cloudlets that
is located in the edge of the network, close to the end-user location. Edge Cloud
emerges from the virtualization of telecoms network components or Software De-
fined Networking (SDN) which enables any application to be deployed on the top of
their main functionality. By utilizing its computation power, we came up with the
idea to deploy stream processing in multiple clouds that are located closer to the
sources.

The first part of the thesis work is to investigate the possibility to deploy stream
processing in multiple clouds on different location. We choose Apache Storm as it
is a very suitable framework for the experiments and looked on different ways to
deploy the system: Multiple Storm on each sites or single Storm with centralized
management. Then, we did an analysis to measure the performance against het-
erogeneity of network latency that could happen on a connection between clouds.
The methodology was based on emulation of multiple clusters of servers / nodes
on different location with variety of network conditions. From the investigation,

7 Conclusion

we clearly saw some problems if we just use a standard single data center deploy-
ments on multiple clouds. The analysis of these experiments yielded the following
conclusions:

• Controlled placement of Storm components on multi-cloud environments is
needed as it affectsthe processing time and the amount of network traffic pro-
duced, lowering the stream processing performance as a consequence.

• In stream processing, a node with good computation power could perform very
poorly if it has poor/imperfect connectivity with other nodes.

• The same straggler node from the previous point could affect the whole system
performance because the default scheduler is only focused on the traffic load
balancing when deploying the components.

• In a poor or highly unstable network, there is a need to carefully position the
Storm management components, Nimbus and Zookeeper, to make sure there
are no false-positive nodes in the runtime. Usually the chosen nodes are the
ones that have good connectivity with all of the Worker nodes.

From these insights we create the idea to group the computation Tasks inside Storm
Topology that has hierarchical results or output streams; partial and global computa-
tion. The part that receives the input stream and produces partial or local location-
based result is expected to run in real-time or have very low latency responses.
Partial computation holds the locality of their information based on the location of
where the data is collected, which is why all of the tasks in this part will be deployed
based on the distributed Edge Clouds concept. The result streams from partial or
location-based computation are sent to the global computation part. This part is
focusing on the combination or aggregation for many number partial computation.
The scheduler will decide the cloud / data-center location to put the global compu-
tation based on the user specified criteria. This criteria is important to make sure
the global computation is able to achieve the best performance.

We implemented these concepts by creating a plug-in with available Storm API in
Java programming language. The latest Geo-scheduler implementation can be seen
in https://github.com/Telolets/StormOnEdge. By implementing the modification
using Apache Storm plug-in, users that want to utilize hierarchical process do not
need to recompile or modify their default Storm deployment. To use the plug-in,
there are two components that need to be deployed: Geo-Scheduler which is a Storm
scheduler to do the specific partial-global Task deployment between the nodes and
ZoneGrouping that needs to be applied to control the locality of data stream between
partial computation. To validate the correctness between the concept and the imple-
mentation, we did an evaluation on both components. We also test its performance
test to compar it with the default Storm Task deployment.

From both results, we found that modification on Storm scheduler and stream Group-
ing method are able to improve the stream processing performance for both parts

70

7.2 Future Work

of partial and global computation. Compared with the default Storm scheduler, in
our experiment the network traffic are reduced by around 85% for all data sources.
Another improvement made is the time needed to do real-time processing for partial
computation. In the case of no computation inside the Bolts, we are able to reduce
the latency by 80 milliseconds. We expect to have higher difference when we run
a more realistic use case with computation on each Bolts, dynamic data rates, and
more unpredictable network between the data-centers.

7.2 Future Work

There are many improvements and extensions that can be made from this thesis
work. As the concept of the Edge Cloud itself is still in the research phase, we
cannot do a real benchmark on these deployments. Rather, we focused on network
latency between clouds for real-time use cases. This thesis is done as a proof-of-
concept of stream processing deployment on a multiple clouds, rather than doing all
of the computation in a single place.

One of the problems that will occur in the real implementation is the dynamic
workload on each cloud. When the system is deployed using heterogeneous clouds
from different provider, the computation power can be different on each cloud. The
data rates received by each Local process can also be different on each area. This
creates inefficiencies because of unbalanced workload. One of the ideas is to cre-
ate a dynamic scheduler that able to monitor the load on each cloud on run-time.
We think this will be a significant addition and will be very useful on real deploy-
ments.

The current implementation is also subject for the enhancements. Both Geo-scheduler
and ZoneGrouping are basically one object for the hierarchical process, but separate
in implementation because of the limitation of the Storm plug-in API. It will be
for the best if both are integrated into a single system where the LocalTasks by
default will be using the ZoneGrouping rather that specifying it in the Topology.
More sophisticated GlobalTask location placement can also be made by using the
state-of-the-art graph algorithms to find a best node from multiple nodes. Another
idea is to create more than two-level hierarchical process for more complex stream
processing Topology.

In the last performance evaluation on Chapter 6, each of the three types of deploy-
ment are able to process all Tuples at the same time. This is because there are
no other factors that is able to affect the processing rates other than the network
latency. In a real Storm deployment, we expect a more complicated topology with
processing time on each bolt that creates a latency and possibility of Tuple queues.
The performance heterogeneity of each cloud can also affect the overall system per-
formance. These factors are important to be included in the system performance
consideration.

71

Bibliography

[1] Common Open Research Emulator (CORE).
http://www.nrl.navy.mil/itd/ncs/products/core. Accessed: 2015-04-01.

[2] Deutsche telekom becoming a software defined operator.
http://telecoms.com/191662/deutsche-telekom-becoming-a-software-defined-
operator/. Accessed: 2015-03-15.

[3] Guifi.net - Telecommunication network open, Free and Neutral.
https://guifi.net/. Accessed: 2015-06-01.

[4] Making storm fly with netty. http://yahooeng.tumblr.com/post/64758709722/making-
storm-fly-with-netty. Accessed: 2015-05-11.

[5] Minimax principle. Encyclopedia of Mathematics.
http://www.encyclopediaofmath.org/index.phptitle=Minimax_principle&oldid=34361.
Accessed: 2015-06-01.

[6] Netty.io. http://netty.io/. Accessed: 2015-05-11.

[7] Nokia and Intel innovation centre. http://www.theinquirer.net/inquirer/news/2363266/nokia-
and-intel-launch-innovation-centre-to-spur-mobile-broadband-app-
development. Accessed: 2014-02-12.

[8] Supervisor: A process control system. http://supervisord.org/. Accessed: 2015-
05-11.

[9] Twitter storm: How to develop a pluggable scheduler.
https://xumingming.sinaapp.com/885/twitter-storm-how-to-develop-a-
pluggable-scheduler/. Accessed: 2015-03-15.

[10] Jeff Ahrenholz, Claudiu Danilov, Thomas R Henderson, and Jae H Kim. Core:
A real-time network emulator. In Military Communications Conference, 2008.
MILCOM 2008. IEEE, pages 1–7. IEEE, 2008.

[11] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. Adaptive online
scheduling in storm. In Proceedings of the 7th ACM international conference
on Distributed event-based systems, pages 207–218. ACM, 2013.

Bibliography

[12] Roger Baig, Jim Dowling, Pau Escrich, Felix Freitag, Roc Meseguer, Agusti
Moll, Leandro Navarro, Ermanno Pietrosemoli, Roger Pueyo, Vladimir Vlassov,
et al. Deploying clouds in the guifi community network. In Integrated Network
Management (IM), 2015 IFIP/IEEE International Symposium on, pages 1020–
1025. IEEE, 2015.

[13] Hyunseok Chang, Adiseshu Hari, Sarit Mukherjee, and TV Lakshman. Bringing
the cloud to the edge. In Computer Communications Workshops (INFOCOM
WKSHPS), 2014 IEEE Conference on, pages 346–351. IEEE, 2014.

[14] Aleksandra Checko, Henrik L Christiansen, Ying Yan, Lara Scolari, Geor-
gios Kardaras, Michael S Berger, and Lars Dittmann. Cloud ran for mobile
networksa technology overview. Communications Surveys & Tutorials, IEEE,
17(1):405–426, 2014.

[15] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney,
Ugur Cetintemel, Ying Xing, and Stanley B Zdonik. Scalable distributed stream
processing. In CIDR, volume 3, pages 257–268, 2003.

[16] Graham Cormode, S Muthukrishnan, and Wei Zhuang. Conquering the divide:
Continuous clustering of distributed data streams. In Data Engineering, 2007.
ICDE 2007. IEEE 23rd International Conference on, pages 1036–1045. IEEE,
2007.

[17] Ken Danniswara, Hooman Peiro Sajjad, Ahmad Al-Shishtawy, and Vladimir
Vlassov. Stream processing in community network clouds (To be published). In
Community Networks and Bottom-up-Broadband, 2015. CnBuB 2015. The 4th
International Workshop on Community Networks and Bottom-up-Broadband.
IEEE, 2015.

[18] Intel. Carrier cloud telecoms – exploring the challenges of deploying virtualisa-
tion and sdn in telecoms networks. August 2015.

[19] Yonghua Lin, Ling Shao, Zhenbo Zhu, Qing Wang, and Ravie K Sabhikhi.
Wireless network cloud: Architecture and system requirements. IBM Journal
of Research and Development, 54(1):4–1, 2010.

[20] Marek Rychly, Petr Koda, and P Smrz. Scheduling decisions in stream pro-
cessing on heterogeneous clusters. In Complex, Intelligent and Software Inten-
sive Systems (CISIS), 2014 Eighth International Conference on, pages 614–619.
IEEE, 2014.

[21] Mennan Selimi, Felix Freitag, R Pueyo Centelles, and Agustí Moll. Distributed
storage and service discovery for heterogeneous community network clouds. In
Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International Con-
ference on, pages 204–212. IEEE, 2014.

74

[22] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-
ham, et al. Storm @ twitter. In Proceedings of the 2014 ACM SIGMOD inter-
national conference on Management of data, pages 147–156. ACM, 2014.

[23] Radu Tudoran, Olivier Nano, Ivo Santos, Alexandru Costan, Hakan Soncu,
Luc Bougé, and Gabriel Antoniu. Jetstream: enabling high performance event
streaming across cloud data-centers. In Proceedings of the 8th ACM Inter-
national Conference on Distributed Event-Based Systems, pages 23–34. ACM,
2014.

[24] Apache ZooKeeper. What is zookeeper. http://zookeeper.apache.org/. Ac-
cessed: 2015-05-11.

Declaration

I hereby certify that I have written this thesis independently and have only used the
specified sources and resources indicated in the bibliography.

Stockholm, 30 September 2015

. .
Ken Danniswara

	Introduction
	Motivation & Problem Definition
	Approach
	Contribution
	Structure of the Thesis

	Background
	Stream Processing
	Apache Storm

	Edge Cloud / Cloud on Edge
	Carrier Cloud
	Cloud-RAN
	Community Network Cloud

	Emulation Software: CORE Network Emulator

	Apache Storm on multi-cloud environment
	Multi-cloud environment for Geo-distributed sources
	Apache Storm on Multi-cloud
	Integrated Storm instances
	Centralized single Storm

	Storm deployment in data-center with Heterogeneity network latency
	System configuration
	Test case

	Evaluation on multiple data-center / different network subnet
	Case 1: No latency
	Case 2: Latency on management nodes
	Case 3: Latency on the central network
	Case 4: Latency on cloud nodes

	Evaluation on Community Network emulation
	Placement of Management components
	Worker nodes placement

	Discussion

	Geo-Distributed Apache Storm design
	Real-time Storm Application in multi-cloud deployment
	Scheduling and Grouping
	Current scheduler and grouping
	Geo-scheduler
	ZoneGrouping

	Implementation
	Geo-scheduler
	TaskGroup in Storm Topology
	Geo-scheduler implementation

	ZoneGrouping
	ZoneGrouping in Storm Topology

	Guidelines
	Considerations
	Scalability
	Fault tolerance

	Evaluation
	Network Topology
	Storm Topology
	Implementation validation
	Geo-Scheduler
	ZoneGrouping

	Performance evaluation
	Network traffic
	Latency-sensitive application

	Conclusion
	Discussion
	Future Work

