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Abstract

Elasticity, where a system requests and releases resources
in response to a dynamic property, has been an important
issue in Cloud computing. It can be handled manually or
automatically. Efforts being made to make elasticity as au-
tomatic as possible. Autonomic computing has played a
significant role in many computing fields including Cloud
computing. In this master thesis, we have adopted control
theory approach for automation of elasticity in key-value
storage that is provided in a cloud environment and oper-
ates under dynamic workloads. Automation is achieved by
providing a feedback controller that automatically grows
and shrinks the number of nodes in order to meet Service
Level Agreement (SLAs) under high load and reduces costs
under low load. Every step of building a controller for elas-
tic storage, including System Identification and controller
design, is discussed in this thesis. We have evaluated our
approach by simulation. We have implemented a simula-
tion framework based on Kompics1, in order to simulate an
elastic key-value store in Cloud environment and to be able
to experiment with different controllers. Finally, we have
examined the implemented controller against specific SLA
requirements and we have evaluated the controller behav-
iors in different scenarios. Our simulation experiments have
shown the feasibility of our approach to automate elasticity
of storage services.

1Kompics is a message-passing component model for building distributed systems by putting
together protocols programmed as event-driven components



Referat

Elasticitet, när ett system beställer och släpper taget om
resurser som svar på en dynamisk egenskap, har varit ett
viktigt problemområde inom Cloud computing. Det kan
hanteras manuellt och automatiskt. Ansträngningar har gj-
orts för att göra elastiskt beteende så automatiserat som
möjligt. Autonoma system har spelat en viktig roll i mån-
ga fält inom datavetenskapen, inklusive Cloud computing.
I denna avhandling har vi använt oss av ett reglerteoretiskt
angreppssätt för att automatisera elasticitet i ett key-value
lagringssystem som erbjuds i molnet och som verkar under
varierande belastning. Automatisering åstadkoms genom en
återkopplande kontrollmekanism som tillåter antalet noder
att automatiskt bli fler eller färre för att möta krav på av-
talad servicenivå (SLA) under hög belastning och för att
reducera kostnader under låg last. Varje steg för att byg-
ga kontrollmekanismen för den elastiska lagringslösningen,
inklusive systemidentifikation och kontrollmekanismdesign,
diskuteras i detalj. Vi har utvärderat och verifierat vårt
angreppssätt genom simulering. Vi har implementerat ett
simuleringsramverk baserat på Kompics2. Detta för att sim-
ulera en elastisk nyckel/värde-lagring i en molnmiljö och
för att kunna experimentera med olika kontrollmekanismer.
Slutligen har vi utvärderat den implementerade kontroll-
funktionen mot givna SLA-krav och dess beteende under
olika lastscenarier. Vår simulering visar att den föreslagna
strategin för automatiserad elasticitet av lagring är genom-
förbar och bör generera det eftersträvade resultatet.

2Kompics är en meddelandebaserad modell som används för att bygga distribuerade system
genom att sammanfoga protokoll som programmeras som händelsestyrda komponenter
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Chapter 1

Introduction

1.1 Background

Web-based services frequently experience high work loads during their life time.
A service can get popular in just within an hour and the occurrence of such high
workloads has been observed more and more recently. Cloud computing (section
1.4) has brought a great solution to this problem: requesting and releasing instances
that provide the service on-the-fly. This has helped to distribute the loads among
more instances. However the high load state typically does not last for long and
keeping resources in a cloud costs money. This has led to Elastic computing (section
1.4.2) where a system can scale up and down based on a dynamic property that is
changing from time to time.

Elastic computing requires automatic management that can be used from the
results obtained in Autonomic Computing area. Systems that exploit autonomic
theory to enable automatic management of themselves are called Self-managing
systems (section 1.2.2) In this way complex system such as a cloud system can be
automatized without the need of human supervision. One common and proven way
to apply automation to computing systems is control theory (section 2.2).

1.1.1 Objectives

This master thesis project aims at studying the cloud systems from data storage
point of view and automating the elasticity (scaling up/down) property of cloud
systems. In this section we go through a list of objectives that are solved by this
master thesis project:

Study the Distributed Data Storage (DSS) Systems

Distributed Data Storage (DSS) systems construct a major portion of current stor-
age systems. They gain more popularity every day because of their unique proper-
ties that target scalability problems in enterprise systems. This project studies the

1



CHAPTER 1. INTRODUCTION

properties of such systems to obtain a better understanding of automation and how
each property can affect it. It should be noted also that the target of this thesis is
storage cloud that are inherently DSS systems.

Study the application of control theory in Computing Systems

Control theory has been exploited by electrical and mechanical engineers for au-
tomation of physical systems for a long time. However the idea of applying such
theory to computing system is still new. This project studies the related comput-
ing systems that are availing from control theory and select the best practices and
approaches for system identification and controller design.

System Identification and appropriate controller design

Based on the study of controller-enabled computing systems and control theory
itself, this project identifies the system which is a key-value store and builds a
model that can be used for capturing interesting properties from the system. The
system identification should only capture the relevant system behavior that are
required for automation and controller design and ignore the rest. Based on this
system identification approach and performed studies on control-enabled computing
systems, an appropriate controller type is selected, implemented and tested against
the target system. The goals in designing the controller are:

• Performance Assurance: controller scales up/down the number of in-
stances in a cloud to meet Service Level Agreements (SLA)

• Adaptation: controller is able to adapt to dynamic workloads

• Automation: all decision regarding scaling up/down in the number of in-
stances is made automatically

Method of designing controller for elastic storage in cloud

The project proposes a method for designing controller for elastic storages in cloud
environments. This method includes all the steps needed to such a design. The
method is general enough to cover storage cloud systems.

Implementation of a Simulation Framework for Cloud

In order to simplify the system identification and controller design for the cloud
environment, a simulation framework is implemented in great details that enables a
better understanding and monitoring of the cloud system. This simulation frame-
work is capable of the following items:

• A complete simulation of cloud resources including:

– Cloud Provider that administers the cloud resources

2



1.1. BACKGROUND

– Storage instances that serve requests

– Elastic Load Balancer (ELB)

– Eventual Perfect Failure Detector (EPFD) that is responsible for check-
ing for failures

– Request generator that is responsible for sending request to instances

– Cloud API that enables remote launching and shutting down of storage
instances

• System identification component which enables the identification and moni-
toring of different systems with various configurations

• Controller implementation and testing against the cloud

• Custom load distributions

In addition to feature implementation, simulation framework has GUI for better
overview of cloud/controller activities.

Experiment the controller with simulation framework

The implemented controller is tested by the simulation framework and is evaluated
against expected system behaviors. Different system properties are also examined
and checked to see how they can influence the controller’s decisions.

1.1.2 Thesis Outline

This master project is going to be in a number of chapters that each one is shortly
described in the following:

• Chapter 1: the rest of this chapter is an introduction to three concepts
that are used in this master thesis project: Autonomic Computing, Self-
management systems and Cloud Computing.

• Chapter 2: consists of a survey for two related systems that this master
project is based on: Distributed Storage Systems (DSS) and control theory
enabled computing systems. a number of well designed systems in each cat-
egory is briefly described. These systems are categorized based on different
properties at the end of each section.

• Chapter 3: it is started with problem definition and a simple case scenario.
In this chapter, the system Identification approach and steps is discussed in
detail. Based on the properties of target system that is a cloud environment,
we have chosen a controller design approach that is also described in the
second half of this chapter in details.

3



CHAPTER 1. INTRODUCTION

• Chapter 4: implementation of the simulation framework is described in this
chapter. The description is performed according to original Kompics docu-
mentation in which the architecture of each component is described together
with ports, types of messages, channel subscriptions and component connec-
tions. We encourage the reader to get familiar with Kompics first before trying
to understand the details of this implementation.

• Chapter 5: this chapter is where theory meets practice. We try to apply the
theory that is covered in Chapter 3 and use the implemented framework to
experiment with target environment that is a cloud environment.

• Chapter 6: conclusion and future work are discussed in this chapter. There
are some extensions that can be done based on this master project that are
mentioned in this chapter.

• Appendix A: includes necessary details to obtain, modify, build and run the
simulation framework.

4



1.2. AUTONOMIC COMPUTING

1.2 Autonomic Computing

In 2001, Horn from IBM [27] marked the new era of computing as Autonomic
Computing. He pinpointed that the software complexity would be the next challenge
in Information Technology. Growing complexity of IT infrastructures can cover the
benefits of information technology aims to provide. One traditional approach to
manage this complexity is to rely on human intervention. However, considering the
expansion rate of softwares, there would not be enough skilled IT staff to tackle
the complexity by their managements. Moreover, most of the real-time applications
require immediate administrative decision-making and response times. Another
drawback of the growing complexity is that it forces us to focus on management
issues rather than improving the system itself.

The new approach, however, would be the autonomic computing. In other
words, designing and building systems that are capable of managing themselves.
These systems can adjust themselves to the changes of the environment. They
must anticipate the needs and allow users to concentrate on what they want to
accomplish.

1.2.1 Properties of Self-managing Systems

IBM proposed main properties that any self-managing system should have to be
considered as autonomic systems [32]. These properties are usually referred to as
self-* properties. The four main properties are:

• Self-configuration: Autonomic systems should be able to configure them-
selves in accordance with defined high-level policies. When a new component
is introduced in the system, it will incorporate itself seamlessly and the rest
of the system will adopt to its presence. The system should be able to contin-
uously reconfigure itself and adopt to the news changes in the environment.

• Self-optimization: Autonomic systems should continually monitor them-
selves and find new ways to identify and seize opportunities to make them-
selves efficient in performance and cost. They will proactively seeking to
upgrade their functions by finding, applying and verifying the latest changes.

• Self-healing: Autonomic systems should detect, diagnose and repair localized
problems resulting from bugs and/or failures.

• Self-protection: Autonomic systems should defend the system as a whole
against large scale problems arising from malicious attacks or cascading fail-
ures. They should also anticipate problems perceived by their sensors and
take steps to avoid them.

5



CHAPTER 1. INTRODUCTION

1.2.2 Autonomic Computing Architecture

IBM proposed a reference architecture for autonomic computing [28] consists of the
following building blocks:

• Manageability Endpoints (touchpoints): A manageability endpoint is a
component in the system that provide the access to states and management
operations for resources in the system. The manageability interface for moni-
toring and controlling a managed resource is organized into its sensor (that is
used to perceive data from the resource) and effector (that is used to perform
operation on the resources).

• Autonomic Managers: An autonomic manager is an implementation that
automates the management functionality according to the behavior defined by
management interface. In other words, it is an intelligent control loop. This
control loop consists of four stages: monitor, analyze, plan and execute. It
interacts with the managed resources with the touchpoints.

• Knowledge Source: is an implementation of database or repository that
provides access to the knowledge defined in the interface (e.g. architectural
information, monitoring history, management data) between the autonomic
managers..

• Manual Managers: is an implementation of a user interface that enables an
IT professional to perform some management function manually.

• Enterprise Service Bus: is an implementation that provides the integration
between other building blocks. It can be used to connect various autonomic
computing building blocks.

This architecture is demonstrated in Fig. 1.1

1.3 Design Methodology for Self-Management

A methodology for self management of distributed applications should include meth-
ods for management decomposition, distribution an orchestration. In [12] authors
have discussed a comprehensive approach for designing such system that we will
briefly address in the following.

1.3.1 Steps in Designing Distributed Management

Designing of a self-* application can be divided into three separate parts: functional
part, touchpoints and the management part. The functional and management part
are designed based on the requirements. For the management part there is an option
to choose single or multiple managers. Obviously having multiple managers can
remove the problem of single point of failures. Moreover, different context/concept

6



1.3. DESIGN METHODOLOGY FOR SELF-MANAGEMENT

Figure 1.1. IBM Autonomic Computing Reference Architecture (Adopted from Fig.
2.1 in [11]

can be assigned to different managers as well that can lead to a cleaner design
at the end. The following iterative steps should be performed when designing the
management part:

Decomposition The first step is extracting the task out of management. De-
composition can be done either functional or spacial. The major design issue to be
considered in this step is the granularity of tasks with this assumption that a task
or a group of them can be performed by a single manager.

Assignment The extracted tasks can then be assigned to managers. Each man-
ager can be responsible for one or more tasks. Assignment can be done based on a
specific self-* properties or based on which area of the application task belongs to.

Orchestration Since the managers are not independent of each other the assigned
tasks also have dependencies between themselves. These dependencies can cause
conflicts and interferences. In order to avoid such cases, we need to have some kind
of orchestration/coordination.

Mapping The set of managers are then mapped to the resources. The major
design issue at this step is optimized placement of the managers on functional
components on nodes to increase performance.

7



CHAPTER 1. INTRODUCTION

1.3.2 Orchestrating Autonomic Managers

Autonomic managers can coordinate their operations in the following four ways:

Stigmergy is a way of indirect communication and coordination between agents
[15]. Agent makes changes and modifications in its environment that these changes
can be sensed by other Agents. Hence the agent can be reactive to these changes
and do other actions. In the context we are talking, agents are autonomic managers
and the environment is the managed application. Generally Stigmergy makes it
very difficult and challenging to design a self-managing system.

Hierarchical Management Some managers can control and monitor other man-
agers. Lower level managers are considered as managed resource for the higher
levels. Higher level managers can sense and affect lower level ones. Lower level
managers are often speedy so they can catch up with the frequent changes of the
environment however the higher level managers are often slower and used to orches-
trate the system by monitoring global properties and tuning lower level managers.

Direct Interaction Managers may interact with each other directly. Binding
can be used to coordinate managers and avoid undesired behaviors.

Shared Management Elements In this way the managers usually share their
state (knowledge) to synchronize their actions.

1.4 Cloud Computing

Cloud computing is a model for enabling ubiquitous, scalable, on-demand network
access to a shared pool of configurable computer resources that can be rapidly
provisioned and released with minimal management effort [43].

1.4.1 Delivery Models

The National Institute of Standards and Technology (NIST) definition of cloud
computing categorizes three delivery models [43]:

• Software as a Service (SaaS): provides the capability to the consumers
to use the provider’s applications running on a cloud infrastructure. The
consumer does not manage or control the underlying cloud infrastructure.

• Platform as a Service (PaaS): provides the capability to the consumers
to deploy onto the cloud infrastructure consumer-created or acquired appli-
cations created using programming languages and tools supported by the
provider. The consumer does not manage the underlying cloud infrastruc-
ture.
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• Infrastructure as a Service(IaaS): provides the capability to the con-
sumers to provision processing, storage, networks and other fundamental com-
puting resources where the consumer is able to deploy and run arbitrary soft-
ware.

1.4.2 What is Elastic Computing?

First we need to understand what elasticity is in physics. According to Wikipedia:

"In physics, elasticity is the physical property of a material that re-
turns to its original shape after the stress (e.g. external forces) that
made it deform is removed"

Similarly this can be applied to computing. It can be thought as the amount of
strain an application or infrastructure can bear while either expanding or collapsing
to meet specific requirements. In the area of storage systems, this can be bringing
in new nodes of storage and releasing the unused ones when they are not needed
anymore.

Thus in simple words, elasticity is defined as the ability to scale resources both
up and down as needed. [20] has defined Elastic Computing as following:

"The quantifiable ability to manage, measure, predict and adapt re-
sponsiveness of an application based on real time demands placed on
an infrastructure using a combination of local and remote computing
resources."
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Chapter 2

Survey and State of the Art

2.1 Distributed Storage Systems

New generations of applications require processing terrabytes of information. Stor-
age plays a significant role in computations. This is mainly achieved by distributed
computing. Distributed computing means distributed data. Combining networking
with storage and distributed computing provides us Distributed Storage Systems
(DSS). DSSs are capable of achieving various things, from spanning a global net-
work of users providing rich set of services, file sharing and high performance to
global federation and utility storage [47].

With the advances of networking infrastructure and distributed computing, new
DSSs were emerged through the time and they continued to evolve. However, new
generation of applications have faced with many challenges such as longer delays,
unreliability, unpredictability and potentially malicious behavior. This is due to
the nature of public shared environments. To cope with this challenges, innovative
architectures and algorithms have been proposed and developed, providing improve-
ments mainly to consistency, security and routing.

In this section we will review some of the existing DSSs from different perspec-
tives.

2.1.1 Google Bigtable

Bigtable is a distributed storage system for managing structured data that is de-
signed to scale to a very large size such as petabytes of data across thousands of
commodity servers [18]. Bigtable has achieved several goals like wide applicability,
scalability, high performance and high availability. Bigtable does not support a
full relational data model instead it provides client with a simple data model that
supports dynamic control over data layout and format.

11



CHAPTER 2. SURVEY AND STATE OF THE ART

Data Model

A Bigtable is a sparse, distributed, persistent multi-dimensional sorted map. The
map is indexed by a row key, column key and a timestamp. Each value in the map
is an uninterpreted array of bytes. The data model is optimized for storing multiple
versions of a content.

Building Blocks

Bigtable is a distributed hash mechanism built on top of Google File System (GFS).
The underlying file format is SSTable. Queries (distributed computations) such as
filtering, aggregation, statistics are done using Sawzall language [46].

A Bigtable cluster typically operates in a shared pool of machines that run a wide
variety of other distributed applications. Bigtable depends on a cluster management
system for scheduling jobs, managing resources on shared machines, dealing with
machine failures and monitoring machine status.

Bigtable relies on a highly-available and persistent distributed lock service called
Chubby [16]. A Chubby service consists of 5 active replicas. One of them is selected
to be master and actively serves requests. The service is live when the majority of
replicas are running and can communicate with each other. Chubby uses Paxos
algorithm [17], [35] to keep its replicas consistent in the case of failures. Bigtable
uses Chubby for variety of tasks: to ensure that there is at least one active master
at any time; to store the bootstrap location of Bigtable data; to discover tablet
servers and finalize tablet server deaths; to store Bigtable schema information and
to store access control lists.

Architecture

Bigtable consists of one master and many tablet servers. Tablet servers can be dy-
namically added or removed from a cluster thus providing elasticity. The master is
responsible for assigning tablets to tablet servers, detecting the addition and expira-
tion of tablet servers, balancing load between tablet servers and garbage collection
of files. Moreover, it manages schema changes. The tablet server handles read and
write request to the tablets and also split the tablets that has grown too large.

Client data does not move through the master node. Instead clients commu-
nicate directly with tablet servers for reads and writes. As a result the master is
lightly loaded in practice.

2.1.2 Amazon Dynamo

Dynamo is a high available key-value storage system that some of Amazon’s core
services use to provide constant availability experience. Dynamo is used to manage
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the state of services that require high reliability and tight control over the trade offs
between availability, consistency, cost-effectiveness and performance [22].

Dynamo uses a variety of well-known techniques to achieve scalability and avail-
ability: data is partitioned and replicated using consistent hashing [30], and con-
sistency is provided by object versioning [34]. The consistency among replicas is
maintained by a quorum-like technique and a decentralized replica synchronization
protocol. Dynamo exploits a gossip-based distributed failure detection and mem-
bership protocol.

Data Model

Dynamo has a primary-key-only interface. Data are stored as key-value pairs and
the only interface to access data is the key. Data is hashed and replicated. The
hashed key range can be distributed among the available machines. Data can be
requested from a random machine. Each machine has enough routine information
to forward the request if it does not have the value corresponding to the key.

Building Blocks

In Dynamo each storage node has three main components: request coordination,
membership and failure detection, and a local persistence engine. The request
coordination is built on top of an event-driven messaging that is very similar to
Staged Event Driven Architecture (SEDA) [50]. The coordinator executes request
for reading and writing on behalf of the client. Each client request leads to creation
of a state machine on the receiving node that is responsible for handling the request.

Dynamo is designed to be highly available for writing as opposed to reading,
since failure of writing inconveniences the end-user of the application. So, any data
conflicts are resolved at the time of reading rather than writing.

The system is completely decentralized with the least need for manual admin-
istration. However, new machines have to be manually added since downtimes of
systems are considered to be usually temporary which means it is wasteful to re-
distribute that machine’s data to other machines in the meanwhile. However, when
a new machine is added to the ring, the system automatically starts sharing part
of the responsibility by handing over a part of the key range. Dynamo’s SOA is
demonstrated in Fig. 2.1.

2.1.3 Hypertable

Hypertable is a scalable high performance, distributed storage and processing sys-
tem for structured and unstructured data. It is mainly designed to handle the
storage and information processing on a huge cluster of commodity servers, provid-
ing resilience to machine and component failures [3].
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Figure 2.1. Amazon’s Service Oriented Architecture

Data Model

Hypertable consists of multi-dimensional table that can be queried using a single
primary key. The first dimension is the row key that acts as the primary key. It
defines the physical order of data to be stored. The second dimension is the column
that is very similar to traditional databases. The third dimension is the column
qualifiers. Within each column family there can be infinite number of qualified
instances in theory. The last dimension is the time dimension. This dimension
consists of a timestamp that is assigned by the system providing versioning of the
content. The data model is very similar to the Google Bigtable that is described in
section 2.1.1.

Architecture

Hypertable is designed to run on top of a third-party distributed filesystem such
as Hadoop DFS. However, it can be run on top of a local filesystem. The general
system architecture of Hypertable is depicted in Fig. 2.2. In the following we will
describe each component briefly.

Hyperspace is analogous to Chubby [16] from Google. Hyperspace provides a
filesytem for storing small portion of metadata. It also acts as a lock manager. At
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Figure 2.2. Hypertable System Architecture (Figure is taken from Hypertable wiki
page)

the time of writing this section, it is implemented as a single server, but will be
made distributed in future.

Range server Tables are broken into a set of continuous low ranges, each of
which is managed by a range server. The splitting process is continues for all the
ranges as they keep on growing. Each range server handles all reads and writes for
the data table it is responsible for.

Master handles all meta operations such as creating and deleting of tables. Like
Bigtable, client data does not move through the master. Hence the master can
be down without even the clients are aware of it. The master is also responsible
for failure detection of range servers and reassign them the ranges. Master is also
responsible for load balancing.

DFS broker Hypertable is capable of being run on top of any filesystem. In order
to do that, it has abstracted the interface to filesystems through something called
DFS brokers. The DFS broker is a process that translates standardized filesystem
protocol messages into the system calls that are unique to the specific filesystem

2.1.4 Yahoo! PNUTS

PNUTS [21] is a massively parallel and geographically distributed database system
for Yahoo! web applications. Data is stored as hashed and ordered tables. It
provides low latency for large numbers of concurrent requests including updates
and queries. Moreover PNUTS facilitates automated load balancing and failover to
reduce operational complexity.
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Data Model

PNUTS presents a simplified relational data model that data is organized into tables
of records with attributes. Schemas are flexible which means that new attribute can
be added at any time. It is mainly designed for online serving workloads that consist
mostly of queries that read and write single records or small group of records.

System Architecture

PNUTS is divided into regions that each region contains a full complement of sys-
tem components and a complete copy of each table. The system architecture is
depicted in Fig. 2.3. The regions are usually geographically distributed. In order to
provide reliability and replication, PNUTS uses publisher/subscriber mechanism.
The replication of data to multiple regions provides additional reliability.

Storage units store tables, respond to get and scan requests by retrieving and
returning matching records and respond to set requests by processing update. Stor-
age units can use any physical storage layer that is proper. In order to decide which
storage unit is responsible for a given record and also for finding the corresponding
tablet that has that record, router is used to facilitates the system for such func-
tionalities. Routers contain only a cached copy of the internal mapping. They poll
the tablet controller to get any changes to the mapping. Tablet controller is also
responsible for moving tablets between storage units for load balancing or recovery
when a large tablet must be split.

Figure 2.3. PNUTS System Architecture (Figure is taken from [21] )

If a router fails, a new one will be started and there is no recovery. The controller
is not a bottleneck since it does not sit on the data path. The primary bottleneck
in the system is disk seek capacity on the storage units and message brokers.

Yahoo! Message Broker PNUTS uses asynchronous replication to ensure low
latency updates. Yahoo! message broker is a topic-based publisher/subscriber
mechanism that acts as a replacement for redo log and replication mechanism. Data
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updates are considered commited when they have been published to this service and
the update will be propagated to different regions for various replicas.

2.1.5 Apache HBase

Apache Hbase [2] is an open source answer to Google Bigtable ([18]). It is built on
top of Hadoop which implements functionality similar to Google Filesystems and
MapReduce systems.

Data Model

HBase uses data model that is very similar to Bigtable. Data is logically organized
into tables, rows and columns. Applications and different services store data rows
in labeled tables. A data row has a sortable row key and an arbitrary number of
columns. The table is stored sparsely, so those rows in the same table can have
varying numbers of columns. HBase stores the column families close on disk and
provides good physical locality. By default only one row may be locked at a time.
Row writes are always atomic. But it is possible to lock a single row and perform
both read and write operations. However, there is possibility to lock multiple rows
but at the time writing this section, it is not the default behavior and should be
enabled.

From an application perspective, a table seems to be a list of tuples sorted by
row key ascending, column name ascending and timestamp descending. However,
tables are broken up physically into row ranges called regions (analogous to Bigtable
tablets). Obviously a set of regions that are sorted forms a table. Each column
family in a region is managed by an HStore. Each HStore may have one or more
MapFiles (a Hadoop HDFS file type) that is very similar to a Google SSTable. Like
SSTables, MapFiles are immutable once closed. MapFiles are stored in the Hadoop
HDFS

Architecture

There are three main components within HBase that we will discuss in this section.
The system architecture is demonstrated in Fig. 2.4.

HBaseMaster is responsible for assigning regions to HRegionServers. The first
region to be assigned is the ROOT region which locates all the META regions to
be assigned. Each META region maps a number of user regions which comprise the
multiple tables that a particular HBase instance serves. Once all the META regions
have been assigned, the master will then assign user regions to the HRegionServers,
attempting to balance the number of regions served by each HRegionServer. The
HBaseMaster also monitors the health of each HRegionServer, and if it detects one is
no longer reachable, it will split the HRegionServer’s write-ahead log so that there
is now one write-ahead log for each region that the HRegionServer was serving.
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Figure 2.4. HBase System Architecture

After it has accomplished this, it will reassign the regions that were being served
by the unreachable HRegionServer. At the time of writing this section, when the
HBaseMaster dies the whole cluster will shut down.

HRegionServer is responsible for handling client read and write requests. It
communicates with the HBaseMaster to get a list of regions to serve and to tell the
master that it is alive.

HBase client is responsible for finding HRegionServers that serve the particular
row range of interest. On instantiation, the HBase client communicates with the
HBaseMaster to find the location of the ROOT region. This is the only communi-
cation between the client and the master. Once the ROOT region is located, the
client contacts that region server and scans the ROOT region to find the META
region that will contain the location of the user region that contains the desired row
range. It then contacts the region server that serves that META region and scans
that META region to determine the location of the user region. After locating the
user region, the client contacts the region server serving that region and issues the
read or write request.

2.1.6 Terrastore

Terrastore is a distributed, scalable and consistent document store supporting single-
cluster and multi-cluster deployments. It provides advanced scalability support and
elasticity feature without loosening the consistency at data level. Terrastore pro-
vides ubiquity by using universally supported HTTP protocol.

Data is partitioned and distributed among the nodes in the cluster(s) with au-
tomatic and transparent re-balancing when nodes join and leave. Moreover, it
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distributes the computational load for operations like queries and updates to the
nodes that actually hold the data. In this way Terrastore facilitates with scalability
at both data and computational layers.

Terrastore is based on an industry-proved clustering solution called Terracotta
[7]. Terracotta is used as a distributed lock manager for locking single document
access during write operations, as an intra-cluster group membership service, and
for durable document storage (and replication).

Data Model

Data model is pure JSON [4] which is stored in documents and buckets which are
analogous to table row and table correspondingly in relational DBs. Data (docu-
ments and buckets) is partitioned according to the consistent hashing schema [30]
and is distributed on different Terrastore servers.

Building Blocks and Architecture

Terrastore system consists of an ensemble of clusters that in each cluster can exist
one Terrastore master and several Terrastore servers. The system architecture is
shown in Fig. 2.5

Master is responsible for managing the cluster membership: hence it notifies
when the servers join/leave, changing the group view. In addition to this member-
ship management, Master is also responsible to durably store the whole documents.
It is also responsible for replicating the data to server nodes but it does not parti-
tion the data itself and partitioning strategy is decided by the server nodes which
is either the default consistent hashing or a user defined one. Replication is a pull
strategy performed by server nodes from the master node. Hence each server re-
quests its own partition from the master. All the writes go through the master but
only the first read request goes through the master and later requests will be read
from the server memory.

Each server owns a partition to which a number of documents are mapped. Each
document is only own by one server node. If a request is sent to server that does
not own the document, then the request is routed to the corresponding server. All
the write requests go to both the server that owns the document and the master
node.

The role of ensemble is to join multiple clusters and make them work together.
It provides better scalability by providing multiple active masters. It also facilitates
the whole system partition-tolerance behavior. Thus in the case of partitioning the
data will be available locally but it can not be seen by other clusters except the
cluster owns the data.
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Figure 2.5. Terrastore System Architecture

2.1.7 Self-* in Distributed Storage Systems Context

In this section we will briefly describe what each of the properties defined in section
1.2.1 means in the context of Distributed Storage Systems by some examples and
scenarios.

Self-configuration

• A new storage node joins the system and starts communicating with other
nodes. Other nodes should be able to configure themselves to consider the
newly joined node. The new node should be able to receive the latest config-
uration from any existing node and adopt itself to that. Nodes in the system
should be able to adjust new configuration according to any join/leave in
general.

• All nodes in the system have a reference configuration model that can be
obtained from another node. The node is responsible for converging itself to
this model and not deviating from it. The model can be updated at run-time
and can be distributed through the system (e.g. by means of a gossip-based
protocol)
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Self-optimization

• Nodes optimize themselves to make better routing for upcoming read requests
considering some critical factors (e.g. load balancing)

• Nodes would optimize the number of replicas for each data set. The number
of replicas can be increased/decreased upon its usage.

• Optimization for load balancing as new data might come under more read-
/write requests.

Self-healing

• In case of failure for a node, there should be a node that can restart the failed
node from its latest stable state.

• In case of split brain1, the inconsistencies should be resolved automatically
and without the intervention of administrators

2.1.8 Summary

The studied Distributed Storage Systems (DSS) are summarized in Table 2.1.

Table 2.1: Summary of Distributed Storage Systems

DSS DB Type Architecture Focus Elasticity Consistency

Google
Bigtable [18]

Column-
oriented

Cluster of master/server
nodes

Scalability,
Performance,
Availability

Yes Relaxed

Amazon Dy-
namo [22]

Key-value Cluster of Node rings Availability,
Consistency,
Performance

Yes Eventual

Hypertable [3] Column-
oriented

Cluster of master/server
nodes

Scalability,
Performance,
Failure re-
silience

Yes Strong

Yahoo!
PNUTS [21]

Key-value Cluster of regions Performance,
load balancing,
Scalability

Yes Eventual

HBase [2] Column-
oriented

Cluster of master/server
nodes

Scalability,
Performance,
Availability

Yes Strong

Terrastore [8] Document Ensemble of clusters of
master/server nodes

Consistency,
Scalability,
Availability

Yes Eventual

1In clustering split brain means that all private links go down simultaneously, but the cluster
nodes are still running
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2.2 Application of Control Theory in Computing Systems

In this section we will investigate common approaches within control theory. Con-
troller design consists of two important steps: System Identification and Controller
design [45]. Each of which will be discussed in the next section.

2.2.1 System Identification

System identification deals about how to construct a model to identify a system.
In this phase a transfer function is constructed. This transfer function connects
past/present input values to past/present output values. This constructs a model
for the system. Based on the transfer functions and desired properties and objectives
a control law is chosen. System identification is mainly divided into the following
approaches:

First principle approach is one of the de facto approaches to identification of
computer systems [26]. it can be considered as a consequence of queue relationship.
First principle approach is developed based on knowledge of how a system operates.
In some studies and systems like [19], [33], [38], [29],[10], [48], [9], [37], [36], [42] and
[49] this approach has been used. However there are some shortcomings with this
approach that has been stated in [45]. It is very difficult to construct a first principle
approach for a complex system. Since this approach considers detailed information
about the target systems, it requires an on going maintenance by experts. This
approach does not address model validation.

Empirical approach It starts by identifying the input and output parameters
like the first principle approach. But rather than using a transfer function, an
autoregressive, moving average (ARMA) model is built and common statistical
techniques are employed to estimate the ARMA parameters [45]. This approach is
also known as Black box [26]. This approach required minimal knowledge of the
system. Half of the system in our studies have employed this approach for system
identification like [31], [45], [24], [39], [44], [41].

2.2.2 Automated control of multiple virtualized resources

In [44] a resource control system called AutoControl has been designed that is able
to adapt to dynamic workloads to meet certain Service Level Objectives (SLO). It
is a combination of an online model estimator and a multi-input and multi-output
(MIMO) resource controller. Model estimator captures the complex relationship
between application performance and resource allocation. MIMO controller allo-
cates the right amount of virtualized resources to achieve application SLO. Logical
controller architecture is shown in Fig. 2.6

For each application, its AppController periodically polls measured performance.
This performance is compared to target application performance. In the case of dis-
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Figure 2.6. AutoControl - Logical Controller Architecture

crepancy, it determines the resource allocation needed for the next control interval
and sends these requests to the NodeControllers for the node hosting and individual
tiers of the application. Design of AutoControl allows the placement of AppCon-
trollers and NodeControllers in a distributed fashion.

For each node, based on the aggregated requests from all AppControllers, the
corresponding NodeController determines whether it has enough resource of each
type to satisfy all requirements.

AutoControl enables dynamic redistribution of resources between competing
applications to meet their targets. It is evaluated using two testbeds consisting
of varying number of Xen virtual machines. Experimental results confirms that
AutoControl can detect dynamically-changing CPU and disk bottlenecks across
multiple nodes and can adjust resource allocation according to defined application
SLO .

2.2.3 MIMO Control of Apache Web Server

In [24] a multi-input multi-output controller is designed to handle performance
trade-offs and external disturbances for Apache Web Server. Performance metrics
include end-user response times, response times on the server, throughput, uti-
lizations of various resources on the server. Control outputs are CPU and Memory
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utilizations. Control inputs are selected as MaxClients and KeepAliveTimeout. The
former limits the the size of worker pool and the latter limits the user think time,
the time between an HTTP reply and the receipt of the next client request.

Modeling of Apache web server is done by black box approach and ARX time
variant model is chosen for System identification. Logical controller architecture is
demonstrated in Fig. 2.7.

Figure 2.7. Apache Web Server - Logical Controller Architecture

System dynamics for Apache is as follows:

[
CPUk+1

MEMk+1

]
= A.

[
CPUk

MEMk

]
+ B.

[
KAk

MCk

]
(2.1)

Because of robustness and narrowing down the space needed for a decision,
Proportional Integral controller is selected. Description regarding this type of con-
troller will appear in the coming sections. The authors showed in their paper that
using MIMO technique is beneficial for computing systems that acts in non-linear
way. They have also compared Controller design with pole placement and LQR
techniques. They showed using LQR technique will end up having less agressive
controller with smaller gains. As a result of this technique the close loop system is
less oscillatory.

2.2.4 Controller Analysis and Design

In this section we briefly go through different controller variation designs.

Properties of Feedback Control Systems

Below we will go through a list of properties of interest for computing systems that
is stated in [26]:

• A system is said to be stable if for any bounded input, the output is bounded
also.

• The control system is accurate if the measured output converges to the refer-
ence input. For a system that is in steady state, its inaccuracy or steady-state
error is the steady state value of the control error.

24



2.2. APPLICATION OF CONTROL THEORY IN COMPUTING SYSTEMS

• The system has short settling times if it converges quickly to its steady-state
value.

• The system should achieve its objectives in a manner that does not overshoot.

These properties often referred as SASO (stable, accurate, settling time, over-
shoot) in the literatures.

Proportional Controller

A proportional control (PC) system is a type of linear feedback control system
that simply can relate control error to control input. It is more complex than
on-off control system but still simpler than proportional integral derivative (PID)
that will be discussed in the next section. PC is inherently inaccurate for a step
input. PC always tries to synchronize the actual monitored property to the target
property according to the observed error. In other words, the controller output is
proportional to the error signal, which is the difference between set points (target
value) and the process variable (current status). This can be formulated as follows:

Pout = Kpe(t) (2.2)

in which Pout is the output of the proportional controller, Kp is proportional
gain, e(t) is error at time t that is defined as e(t) = SP − PV . SP is the set point
and PV is the process variable. Choice of Kp constitutes the design problem for
proportional control and involves trade-off. Choosing larger Kp improves accuracy.
However a sufficiently large Kp causes settling time and the maximum overshoot to
increase and may cause instability.

There are four main desirable properties of controller in computer systems that
we need to pay enough attention when designing a controller. First the controller
requires to be stable. It should result in a stable closed-loop system. Second the
controller needs to be accurate. The third property is the settling time of the system,
the time needed for an output to reach new steady-state value after a change in one
of the inputs. The final property is the maximum overshoot which is defined as the
largest amount by which the transient response exceeds the steady state value as a
result of a change in an input, scaled by the steady-state value [26].

Proportional Integral Derivative (PID) Controller

One drawback to PC is that the steady-state is unavoidable. Integral control can
drive the steady-state to zero. Derivative control provides a way to respond quickly.
Putting proportional, integral and derivative control gives us the PID. It is widely
used in industrial systems [13] and it is the most commonly used feedback controller.
In the absence of knowledge of the underlying process, PID controller is the best
the controller [14]. It calculates an error value as the difference between a measured
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process variable and a desired set point. The controller then attempts to minimize
the error by adjusting the process control inputs. This error is the sum of three
control terms and can be formulated as bellow:

Pout = Kpe(t) (2.3)

Iout = Ki

∫ t

0
e(x)dx (2.4)

Dout = Kd

d

dt
e(t) (2.5)

MV (t) = Pout + Iout + Dout (2.6)

in which Kp, Ki and Kd are proportional, integral and derivative gains cor-
respondingly. Pout is the output of proportional controller, Iout is the output for
integral controller, Dout is the output for deviative controller and MV (t) is the ma-
nipulated variable at time t. These value can be determined by empirical methods.

Self Tunning Regulators

Self tunning regulators can reduce the complexity of controller design by reducing
manual tunning. They change controller parameters at each sample time based on
updated estimates of the model of the target system. They adapt dynamically to
the characteristic of the target system. Self tunning regulators composed of two
loops, an inner loop which consists of the process and an ordinary linear feedback
regulator, and an outer loop which is composed of a recursive parameter estimator
and a design calculation, and which adjusts the parameters of the regulator.

The main drawback to STR is that it tends to be slow when it comes to rapid
and abruptive changes in workloads or configurations. Moreover, adjusting control
parameters at each sample time may not be effective for some computing systems
since it is difficult to figure out if the environment has changed or not [26].

2.2.5 Desired Objectives

In this section we will briefly review the desired objectives and tunning parameters
and some of the properties generally for selecting sensor parameters in different
literatures for the target systems.

Properties

[39] and [24] have defined a practical set of properties for choice of metric for the
target system that we bring them as stated, selected parameters should:

• be dynamically changeable

• affect the selected performance metric in a meaningful way
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• be easy to measure

• be stable

• correlate to the measure of level of service

CPU Utilization

In [39] the authors showed that CPU Utilization strongly correlates with overall
response time in the storage layer when the bottleneck is in the storage layer. Hence
they have selected CPU Utilization as one of the sensors to get feedback for the
controller.

Response Time

Response time is defined as how quickly an interactive system can respond to user
input. In section 2.2.5 it is stated that [39] showed that CPU Utilization is corre-
lated to response time. They have used response time also as one of their feedbacks
from the target system.

In [29] the authors demonstrated that the response times can be bound to the
requests while maintaining a high throughput under overload. As client load in-
creases, the throughput increases until the load reaches a threshold after which the
throughput drops and response time grow.

Latency

Latency is a measure of time delay experienced in a system, the precise definition
of which depends on the system and the time being measured. In Triage system
[31], the authors had latency goal in mind for all workload requests. They showed
that latency depends mostly on the characteristic of the corresponding system.

Throughput

Throughput is the average rate of successful request delivery to a system in a specific
period of time. In Triage [31] performance isolation between workloads that compete
for system throughput has been investigated under different scenarios.

2.2.6 Summary

In Table 2.2 all the studied systems have been summarized based on three criteria:
system identification, controller design and desired objectives.

Table 2.2: Summary of Computing Systems that exploit Control Theory

System System Identifica-

tion

Controller Design Desired Objectives
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Triage [31] Black box Direct self-tunning regulator
adaptive controller

Latency, Max.
Throughput

Yaksha [29] First principle Self-tunning proportional inte-
gral controller

Response time,
Throughput

Automated
Cloud Control
[40]

Not mentioned Integral controller CPU Utilization

Lotus Notes
[45]

Black box Saturated integral controller Max. Users, Queue
Length

Apache Web
Server [24]

Black box PI controller CPU, Memory

Elastic Storage
[39]

Black box Integral controller CPU utilization, Re-
sponse time

Apache Web
Server [10]

First principle PI controller Response time, Service
time

Automated
Control [44]

Black box MIMO Resource controller Disk/CPU allocation,
response time and
throughput

Web Server [41] Black box Root-Locus Controller Relative delays, Re-
sponse time

Web Server [48] First principle PI controller Queue length
Server [9] First principle PI Controller Utilization
QoS Adapta-
tion [37]

First principle PID Controller Responsiveness of con-
troller

Mass Storage
[36]

First principle Feedback-controlled leaky
Bucket

Throughput, Response
time



Chapter 3

Control Analysis and Design

In this chapter we first define and describe the problem we try to approach. Then
we show the methodology to identify the investigated system and its behavior. And
finally this chapter will end by the analysis and design of the controller for the
described system.

3.1 Problem Definition and System Description

In section 1.2.2 we defined briefly what Autonomic Computing is. The problem we
are interested to solve is the management of Elastic Storage instances within a cloud
computing environment. We have already gone through the benefits of autonomic
computing. The type of management we are looking for is Autonomic. Cloud envi-
ronment is very dynamic. Any system that is running in a cloud can scale-up and/or
down in only few minutes. In-time and proper decisions against the changes in the
environment is very critical when it comes to enterprise and scalable application.

The type of cloud system we are interested at is a distributed storage system
that provides files to end users. The overall architecture of the system is depicted
in Fig. 3.1.

Consumers (end users) request files that are located in one of the storage cloud
node (instance). All the requests are arrived at the Elastic Load Balancer that sits
in the front of all storage instances. Elastic Load Balancer decides to which instance
the request should be dispatched. Simply Elastic Load Balancer tracks the CPU
load and the number of requests sent previously to each instance and at each time
it determines the next node that can serve the incoming request. In addition to
performance metrics that it tracks, ELB has the file tables with the info showing
where each file is located since more than one instance can have the same file in
order to satisfy the replication degree.

The actual scaling up/down is performed by Cloud Provider. The main respon-
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Figure 3.1. Storage Cloud Architecture

sibility of Cloud Provider is to launch a new instance or terminate an existing one.
In addition it can issue rebalance of files from one instance to another.

A simple scenario is that consumer m sends a request to Elastic Load Balancer
to download a file called scala.pdf that is located on three nodes namely n1, n2

and n3. ELB decides which node the request should be dispatched to. Assume node
n2 is elected. It receives the request and start uploading the file to the consumer.

In order to add the autonomity functionality to this system we have chosen to
use an elastic controller that is connected to cloud provider and monitors the in-
stances currently running in the cloud. This controller is responsible for helping
cloud provider in order to scale up and down the number of instances.

In the rest of this chapter we investigate how to identify the described system
using control theory techniques and how to design a controller for such system.

3.2 System Identification

In this section we describe how we approach constructing a model that can identify
the system behavior. This is the key to design a controller for such system.

System identification allows to build a mathematical model of a dynamic system
based on measured data. Number of systems are studied in Chapter 2. These sys-
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tems use two main approaches to system identification: first-principle and black-box.
However most of the studied system have constructed a black-box model rather than
a first-principle model. This is mainly because the relationship between inputs and
outputs of the system is complex enough that first-principle system identification
can not be used easily.

We also use black-box model to identify system behavior together with some
knowledge of the system to build state-space model as is described in the next
section. Before diving into state-space model we review the basic steps in any
system identification regardless of the used method.

3.2.1 Basic Steps of System Identification

The steps can be simplified as following items:

• Design an experiment and collect input/output data

• Examine the data. Polish (preprocessing) it and remove trends. Select useful
portion of original data.

• Select and define a model.

• Examine the obtained model’s properties.

• Simulate the model and study the system behavior. If the model does not
represent the system refine the data and model and repeat the steps from
beginning.

3.2.2 State Space Model

State space model provides a scalable approach to model systems with a large num-
ber of inputs and outputs [26]. State-space model allows us to deal with higher order
target systems without a first-order approximation. Since the studied system is a
cloud environment and such environments are highly dynamic we prefer to choose
state space model as the system identification approach. Another benefit of using
state-space model is that it can be extended easily. Suppose that in time we find
more parameters to control the system. This can be managed by state-space model
without affecting the characteristic equations as will be seen later on in this chapter.

The main idea behind this approach is to characterize how the system operates
in terms of one or more variables. These variables may not be directly measurable
even. However they can be sufficient to express the dynamics of the system. These
variables are also called state variables.
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3.2.3 State Variables

In order to define the state variables for a system, first we need to define the mea-
sured inputs and outputs since the state variable is defined based on these two.
Measured input and outputs for cloud are demonstrated in Fig. 3.2.

System input (number of nodes) is represented by NN(k) at time k and measured
system outputs are represented by:

• average CPU load CPU(k): average CPU load of all instances currently running
in the cloud system.

• interval total cost TC(k): total cost for all instances at each interval the sesing
is done.

• average response time RT(k): time that is required to start a download on an
instance.

Figure 3.2. Scalar Block Diagram

This diagram shows that there are one input and five outputs for the system.
We can consider four internal states for the system that are not equivalent to mea-
sured outputs.

We skip defining internal state for average load TP since we are not interested in
this value and it is only used for a better estimation of the internal states based on
load as we will see later. Moreover load can not be controlled thus there would be no
reason to include in our internal states and it can be considered as a noise to system.
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The value of each state variable at time k is shown by x1(k), x2(k) and x3(k).
The vector representation of the state variables is

x(k) =




x1(k)
...

x3(k)




The offset value for input is u1(k) = NN(k) − N̂N which N̂N is the operating point
for the input. The offset values for outputs are

y1(k) = CPU(k) − ĈPU (3.1)

y2(k) = TC(k) − T̂C (3.2)

y3(k) = RT(k) − R̂T (3.3)

in which ĈPU, T̂C and R̂T are operation points for each output. Input and output
offset vectors are represented like the following

u(k) =
[
u1(k)

]

and

y(k) =




y1(k)
...

y3(k)




3.2.4 State Space Model

State space model uses state variables in two ways. First it uses state variables to
describe the dynamicity of the system and how x(k +1) can be obtained from x(k).
Second it obtains the measured output y(k) from state x(k). Fig 3.3 shows how the
input, output and state variable relate to the studied system.

Figure 3.3. State Space Model

State-space dynamics for a system with n states are written as

x(k + 1) = Ax(k) + Bu(k) (3.4)

y(k) = Cx(k) (3.5)
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where x(k) is an n × 1 vector of state variables, A is an n × n matrix, B is an
n × mI matrix, u(k) is an mI × 1 vector of inputs, y is an mO × 1 vector of outputs
and C is an mO × n matrix.

Having equations 3.4 and 3.5, we can discuss how outputs at time k + 1 are
related to internal states at time k. We can go through each state variable and
write the state-space dynamics:

• Average CPU Load (CPU): is dependant on the number of nodes in the system
and previous CPU load, thus it becomes

x1(k + 1) = CPU(k + 1) = a11CPU(k)

+ b11NN(k)

+ 0 × TC(k) + 0 × RT(k)

• Total Cost (TC): is dependant on the number of nodes in the system (more
nodes we have, more money we should pay) and previous TC hence it becomes

x2(k + 1) = TC(k + 1) = a21TC(k)

+ b21NN(k)

+ 0 × RT(k) + 0 × CPU(k)

• Average Response Time (RT): is dependant on number of nodes in the system
and CPU load, so it is

x3(k + 1) = RT(k + 1) = a31CPU(k) + a33RT(k)

+ b31NN(k)

+ 0 × TC(k)

The last line in each equation is for those state variables that do not affect the
corresponding state variable definition. Thus their coefficient is zero. This is to
show that we are sure there is no relation between those state variables and their
existence in the equations is for the sake of clarity. As a proof one should do a
sensitivity analysis to investigate the lack of relation but this would be out of scope
of this project.
The output for the system is defined like below:

y1(k) = x1(k) (3.6)

y2(k) = x2(k) (3.7)

y3(k) = x3(k) (3.8)

The outputs are the same as internal state of the systems. That is why the
matrix C is a diagonal matrix of 1’s. The matrices of coefficients look like this:
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A =




a11 0 0
0 a22 0

a31 0 a33


 (3.9)

B =




b11

b21

b31


 (3.10)

C =




1 0 0
0 1 0
0 0 1


 (3.11)

3.2.5 Parameter Estimation

In the previous section we found the dynamics for the system that are in form of
equations 3.6 to 3.6. There are two matrices A and B with the coefficients for the
equations. Before solving equation 3.4 we need first to calculate the coefficients
namely matrices A and B.

Parameter estimation can not be done unless there exist experimental data. We
have implemented a simulation framework of an entire cloud system that is ex-
plained in details in Chapter 4. Using the framework we can obtain experimental
data (see Chapter 5). We use a complete range for the number of nodes in the
system and we increase it from a to b and then back from b to a in a fixed period
of time. In this way we can assure the coverage of input signal to the system is
complete enough to cover the output signals in their operating regions.

Once training data is collected, they can be used by multiple linear regression
method to compute the coefficients. Then regress(y,X) function can be used from
Matlab to calculate the coefficients. This is discussed in Chapter 5 in details.

3.2.6 Solving State Dynamics

Now consider that the coefficients are calculated, in order to solve the state dynamics
we use the following equations:

x(k) = Akx(0) +
k−1∑

i=0

Ak−1−iBu(i) (3.12)

y(k) = Cx(k) = CAkx(0) + C

k−1∑

i=0

Ak−1−iBu(i) (3.13)

in which we need to provide x(0) and u(0) as the initial condition values for each
state variable and input respectively. Function ss from Matlab can be exploited to
solve these equations.
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3.2.7 Model Evaluation

Model evaluation explains how the model structure can describe the collected data.
It is generally recommended to design a separate data set and evaluate the model
with that. This provides better insight and guards against overfitting. One of the
best approach for model evaluation is residual analysis. An example of this analysis
would be a scatter plot of measured and predicted values. We will provide more on
model evaluation in Chapter 5

3.3 Control Analysis and Design

In this section we describe how to analyse and design a feedback controller for
our cloud system that is modeled in state-space model. There are three common
architectures for state-space feedback control [26] that are briefly discussed in the
following.

Static State Feedback is a multidimensional extension of proportional control
that is discussed in Section 2.2.4 in which the reference input is fixed at the system’s
operating point. The idea behind this architecture is that the control input u(k)
should be proportional to the state but with an opposite sign.

Precompensated Static Control extends static state architecture by includ-
ing a precompensator to accomplish reference tracking. The idea is to adjust the
operating point of the control system.

Dynamic State Feedback can be viewed as a state-space analogous to PI (pro-
portional integral) control that has good disturbance rejection properties. It both
tracks the reference input and reject disturbances.

A brief comparison between the common architectures is presented in Table 3.1.

Table 3.1: Summary of State-space feedback control archi-
tectures [26]

Control Archi-
tecture

Controller
Complex-
ity

Reference
Tracking

Disturbance
Rejection

Settling
Time

Static Low No No Short

Precompensation Moderate Yes No Short

Dynamic Moderate Yes Yes Moderate
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A close investigation in this comparison reveals that Dynamic state feedback
control is more suitable for cloud system although the settling time is larger than
the other two. The benefit of dynamic over precompensation is the disturbance
rejection. Disturbance is very likely to be observed in a dynamic environment such
as cloud that elastic nodes can join and leave frequently and measured metrics col-
lection can have delay phase and noise. Thus we choose dynamic state feedback
control as our controller for autonomic management.

The design problem that needs to be solved is to select feedback gains that leads
to desire controller properties specially settling times and maximum overshoot. In
the next section we explain the Dynamic state feedback analysis and then we employ
Linear Quadratic Regulation (LQR) which is an optimization technique to calculate
the optimized feeback gains.

3.3.1 Dynamic State Feedback

In this section we describe a state-space architecture that both tracks the reference
input and rejects disturbances. We need first to augment the state vector to include
the control error e(k) = r−y(k) in which r is the reference input. We use integrated
control error which describes the accumulated control error. Integrated control error
is shown by xI(k) and computed as

xI(k + 1) = xI(k) + e(k) (3.14)

The augmented state vector is

[
x(k)
xI(k)

]
. The control law becomes

u(k) = −
[
Kp KI

] [ x(k)
xI(k)

]
(3.15)

where Kp is the feedback gain for x(k) and KI is the gain associated with xI(k).
To understand the characteristic of dynamic state feedback control, we continue as
follows. The augmented state-space model is

[
x(k + 1)
xI(k + 1)

]
=

[
A 0

−C 1

] [
x(k)
xI(k)

]
+

[
B

0

]
u(k) +

[
0

1

]
r (3.16)

we obtain the closed-loop model by substituting Equation 3.15 into this equation:

[
x(k + 1)
xI(k + 1)

]
=

([
A 0

−C 1

]
−

[
B

0

] [
Kp KI

])
×

[
x(k)
xI(k)

]
+

[
0

1

]
r (3.17)

The characteristic polynomial is

det

{
zI −

([
A 0

−C 1

]
−

[
B

0

] [
Kp KI

])}
(3.18)
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where det is the determinant function. Thus by properly choosing Kp and KI

we can determine the dynamics of the closed-loop system. With dynamic state
feedback the measured output converges to the reference input.

3.3.2 LQR Optimal Control Design

An approach in controller design is to focus on the trade-off between control effort
and control errors. Control error is determined by the squared values of state vari-
ables which are normally the difference from their operating points. Control effort
is quantified by the square of u(k) which is the offset of control input from operating
point. By minimizing control errors we improve accuracy and reduce both settling
times and overshoot and by minimizing control effort, system sensitivity to noise is
reduced.

Least Quadratic Regulation (LQR) design problem is parametrized in terms of
relative cost of control effort and control errors. This is determined by two matrices
R and Q. R defines the cost of control effort and Q defines the cost of state variables
diverging from their operating point. The objective function for LQR to minimize
is:

J =
1

2

∞∑

k=0

[
x⊤(k)Qx(k) + u⊤(k)Ru(k)

]
(3.19)

In order for J > 0, Q must be positive semidefinite (eigenvalues of Q must be
nonnegative) and R must be positive definite (eigenvalues of R must be positive).
The steps of LQR is as follows:

1. Select the matrices Q and R in a way to satisfy the mentioned conditions

2. Compute feedback gain K using Matlab dlqr function

3. Run simulation to predict the performance based on the closed-loop system
model.

4. Choose new Q and R and repeat the above steps if the performance is not
appropriate

3.3.3 Controllability

In state-space model we are concerned about the relationship between the input u(k)
and the state vector x(k). The term controllability means that for any reachable
final state xd, there exists some sequence of input values {u(0), u(1), ..., u(M − 1)}
that will drive the system to state xd. In order to realize if a system is controllable
or not, we have to construct the matrix C as follows:

C =
[
An−1B An−2B ... AB B

]
(3.20)
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where n is the number of states in the system. A linear time-invariant system
is controllable if and only if C is invertible.

3.3.4 Stability

One of the most important properties of a system is stability. A system is called
bounded-input bounded-output (BIBO) stable if there exist a positive constant M

such that |u(k)| ≤ M for all k. This can be defined in terms of system poles. If all
the poles are inside the unit circle then the system can considered as stable [23].

3.3.5 Fuzzy Controller

In this section we want to introduce a simple fuzzy controller. The main purpose for
using such a fuzzy controller is optimization of the control input. Fuzzy controller
uses heuristic rules to describe when the controller should take what actions. The
controller we designed in the previous section is responsible for regulation. The
output of Dynamic State Feedback Controller is redirected together with measured
outputs to fuzzy controller. Then it decides if the control input should affect the
system or not. The overall architecture for controllers is demonstrated in Fig. 3.4.

Figure 3.4. Controllers Architecture

There is one important case that dynamic state feedback controller can not act
accordingly. Consider that there are some instances with high CPU load. Since
the average is high, the controller will add some new instances. The new instances
will be launched and started to serve requests. But at the beginning of their life
cycle they have low CPU Loads so the average CPU load that is reported back to
controller can be low. The controller then assumes that the situation is normal now
and tries to remove some nodes.
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A closer look at CPU loads reveals that we can not judge the system state
by only average CPU load. Hence fuzzy controller also looks at CPU Standard
Deviation. In this way if the controller orders to reduce the number of instances
but there is high standard deviation for CPU loads then fuzzy controller does not
allow that this control input affect the system, reducing unexpected results and
confusions for the controller. This will lead to more stable environment without so
many unncessary scaling up/down.

3.3.6 Method of designing controller for elastic storage in cloud

A method is given in this section to summarize the steps needed for designing a
controller for elastic storages in a cloud environment. In other words, this is a
summary for the detailed discussion in this chapter. The steps are in order and in
the following we address them one by one:

1. Study system behavior to identify the inputs(u) and outputs(y) of the system.

2. Place inputs and outputs in u(k) and y(k) matrices respectively.

3. Select m system inputs that will be the outputs of your controller

u(k) =




u1(k)
...

um(k)




These inputs should have the highest impact in your system. In some systems
there is only one input that has high impact and in other systems there are a
couple of them that together have high impact.

4. Select n system outputs that will be the inputs to your controller and consider
state variables matrix for them like

x(k) =




x1(k)
...

xn(k)




These outputs should be related directly/indirectly to system inputs selected
in previous step. Usually they are related to Service Level Agreements (SLA)
and performance metrics.

5. Each state variable can depend on one or more other state variables and
system inputs. Find the relation between the next value for a state variable
to other state variables and system inputs like:

x1(k + 1) = a11x1(k) + . . . + a1nxn(k) + b11u1(k) + . . . + b1mum(k)

x2(k + 1) = a21x1(k) + . . . + a2nxn(k) + b21u1(k) + . . . + b2mum(k)
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...

xn(k + 1) = an1x1(k) + . . . + annxn(k) + bn1u1(k) + . . . + bnmum(k)

6. Extract coefficients from the previous equations into two matrices A and B.
Some of the coefficients can be zero:

An×n =




a11 . . . a1n

...
. . .

...
an1 . . . ann




Bn×m =




b11 . . . b1m

...
. . .

...
bn1 . . . bnm




7. In order to simplify the design of controller, we assume that outputs of the
systems at each time are equal to state variables, thus matrix C is:

Cn×n =




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




8. Design an experiment in which the system is fed with its inputs. Inputs in
the experiment should be changed to cover their ranges at least one time. A
Range for an input is the interval that the possible values for the input will
most likely end up. The selection of an interval can be modeled from industry
best practices. All inputs and outputs should be collected at a fixed time
interval T . Put collected data for each equation in a separate file called xi.

9. In Matlab, for each file xi, load the file and extract each column of data in a
separate matrix. Use function regress to calculate the coefficients. Repeate
this for every file. At the end you will have all the coefficients that are required
for matrix A and B.

10. Construct matrices Q and R as described in this chapter. Remember to put
more weights for state variables that are of more importance in matrix Q.

11. Use matrices A, B, Q and R in Matlab function dlqr to calculate matrix K
which is the controller gains.
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3.4 Summary

This chapter covered problem definition and system description. A normal use case
for the system is studied and some important components’ responsibility of cloud
system is investigated. Based on the description a number of metric is selected for
system identification purpose.

The system identification methodology is discussed in details. All required steps
for this process is explained and the theory behind each one is provided. Further-
more different architecture for controller design is briefly introduced. Based on
provided information in this chapter, one has enough knowledge to collect experi-
mental data, identify a system and design a controller for such system.

Finally a general method for designing controller for elastic storages is given
that covers all the necessary steps from System identification to controller design
based on state-space model.
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Chapter 4

Simulation Framework Implementation

4.1 Introduction

We have selected Kompics as the implementation tool. Kompics [5] is a message-
passing component model for building distributed systems using event-driven pro-
gramming. Kompics components are reactive state machines that execute con-
currently and communicate by passing data-carrying typed events through typed
bidirectional ports connected by channels. For further information please refer to
Kompics programming manual and tutorial available on its web site.

4.2 Implementation

In this section we will briefly explain the implemented simulator by Kompics. Imple-
mentation is done in Java and Scala languages [6]. We first give the component ar-
chitecture diagram for each component in the system and then each sub-component
and their communication ports. Each port is indicated either by + (provides) or
− (requires) which the former means that the component provides a service to
other components and the latter means that the component is dependant on the
service of other components. An overall simulation system is shown in Fig. 4.1

4.2.1 Cloud Instance Component

Cloud instance component represents an entire storage instance within a cloud. The
component architecture for Instance is demonstrated in Fig. 4.2.

This component consists of several sub-components which will be discussed in
the following.

OS Component

The main component within cloud instance is the OS (Operating System). It is
depicted in Fig 4.3.
Responsibilities:
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Figure 4.1. Overall System Architecture

• Handle incoming request for downloads and put them into requestQueue and
process them.

• Manage process table

• Execute different operations on CPU component.

• Read/Write data blocks from/to Memory component.

• Read/Write data blocks from/to Disk component.

• Handle signals received from cloud provider and its sub-components

provides: OS Port which is a service to provide info for other components that are
dependant on OS component
requires: communicate with CPU component by CPUChannel, with Memory com-
ponent by MemoryChannel, with Disk component by DiskChannel, with other com-
ponents in the system by Network and use Timer to schedule tasks.

Event handlers:

• subscribed to Control port
initHandler: is responsible for initializing the component related variables
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Figure 4.2. Cloud Instance Component Architecture

Figure 4.3. OS Component Architecture

• subscribed to CPU channel:
cpuReadySignalHandler: executed when the CPU sends the READY signal
cpuLoadHandler: executed when the CPU sends its load to OS
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snapshotRequestHandler: executed when the user issues a snapshot (??)
command

• subscribed to Memory channel:
memoryReadySignalHandler: executed when Memory sends READY signal
ackBlockHandler: executed when Memory acknowledges that it has the re-
quested data block in the memory
nackBlockHandler: executed when Memory acknowledges that it does not
have the requested data block in the memory

• subscribed to Disk channel:
diskReadySignalHandler: executed when Disk sends READY signal
blockResponseHandler: a disk read operation (read from Disk and write into
Memory

• subscribed to Timer channel:
processRequestQueueHandler: triggered periodically to process incoming
request queue
propagateCPULoadHandler: periodically sends CPU load to Cloud Provider
component
transferringFinishedHandler: updates transfer table and computes the
new bandwidth for remaining transfers
readDiskFinishedHandler: executed when the read disk operation is done
and the data block is in the Memory so the transfer can be started in the
network
waitTimeoutHandler: is executed if the system has not yet started until it
starts successfully with all the hardware components
deathHandler: executed to start a complete shut down of the running instance
calculateCostHandler: is simple time out event handler for computing the
cost for the current instance according to Amazon EC2 and S3 pricing

• subscribed to Network channel:
requestMessageHandler: is in charge of handling the request that are sent
by Elastic Load Balancer
heartbeatMessageHandler: triggered when receives a heatBeat message from
HealthChecker
monitorHandler: triggered by Sensor component in Elastic Controller com-
ponent
shutDownHandler: triggered upon receiving a shutDown request from Cloud
Provider component
restartInstanceHandler: triggered when Cloud Provider sends a RESTART

signal
rebalanceRequestHandler: triggered when Cloud Provider suggest the name
of blocks and its provider so the instance can send request to another instance
asking for the recommended blocks
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rebalanceResponseHandler: triggered when the other instance is responding
with the requested block hence the download will start
blockTransferredHandler: triggered when the rebalancing of data block is
finished from the other instance closeMyStreamHandler: triggered by dying
instance to clean up open streams that can block accepting further requests

CPU Component

CPU Component represents the CPU unit within an instance in the cloud. It is
shown in Fig. 4.4.

Figure 4.4. CPU Component Architecture

Responsibilities:

• Execute operations

• Compute load every 5 seconds

• Handle signals from OS component

provides: CPUChannel is used to communicate with the OS component
requires: Timer is used to schedule tasks.

Event handlers:

• subscribed to Control port
initHandler: is responsible for initializing the component related variables

• subscribed to CPU channel:
startProcessHandler: triggered when a new process starts in the OS
endProcessHandler: triggered when a process ends in the OS
abstractOperationHandler: triggered when a new operation is started on
the CPU
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snapshotRequestHandler: triggered when a snapshot is issued by the user
from OS
restartSignalHandler: triggered when a RESTART signal is received from OS

• subscribed to Timer channel:
loadCalculationTimeoutHandler: periodically executed and computes the
load average
loadSamplerTimeoutHandler: stores the current load of CPU
operationFinishedTimeoutHandler: removes the corresponding operation
from operation queue
restartHandler: restarts the CPU

Memory Component

Memory component represents the Memory unit of an instance in the cloud. This
component is depicted in Fig. 4.5.

Figure 4.5. Memory Component Architecture

Responsibilities:

• Respond to read/write requests that are sent from OS component

• Manage access to current data blocks that are located in the memory

• Implements LFU1 algorithm to manage data block eviction/admission

provides: MemoryChannel is used to communicate with the OS component

Event handlers:

• subscribed to Control port
initHandler: is responsible for initializing the component related variables

1Least Frequently Used
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• subscribed to Memory channel:
requestBlockHandler: is responsible for checking to see if the Memory has
the requested data block
writeMemoryHandler: executed when a write into Memory command is issued
by OS
restartSignalHandler: restarts the Memory
startMemoryUnit: starts the Memory

Disk Component

Disk component represents a physical disk within an instance in the cloud. The
component architecture is shown in Fig. 4.6.

Figure 4.6. Disk Component Architecture

Responsibilities:

• Respond to read/write requests that are sent from OS component

• Manage access to current data blocks that are persisted in the disk

provides: DiskChannel is used to communicate with the OS component

Event handlers:

• subscribed to Control port
initHandler: is responsible for initializing the component related variables

• subscribed to Disk channel:
loadHandler: loads the Disk with initial data blocks
requestBlockHandler: retrieves the requested data block from disk
startDiskUnitHandler: starts Disk component
restartSignalHandler: restarts Disk component
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4.2.2 Cloud Provider Component

Cloud provider component represents an important unit in the implementation. It is
the heart of a cloud computing infrastructure and provides vital services to manage
and administer the nodes within the cloud. The overall component architecture is
demonstrated in Fig. 4.7.

Figure 4.7. Cloud Provider Component Architecture

This component consists of several sub-components which each one will be dis-
cussed in the following.

Cloud API Component

Cloud API component implements all the functionalities that can be accessed by
outside boundary of the cloud. In other words, it acts as a public API. The com-
ponent architecture is shown in Fig. 4.8.
Responsibilities:

• Launch/shut down of storage instances

• Provide the rebalancing of data blocks between instances
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Figure 4.8. Cloud API Component Architecture

• Manage elastic IP addresses for storage nodes

• Collect and calculate the total cost for the running instances

• Respond back to sense and training data requests

• Show an overview of the running instances

requires: EventualPFD is used to communicate with Health Checker component,
ElasticLoadBalancer is used to communicate with Elastic Load Balancer compo-
nent, Network is used to communicate with other components in the system, Timer

is used to schedule tasks.

Event handlers:

• subscribed to Control port
initHandler: is responsible for initializing the component related variables

• subscribed to EPFD channel:
suspectHandler: executed when receives a suspect signal from EPFD and
informs ELB about the suspected node
restoreHandler: executed when receives a restore signal from EPFD and
informs ELB about the restored node

• subscribed to ELB channel:
replicasHandler: triggered by ELB and sends back a set of blocks that the
new joined node should start with
rebalanceResponseHandler: triggered when ELB provides the Cloud API
the map of data blocks that the newly joined node can retrieve data blocks
from
nodesToRemoveHandler: is triggered when the ELB returns the nodes to
remove so CloudAPI can remove them

51



CHAPTER 4. SIMULATION FRAMEWORK IMPLEMENTATION

• subscribed to Network channel:
instanceStartedHandler: executed when the requested instance is initial-
ized
connectControllerHandler: triggered when the controller tries to connect
to cloud API
disconnectHandler: triggered when the controller disconnects from the cloud
API
newNodeRequestHandler: triggered when the controller requests a new node
instanceCostHandler: triggered when an instance sends its cost to cloud-
Provider for presentation purposes
requestTrainingDataHandler: is triggered when the modeler requests train-
ing data from cloudAPI. It distributes this request to corresponding compo-
nents
requestSensingData: This handler is triggered when the sensor request data
to sense. This data will be used by the controller to act accordingly
removeNodeHandler: is triggered when the modeler from controller requests
to remove a node

Health Checker Component

Health Checker component is simply an implementation of Eventual Perfect Failure
Detector (EPFD) algorithm that is introduced in [25] with a minor modification.
The difference is to consider the health of a changing group of instances that are un-
der the control of cloud API component and informs other components within Cloud
Provider about any suspicious on the health of nodes. The component architecture
is depicted in Fig. 4.9.

Figure 4.9. Health Checker Component Architecture

Responsibilities:

• Send out heart beat messages to every instance in the system
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• Decide about the health of an instance and inform other components

provides: EventualPDF is used to communicate with Cloud API component.
requires: Network is used to communicate with other components in the system,
Timer is used to schedule tasks.

Event handlers:

• subscribed to EPFD channel:
initHandler: is responsible for initializing the component related variables
considerInstanceHandler: triggered when a new node is started and cloud
Provider discovers its existence
instanceKilledHandler: triggered when one instance is killed or shut down
so the EPFD would not consider checking its health

• subscribed to Timer channel:
heartbeatTimeoutHandler: triggered periodically to check the health of all
available instances and sends a Heatbeat message

• subscribed to Network channel:
aliveHandler:triggered when a node responds back to a previously sent Heat-
beat message

Elastic Load Balancer Component

Elastic Load Balancer component represents a load balancer that can route incoming
traffic to different instances in the system. In addition to classic Load Balancer, the
elastic implementation consider the joins and leaves of instances in the cloud. The
component architecture is demonstrated in Fig. 4.10.

Figure 4.10. Elastic Load Balancer Component Architecture

Elastic Load Balancer implements least CPU Load algorithm and in addition
to that it captures the number of request that it has sent to a particular instance.
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The priority on routing the incoming request is first the least CPU load and then
the least number of previously sent requests.

Responsibilities:

• Prepare replicas of data blocks for each instance

• Mark a particular data block as unavailable if the provider instance becomes
unavailable and no other instance in the system provides that replica

• Monitor the CPU Load of instances

• Add/Remove replica

• Show a tree representation of current replicas in the GUI

• Provide replica map for newly joined instance thus the instance can start
downloading data blocks from existing instances

• Help Cloud API to decide which instance should be removed

provides: ELB is used to communicate with Cloud API component.
requires: RequestGenerator is used to communicate with Request Generator com-
ponent, Network is used to communicate with other components in the system.

Event handlers:

• subscribed to ELB Channel:
initHandler: is responsible for initializing the component related variables
getReplicasHandler: triggered by CloudAPI upon launching a new instance
and calculate what data blocks it should have
suspectNodeHandler: triggered when receives a suspect signal from EPFD
so it marks the corresponding data blocks’ replica as suspected
restoreNodeHandler: triggered when receives a restore signal from EPFD so
it marks the corresponding data blocks’ replica as restored
removeReplicaHandler: triggered when a node shuts down so its replicas
become unavailable
rebalanceDataBlocksHandler: triggered when Cloud API requests data blocks
map according to least CPU load so the new instance can retrieve each data
block from an existing instance
sendRawDataHandler: triggered when ELB receives a request from cloud-
Provider to send the training data to controller
selectNodesToRemoveHandler: This handler is triggered when the cloudAPI
ask for some nodes so he can remove. ELB selects the nodes with the least
CPU load according to ELB algorithm that is running.

54



4.2. IMPLEMENTATION

• subscribed to Generator channel:
requestHandler: triggered by Request Generator and it is responsible for
sending request to the chosen node with respect to LoadBalancerAlgorithm
responseTimeHandler: triggered when RequestGenerator provides the aver-
age response time

• subscribed to Network channel:
blocksAckHandler: triggered when the newly requested instance starts up
completely and acknowledges back its start up so its data blocks’ replica be-
come available
requestDoneHandler: triggered when a transfer starts
rejectedResponseHandler: triggered when a transfer is rejected
myCPULoadHandler: receives the CPU load from an instance and updates the
nodeStatistics in LoadBalancerAlgorithm

activateBlockHandler: triggered when the newly joined instance informs
about a block that is available and can be served from that instance

• subscribed to Timer channel:
elbTreeUpdateHandler: triggered when timer times out and it should update
the ELB tree in the GUI

Request Generator Component

Request Generator component represents traffic on behalf of end users of the cloud.
It generates request for different data blocks. The component diagram is shown in
Fig. 4.11.

Figure 4.11. Request Generator Component Architecture

Responsibilities:

• Generate traffic to the storage instances based on different defined distribu-
tion.
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• Collect responses from instances and generate response time scatter plot in
the GUI.

provides: RequestGenerator is used to communicate with Elastic Load Balancer
component.
requires: Timer is used to schedule different tasks (distribution).

Event handlers:

• subscribed to Generator Channel:
initHandler: is responsible for initializing the component related variables
requestDoneHandler: triggered when a transfer finishes and calculates the
response time for further presentation
sendRawDataHandler: triggered when cloudAPI request the average response
time
blocksActivatedHandler: triggered when the engine receives blocks that are
activated from ELB
downloadRejectedHandler: triggered when the engine receives a rejection
for the requested download

• subscribed to Timer channel:
requestEngineTimeout: triggered according to the current distribution and
prepares and sends requests for all data blocks
RTCollectionTimeoutHandler: triggered periodically to draw response time
scatter plot in the GUI

4.2.3 Elastic Controller

Elastic controller represents the controller that can connect to cloud provider and
retrieve information about the current nodes in the system. The main responsibility
for controller component is to manage the number of nodes currently running in
the cloud. In other words, it attempts to optimize the cost and satisfy some SLA
parameters. The overall component architecture is demonstrated in Fig. 4.12.

Elastic controller component consists of several sub-components which each one
will be discussed in the following.

Controller Component

Controller is the main component within Elastic Controller. Generally it controls
the modeler, sensor and actuator components that are described in the upcoming
sections. The component diagram is shown in Fig 4.13.
Responsibilities:

• Connect to cloud provider component and retrieve information about running
nodes
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Figure 4.12. Elastic Controller Component Architecture

Figure 4.13. Controller Component Architecture

• Can switch between different controller implementations

• Run the current selected controller implementation

• Start/Stop sensor, actuator and modeler

requires: ModelPort is used to communicate with the Modeler component, SensorChannel

is used to communicate with the Sensor component, ActuatorChannel is used to
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communicate with the Actuator channel, Network is used to communicate with
cloud provider as well as instances in the system and Timer is used to schedule tasks

Event handlers:

• subscribed to Control channel:
initHandler: is responsible for initializing the component related variables

• subscribed to Sensor channel:
monitorResponseHandler: is triggered when it receives monitor information
from sensor component

• subscribed to Timer component:
connectionTimeoutHandler: is triggered to check if the controller is con-
nected to cloud provider or not
actuateTimeoutHandler: is triggered periodically to initiate the controller
action

• subscribed to Network component:
connectionEstablishedHandler: is triggered when the cloudProvider re-
sponds back to the connection establishment request

Sensor Component

Sensor component acts as a sensor to sense the environment (so the name). The
component diagram is depicted in Fig. 4.14.

Figure 4.14. Sensor Component Architecture

Responsibilities:

• Start/Stop sensing the cloud environment and collect monitoring packets from
each instance
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provides: SensorChannel is used to communicate the monitoring packets to other
components like Controller
requires: Network is used to communicate with running instances in the system
and Timer is used to schedule tasks

Event handlers:

• subscribed to Control channel:
initHandler: is responsible for initializing the component related variables

• subscribed to Sensor channel:
senseHandler: is triggered when controller sends a set of instances that Sen-
sor should sense
startSenseHandler: is triggered when controller issues a START signal with
a frequency of sensing
stopSenseHandler: is triggered when controller issues a STOP signal to the
Sensor

• subscribed to Timer component:
senseTimeout: is triggered to send out monitoring message and schedule the
next sensing

• subscribed to Network component:
monitorResponseHandler: is triggered when the sensor receives monitor re-
sponse from an instance
newNodeToMonitorHandler: is triggered when a new instance joins the cloud
environment

Actuator Component

Actuator component is responsible for ordering a new instance or shuting down a
current instance to cloud provider. The component diagram is depicted in Fig. 4.15.
Responsibilities:

• Request to launch new instance to cloud provider

• Request to shut down an instance to cloud provider

provides: ActuatorChannel is used to communicate with the controller
requires: Network is used to communicate with running instances in the system

Event handlers:

• subscribed to Control channel:
initHandler: is responsible for initializing the component related variables
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Figure 4.15. Actuator Component Architecture

• subscribed to Actuator channel:
nodeRequestHandler: is triggered when it receives a signal from controller in
order to request a new node

Modeler Component

Modeler component acts as the main component in order to identify the system. It
collects the training data from cloud provider. The component diagram is demon-
strated in Fig. 4.16.

Figure 4.16. Modeler Component Architecture

Responsibilities:

• Request training data to cloud provider

• Collect and prepare training data for system identification purpose
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• Plot diagrams based on received training data

provides: ModelPort is used to communicate with the controller
requires: Network is used to communicate with running instances in the system
and Timer is used to schedule tasks

Event handlers:

• subscribed to Control channel:
initHandler: is responsible for initializing the component related variables

• subscribed to ModelPort:
startModelerHandler: is triggered when the Controller issues a START sig-
nal to Modeler
senseDataHandler: is triggered only when the controller runs and it enables
monitoring

• subscribed to Timer:
sampleTraingingDataHandler: is responsible for requesting training data
from cloudProvider
instanceCreationHandler: is responsible for adding and removing instances
so the modeler can have a range for the system inputs

• subscribed to Network:
trainingDataHanler: is responsible for sorting out the response (raw data
tuples) it receives from cloudProvider

4.3 Summary

This chapter covered the simulation framework that is implemented to simulate a
cloud environment. All the implemented components are discussed and all respon-
sibilities for a component is explained. The overall architecture is depicted and how
these components are connected together to build the simulation framework is also
investigated. Some components like EPFD implements a well known algorithm that
the algorithm itself is skipped and is rather referenced for the reader.
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Chapter 5

Experiment

In this chapter we first identify the system based on the description that is covered
in Chapter 3. We then show how to configure and calculate the parameters for
controller to automate the control of elastic storages in cloud using the simulation
framework described in Chapter 4.

5.1 System Identification

A normal case within a cloud environment that provides storage services is to have
at least two storage instances that one is acting as the fail-over node. In order to
cover an acceptable range for system identification we start by 2 fresh and ready
instances. By fresh we mean that the caches are empty and none of data blocks
exists in the memory.

Using the simulator modeler component, we scale up the number of nodes from
2 to 10 and then scale down from 10 to 2. This is done one time. Sampling of
training data is performed every 10 seconds and every 225 seconds a new node is
either added or removed (depending on whether we scale up or down).

Using the request generator component, we schedule requests to load balancer
component in the cloud provider component from sin distribution between [1, 10]
seconds. So the first request be sent after 10 seconds, the second after 9 seconds,
. . . After each scaling up/down the system will experience 2 sin loads of request
between 1 to 10 seconds. The time needed to experience 2 sin is 2

∑10
i=1 i which is

220 seconds. That is the reason why we have selected 225 seconds as the action time.

The summary of properties that is used during system identification is as fol-
lowing:

• Distribution: sin distribution between 1 and 10 seconds.

• Sampling: every 10 seconds
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• Action: every 225 seconds a node will be added or removed

• Number of nodes: one period between 2 to 10 nodes.

Figure 5.1 to 5.3 is the result of this system identification.
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Figure 5.1. Number of Instances & Total Cost ($)
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Figure 5.2. Average CPU Load & Average Bandwidth per download

The modeler component generates 4 files that contain the internal states for
equations 3.6 to 3.6. Using Matlab regress function, the coefficient matrices are
calculated as follows:

A =




1.02 0 0
0 0.724682978432349 0

5.927 0 0.295092571282931


 (5.1)
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Figure 5.3. Average Response Time & Average Load

B =




2.30038938006101
0.0147684756564848
77.8759559716798


 (5.2)

Having these matrices, we use ss function from Matlab to compute the equa-
tions 3.12 and 3.13.

>> C = [1 0 0 ; 0 1 0 ; 0 0 1];

>> D = [0;0;0];

>> sys = ss(A,B,C,D,-1);

The −1 is specified as the last argument for ss function to indicate that the
modeling is in discrete time model.
It is interesting to know if the system is controllable or not. Using equation 3.20,
we construct the matrix C like

C =
[
A3B A2B AB B

]

and we use Matlab to calculate it:

>> C = [A*A*B A*B B]

C =

2.3945 2.3470 2.3004

0.0078 0.0107 0.0148

24.7156 36.6153 77.8760

>> det(C)

65



CHAPTER 5. EXPERIMENT

ans =

0.1848

Since the determinant of matrix C is non-zero then the system is controllable.
The settling time and stability of a state-space system is determined by its poles
and the poles of a state-space model are the eigenvalues of A.

>> eig(A)

ans =

0.2951

1.0202

0.7247

According to Section 3.3.4 since all the poles are in the unit circle the system is
stable.

5.1.1 Preprocessing of collected data

Data preprocessing is one of the most important part in system identification. There
are various techniques to preprocess the data. Removing means is one of the pre-
processing technique that is used widely to detrend the data. It is recommended to
remove mean values at least before the estimation phase.

5.1.2 Model Evaluation

So far we have calculated the matrices and before continuing to controller gains
estimation, we evaluate the model. As described in Chapter 3, residual analysis can
be employed to get a better view of the designed model. In order to do residual
analysis, a scatter plot can be drawn showing actual versus predicted data. We
design a simple scenario in which number of instances raises from 4 to 5 and then
back to 4. This technique is called one-step prediction. At each sampling time k

the actual y(k) is collected and based on the sampling at time k − 1, the predicted
y(k) is calculated. 630 data points have been collected for CPU and the result is
demonstrated in Fig. ??.

As can be seen from the scatter plot, most of the data points are very close to
unit slope and this mean that the constructed model is suitable enough.
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Figure 5.4. Model Evaluation - one step prediction for Average CPU Load

5.1.3 Estimating Controller gains

Now the data is ready to be used for estimation. It is the time to compute the
feedback gain K. First we need to select matrices Q and R as described earlier:

>> Q = diag([100 1 1 1])

Q =

100 0 0

0 1 0

0 0 1

>> R = 1

R =

1

We have given 100 to the element that is corresponding to CPU Load. In this
way we emphasize that this state variable is of more importance for us comparing
to others. Now we can exploit dlqr function from Matlab to compute the K:

>> K = dlqr(A, B, Q, R)

K =

0.134 1.470162e-06 0.00318
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5.2 Controller Design

These K parameters now can be used in the controller to compute the next number
of nodes for the system simply by multiplying it by state variables matrix. The
result is NN.

5.2.1 Experimenting with Controller

A DynamicStateFeedbackController is written with the calculated parameters.
At each time the controller is asked for the next NN value. It would be interesting
to know how to interpret this value. The controller output is not a natural number
but a real number. This number should be rounded to a natural integer. It can be
rounded up or down based on the design issue. We select to round down to save
total cost the cloud generates. One can assume two boundaries that we address in
the following:

• L (Lower boundary): minimum number of instances that should exist in the
cloud at all times.

• U (Upper boundary): maximum number of instances that is allowed to exist
in the cloud at all times.

Hence if even the controller outputs a value that is either smaller than L or
greater than U , that value should be disregarded. If the output of controller is Θ
The possible cases are as the following:

NN =





L if Θ 6 L

Θ if L < Θ < U

U if U 6 Θ
(5.3)

if the number of current nodes in the system is NN′ then:

Next action =





scale up with NN − NN′ nodes if NN′ < NN

scale down with NN′ − NN nodes if NN < NN′

no action otherwise
(5.4)

In the rest of this chapter we investigate two experiments that each one will
examine an aspect of the provided controller. The instance configuration for these
experiments are as the following:

• CPU: 2 GHz

• Memory: 8 GB

• Bandwidth: 2 MB/s

• Number of simultaneous downloads: 70
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They are 10 data blocks in the experiments with sizes between 1 to 5 MB. It
should be noted that this configuration is used through the system identification
also.

SLA Experiment

In order to get a better sense that how the controller operates, a simple scenario can
be conducted. One of the common cases for cloud environment is to test against
specific Service Level Agreements (SLA). SLA is defined as the minimum criteria a
provider promises to meet while delivering a service.

Two experiments can be considered: one with controller and the other without
controller. In the coming results and figures, they are denoted by w/ controller

and w/o controller respectively. Each experiment starts with tree warmed up
instances. With warmed up nodes we mean that each data block is requested at
least once thus it resides in the memory all instances.

Workload that is used for this experiment consists of two states: normal and
high. It is started with normal state which the timeout for sending request is selected
from a uniform random distribution between [10, 15] seconds. After 500 seconds at
this state, the workload changes to high state. In this state the timeout is selected
from the uniform random distribution between [1, 5] seconds. This is demonstrated
in Fig 5.5.

Figure 5.5. Experiment1 Workload

Sensing of data is done every 25 seconds. In the case of controller, actuation
is performed every 100 seconds. Thus there are 4 sets of data at each actuation
time that controller should consider. In order to decide what the state variables
are, average of data sets is calculated and used by the controller. The duration of
each experiment is 2000 seconds with warm up of 100 seconds. SLA requirements
are as the following:

• Average CPU Load: 6 55%
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Table 5.1. SLA Violations

SLA Parameter Violation (%) w/ Controller w/o Controller

CPU Load 17.94 72.28

Response Time 2.12 7.073

Bandwidth 35.89 74.69

• Response Time: 6 1, 5 seconds

• Average Bandwidth per download: > 200000 B/s

For each experiment the percentage of SLA violations are calculated per param-
eter based on Equation 5.5. The result is shown in Table 5.1.

Percentage of SLA Violations = 100 ×
Number of SLA Violations

Total Number of SLA Checking
(5.5)

SLA checking is done at each data sensing for Average CPU Load and Average
Bandwidth per download and is performed at each request response for Response
Time.

Results

This experiment gives us interesting results that is discussed in this section. NL

and HL that exist in the result figures correspond to Normal Load and High Load
respectively.

Figure 5.6 depicts Average CPU Load for the aforementioned experiments. Av-
erage CPU Load is the average of all nodes’ CPU Loads at each time the sensing
is performed. As it is observed from the diagram, CPU loads for experiment with
controller is generally lower than the same experiment without controller. This is
due to controller that launch new instances under high workloads causing a huge
drop in average CPU Load.

Figure 5.7 demonstrates Average Response Time for the experiments. By re-
sponse time we mean the time that an instance responds to a request that download
is started afterward and not the actual download time. As it is seen from the dia-
gram, average response time for experiment with controller is generally lower than
the experiment without controller. This is because in case of having fixed num-
ber of instances (in this experiment 3), there would be congestion by the number
of requests an instance can process. This increases the responsivity of an instance.
However, in the case that controller launches new instances, no instance will actually
go under high number of requests.

Figure 5.8 shows the Total cost for the experiments. Interval Total cost means
that total cost is calculated in each interval in which the senses are done. As can
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Figure 5.6. SLA Experiment - Average CPU Load

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100

200

300

400

500

600

700

800

900

1000

1100
Average Response Time

Time (s)

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

 

 

NL HL

w/ controller
w/o controller

Figure 5.7. SLA Experiment - Average Response Time

be observed from the diagram the interval total cost for controller experiment is
much higher than the experiment without controller. This is because launching
new instances will cost more money than having fixed number of instances available
in the cloud. This experiment has high load of requests for the system in which
controller is more likely to scale up and resides in that mood than scale down. It
should be noted that costs are computed according to Amazon EC2 price list.

Total cost for each experiment is calculated in Table 5.2.
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Figure 5.8. SLA Experiment - Interval Total Cost

w/ controller w/o controller

Total Cost ($) 14.4528 8.6779

Table 5.2. Total Cost for each SLA experiment

Figure 5.9 depicts Average bandwidth per download. If an instance has a band-
width of 4 Mb/s and has two current downloads running, the bandwidth per down-
load is 2 Mb/s. As can be seen from the diagram, experiment that uses controller
has significant higher bandwidth per download. This is mainly because the instances
receive less number of request and bandwidth is divided among less requests also.
This will end up having higher bandwidth available on each instance.

Figure 5.10 demonstrates number of nodes for each experiment. As we discussed
earlier the number of nodes is constant for experiment without controller. However,
for the other experiment that the controller is used, number of nodes is changed
through time hence the SLA requirements can be met.

Cost Experiment

The purpose of this experiment is to show that total cost is not always higher when
using controller. For this experiment we start initially by 7 instances. Duration of
the experiment is 2000 seconds.

For this experiment a different workload is used. The workload consists of two
states again: high and low. Unlike previous workload, it starts in high state and
then goes into low state after 500 seconds. The workload is shown in Fig. 5.11.
Timeouts in high state is selected from uniform random distribution between [1, 3]
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Figure 5.10. SLA Experiment - Number of Nodes

seconds and in low state between [15, 20] seconds.
The result that is shown in Table 5.3 is interesting since this time the total cost

for the experiment with controller is actually lower than the experiment without
controller unlike previous experiment. This because of low load in the system.
Controller basically will remove instances that this will save cost in this experiment.
The reason that this experiment has lower cost than the previous one is that L (lower
bound on number of nodes) is not equal the initial number of nodes and it is smaller.
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Figure 5.11. Experiment2 workload

w/ controller w/o controller

Total Cost ($) 10.509 16.5001

Table 5.3. Total Cost for Cost experiment

Hence controller can scale down in number of nodes to L.

5.3 Summary

A practical insight has been given in this chapter for how to perform System Iden-
tification and controller design using the implemented simulation framework. Two
experiments are done: First an experiment against Service Level Agreement (SLA)
in abscense and prescense of controller was conducted. SLA violations are calcu-
lated and the results are discussed. Second an experiment is done to compare total
cost in the case that workload is transfered from high load to low load and the
controller scales down in number of nodes in the cloud.



Chapter 6

Conclusion and Future Works

This chapter summarizes and concludes the thesis and presents future works. We
start with concluding what has been done through this master thesis project. This
chapter will be finalized with some ideas for extension and future work.

6.1 Summary and Conclusion for the thesis

For this section we review the defined objectives in the introduction chapter.

6.1.1 Study Distributed Data Storage (DSS) Systems

Six different Distributed Data Storage (DSS) systems are briefly studied in this
project. Common approaches and mechanisms are discussed and a summary for
all of them is provided so that one can compare these systems based on DB Type,
Architecture, Focus and Consistency. The main purpose of this study was to get
familiar with DSS systems and understand how a key-value store can operate in
context of a cloud environment. Although all of these systems claim to provide
elasticity, there is no information provided in their publications regarding the details
of this elasticity.

6.1.2 Study the application of control theory in Computing Systems

This master thesis project is based on the idea of using control theory to provide
automation for elasticity in cloud environments. An introduction was given in Chap-
ter 2 which covered basic concepts in this field such as System Identification and
controller design. We have studied 13 computing systems that based on control the-
ory for different purposes (mostly performance). Common performance objectives
are discussed also and a summary for all systems is provided at the end of chap-
ter. This summary categorizes the studied systems based on System Identification,
Controller and Desired Objectives. The purpose of this study was to understand
the common approaches and strategies of employing controller theory in computing
systems. We realized that Black-box model is widely used as one of the promising
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and approved way to identify systems since most of the computing systems are non-
linear.

Two systems ([44] and [24]) are discussed briefly. We provided the overall con-
troller architecture and how the system dynamics are constructed. This short de-
scription was mainly to introduce the reader with the concept of control theory
when it applies to computing systems.

6.1.3 System Identification and appropriate controller design

The introduction to control theory is brought to next level by a discussion on the
system and problem description. We defined the key-value store system that we aim
to implement in a cloud environment in Chapter 3. The overall architecture of such
a system is presented and common usage scenarios are given. This description then
followed by a common proved model for system identification: State-space model.
This model is explained in details and we showed how to apply this model to our
desire system step by step. This explanation involves the extraction of relevant
properties of the system and system dynamics construction also.

In the second half of the chapter, we discussed common controller architectures
in State-space model and we provided a quick comparison between these architec-
tures. We investigated how to do controller design step by step.

6.1.4 Method of designing controller for elastic storage in cloud

At the end of Chapter 3, a general method is given for designing a controller for
storage cloud systems. The method consists of all the necessary steps for system
identification and controller design. This method is the summary of this master
project and it can be used for the purpose of identifying a system and designing
a controller which totally provides automation for similar systems. it is generic
enough to cover systems with arbitrary number of inputs and outputs.

6.1.5 Implementation of a Simulation Framework for Cloud

A complete simulation framework based on Kompics is implemented to model a
key-value store in a cloud environment. Detailed architecture and implementation
are discussed in Chapter 4. This implementation consists of several components
that each is responsible for a set of specific tasks. Each component and its relation
to other components is described in details. This framework enables the modeling
of cloud environments targeting possible storage strategies in cloud. It is flexible
enough to cover a wide range of services that are deployed in a cloud environment
and model detailed interactions between instances and end-users. This framework is
one the major contribution of this master project. A step-by-step guide for checking
out, building, running and using of this framework is given in Appendix A.
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6.1.6 Experiment with the controller with simulation framework

In Chapter 5 we showed how to do a system identification with the implemented
simulation framework and then we walked through the steps for designing the con-
troller based on the provided description earlier. This chapter consists two im-
portant experiments to prove the effect of using controllers in cloud environments.
First experiment examines SLA violations in presence and absence of controller.
We showed that using controller can reduce SLA violations when the workload for a
system is transited from normal state to high state experiencing a flash crowd. Sec-
ond experiment investigate Cost in presence and absence of controller. We showed
that using controller can reduce total cost when the workload is transited from high
to low state.

6.2 Future work

In this section we try to propose some ideas to the reader for further extension of
this project.

Fuzzy Controller

One can replace the controllers introduced in this project (Dynamic State Feedback
controller and Fuzzy controller) with a Fuzzy controller. This means that instead
of solving the system dynamics by statistical approaches, we can use fuzzy logic to
define rules and tune the controller to employ these rules for its decisions. This
needs intelligent system identification and a thorough and detailed understanding
of the system. The rules can increase in number and complexity though.

Constraint Programming

Through out our System identification, controller design and experiments, we used
a fixed hardware configuration for instances. This means that all launched in-
stances had the same hardware configurations. One possible extension is to exploit
constraint programming in order to calculate the best hardware configuration for
specific situation. One can define a number of spaces that are desirable and based
on current state of the system provide a suitable hardware setup that for example
will minimize the total cost or decrease response time. This can be implemented
as a separate component that is connected to the output of Actuation component
4.2.3 in simulation framework and system states can be redirected into it on every
sense. This method fits perfectly where the system tries to meet specific SLAs that
are changing over time.
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Appendix A

Simulation Framework Usages

Described

In this section a quick tour is given to demonstrate how to use the simulation
framework to simulate cloud environment, write your own controller and identify a
system.

Check out and build

The code for simulation framework is distributed under Apache Software License
[1]. Check out the source code from Github repository:

# git clone git://github.com/amir343/ElasticStorage.git

You should have Maven 2 installed in order to be able to build the source code:

# mvn clean install

This will download the required libraries from Maven repositories and builds the
source code.

How to construct the cloud?

A cloud environment consists of several elements that each one is described in the
following can be passed to Cloud class:

• cloudProviderAddress(address, port)*: binds the cloud provider to this
address and port. The address should refer to localhost.

• data(name, size, size unit)*: defines the data blocks that will be used
during the simulation and their corresponding sizes. The names must be
unique.

79



APPENDIX A. SIMULATION FRAMEWORK USAGES DESCRIBED

• replicationDegree(number)*: defines the replication degree to meet by
Elastic Load Balancer.

• addressPoll(file name)*: points to address ranges that are available for
this simulation.

• node(name, address, port): defines a storage instance with a name and
address, port to bind to. The name should be unique.

– cpu(n): defines the CPU for the instance with frequency of n GHz.

– memoryGB(n): defines the memory for the instance with size of n GB.

– bandwidthMB(n): defines the bandwidth for the instance with capacity
of n MB.

• sla(): enables the SLA violation calculation according to the parameter that
will be defined as the following:

– cpuLoad(n): SLA requirements for percentage of average CPU load in
the system.

– responseTime(n): SLA requirements for average response time (ms) in
the system.

– bandwidth(n): SLA requirements for average bandwidth per download
(B/s) in the system.

Using these elements a complete cloud environment can be built. Note that ele-
ments related to instances are not mandatory. Instances can be launched by cloud
provider as well. After this definition, the object that holds theses elements should
be started by calling the method start().

Controller also should be defined but separately. The class that is responsible
for controller is ControllerApplication and has the following element:

• controllerAddress(address, port): defines the address and port that con-
troller will be bind to.

Note that the address should be different from address that are included in
addressPoll and cloud provider address. Controller is started with a method
called start(). These definition can be put in a source code with desire name
for class inside a main method. It is a good practice to put your class in package
scenarios.executor. To start the simulation it is enough to run this class. An
example scenario can be like the following:

Listing A.1. A sample scenario to create cloud environment

1 package scenarios . executor ;

2
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3 import cloud. CloudProvider ;

4 import econtroller . ElasticController ;

5 import instance . Instance ;

6 import instance . common. Size ;

7 import org. apache .log4j. PropertyConfigurator ;

8 import scenarios . manager . Cloud;

9 import scenarios . manager . ControllerApplication ;

10

11 public class TestScenario {

12

13 public static final void main ( String [] args ) {

14 Cloud cloud = new Cloud( CloudProvider .class , Instance . class) {

15 {

16 cloudProviderAddress (" 127.0.0.1 ", 23444);

17 node (" node1", " 127.0.0.1 ", 23445).

18 cpu (2.2).

19 memoryGB (8).

20 bandwidthMB (2);

21 data (" block1", 2, Size .MB );

22 data (" block2", 4, Size .MB );

23 data (" block3", 3, Size .MB );

24 data (" block4", 1, Size .MB );

25 data (" block5", 4, Size .MB );

26 replicationDegree (2);

27 addressPoll (" addresses .xml");

28 sla ()

29 . cpuLoad (30)

30 . responseTime (1000);

31 }

32 };

33

34 cloud. start ();

35

36 ControllerApplication controller =

37 new ControllerApplication ( ElasticController . class) {

38 {

39 controllerAddress (" 127.0.0.1 ", 23443);

40 }

41 };

42

43 controller .start ();

44 }

addressPoll

addressPoll is an XML file that defines the elastic IP address ranges that can be
used by cloud provider. A simple example is like:

Listing A.2. A sample Elastic IP addresses definition

1 <addressPoll >

2 <addresses >

3 <addressRange >
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4 <ip >127.0.0.1 </ip >

5 <startPort >37000</ startPort >

6 <endPort >38001</ endPort >

7 </ addressRange >

8 <addressRange >

9 <ip >127.0.0.1 </ip >

10 <startPort >47000</ startPort >

11 <endPort >48005</ endPort >

12 </ addressRange >

13 <addressRange >

14 <ip >127.0.0.1 </ip >

15 <startPort >51000</ startPort >

16 <endPort >51857</ endPort >

17 </ addressRange >

18 </ addresses >

19 </ addressPoll >

This definition includes 2866 unique elastic addresses. Note that startPort

can not be greater than endPort. The cloud provider window is demonstrated in
Fig. A.1

Figure A.1. Simulation Framework - Cloud Provider Window
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Taking snapshot

At any point during the running of the simulation, you can take snapshots from
any of cloud provider, instance or controller. This can be done by using ALT + s

keys. You can take as many snapshots as you may need. These snapshots are saved
into Snapshots panel in controller/instances windows and Statistics panel in cloud
provider. You can save any of the snapshots to disk later on by selecting and right
clicking on your desire one in the corresponding panel. If you need only the log
messages to be saved you can right click on the log panel and select save to file.

Each snapshot includes the set of all diagrams and also log messages for that
specific node in the system.

Headless Run

In order to consume less resources on the target machine, you can specify headless()

in the cloud class of your scenario. This will prevent any construction of GUI for
storage instances and save a lot of JVM heap memory. An instance windows is
shown in Fig A.2.

Figure A.2. Simulation Framework - Instance Window
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How to add your own controller

If you require to write your own controller, you can do so by implementing the
ControllerDesign interface. When you run the simulation, your controller will be
listed with the name you have chosen for the class that implements the interface. It is
a good practice to put the implemented class in package econtroller.design.impl.
The name should not be used before and should be unique.

How to define custom distributions

You can define your own custom distribution to be used by Request Generator when
sending request to cloud provider. Simply create a file and put your timeouts one
in each line. So if you have something like

2

3

10

it means that the first request will be sent after 2 seconds, second request after
5 and the third one after 15 seconds. When the request generator reaches the end
of the file, it repeats the distribution from the beginning. After you create the file,
choose Custom from drop down list in Request Generator panel in cloud provider
window.

How to do System Identification?

First define your scenario with Cloud and controller classes. Run your scenario.
Try to launch at least two instances by cloud provider. Then connect the controller
to cloud provider. In the meantime the instances are launching, select the distri-
bution you want the Request Generator to send request and start it. When the
instances are launched and ready to use, browse to System Identification panel in
controller window. Make sure that settings are the ones you need start the modeler.

At any time during the system identification, you can stop the modeler or dump
the collected training data into files. After one period that instances are scaled up
and down, the modeler dumps the collected data into files and takes a snapshot as
well which is listed in snapshot panel. It is recommended to do the system identifi-
cation in headless mode that is described earlier. A sample system identification is
depicted in Fig. A.3.

By default Ordering enabled check box is checked and it means that modeler
acts as a System Identifier and orders new to launch/shut down instances. However,
if you need to just monitor the system without affecting the number of instances,
you can disable this option.
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Figure A.3. Controller Window - System Identification

85





Bibliography

[1] Apache software license. URL http://www.apache.org/licenses/LICENSE-2.0.html.

[2] Hbase. URL http://hbase.apache.org/.

[3] Hypertable. URL http://code.google.com/p/hypertable/.

[4] Json. URL http://www.json.org.

[5] Kompics. URL http://kompics.sics.se/.

[6] Scala language. URL http://www.scala-lang.org/.

[7] Terracotta. URL http://www.terracotta.org/.

[8] Terrastore. URL http://code.google.com/p/terrastore/.

[9] T. Abdelzaher and N. Bhatti. Web content adaptation to improve server over-
load behavior. In WWW8 / Computer Networks, pages 1563–1577, 1999.

[10] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for
web server end-systems: a control-theoretical approach. IEEE Transactions on
Parallel and Distributed Systems, 13(1):80–96, August 2002.

[11] Ahmad Al-Shishtawy. Enabling and Achieving Self-Management for Large
Scale Distributed Systems. PhD thesis, KTH, 2010.

[12] Ahmad Al-Shishtawy, Vladimir Vlassov, Per Brand, and Seif Haridi. A design
methodology for self-management in distributed environments. Computational
Science and Engineering, 2009.

[13] K. J. Astrom and T. Hagglund. PID Controllers: Theory, Design, and Tuning.
Instrumentation, Systems, and Automation Society, Research Triangle Park,
NC, 1995.

[14] Stuart Bennett. A history of control engineering. 1993. ISBN 9-780863412998.

[15] E. Bonabeau. Editor’s introduction: Stigmergy. Artificial Life, 5(2):95–96,
1999.

87

http://www.apache.org/licenses/LICENSE-2.0.html
http://hbase.apache.org/
http://code.google.com/p/hypertable/
http://www.json.org
http://kompics.sics.se/
http://www.scala-lang.org/
http://www.terracotta.org/
http://code.google.com/p/terrastore/


BIBLIOGRAPHY

[16] Mike Burrows. The chubby lock service for loosely-coupled distributed systems.
7th Operating System Design and Implementation,, pages 335–350, Nov 2006.

[17] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live:
an engineering perspective. In ACM Symposium on Principles of Distributed
Computing, pages 398–407, 2007.

[18] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: A distributed storage system for structured data. Seventh
Symposium on Operating System Design and Implementation, 2006.

[19] D. Chiu and R. Jain. Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks. Computer Networks and ISDN,
17(1):1–14, 1989.

[20] Reuven Cohen. Defining elastic computing, September 2009. URL
http://www.elasticvapor.com/2009/09/defining-elastic-computing.html.

[21] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. Pnuts: Yahoo! ’s hosted data serving platform. Very Large Data
Bases (VLDB), pages 1277–1288, August 2008.

[22] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value
store. In twenty-first ACM SIGOPS symposium on Operating systems princi-
ples, pages 205–220, 2007.

[23] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dy-
namic Systems. Addison-Wesley, 3rd edition, 1994.

[24] N. Gandhi, D. M. Tilbury, Y. Diao, J. Hellerstein, and S. Parekh. Mimo
conttrol of an apache web server: Modeling and controller design. American
Control Conference, 2002.

[25] Rachid Guerraoui and Luis Rodrigues. Introduction to Reliable Distributed
Programming. Springer, 2006.

[26] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feed-
back Control of Computing Systems. Wiley-IEEE Press, September 2004. ISBN
978-0-471-26637-2.

[27] Paul Horn. Autonomic computing: Ibm’s perspective on the state of informa-
tion technology. Technical report, October 2001.

88

http://www.elasticvapor.com/2009/09/defining-elastic-computing.html


BIBLIOGRAPHY

[28] IBM. An architectural blueprint for autonomic computing. Technical report,
June 2006.

[29] Abbinav Kamra, Vishal Misra, and Erich M. Nahum. Yaksha: A self-tuning
controller for managing the performance of 3-tiered web sites. In International
Workshop on Quality of Service (IWQoS, pages 47–56, 2004.

[30] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin,
and Rina Panigrahy. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In In ACM Symposium
on Theory of Computing, pages 654–663, 1997.

[31] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. Triage: Perfor-
mance isolation and differentiation for storage systems. In In International
Workshop on Quality of Service (IWQoS), pages 67–74, 2004.

[32] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Technical
report, January 2003.

[33] Srinivasan Keshav. A control-theoretic approach to flow control. In ACM
SIGCOMM, September 1991.

[34] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, pages 558–565, July 1978.

[35] Leslie Lamport and Keith Marzullo. The part-time parliament. ACM Trans-
actions on Computer Systems, 16:133–169, 1998.

[36] H. D. Lee, Y. J. Nam, and C. Park. Regulating i/o performance of shared
storage with a control theoretical approach. NASA/IEEE conference on Mass
Storage Systems and Technologies (MSST), April 2004.

[37] Baochun Li and Klara Nahrstedt. A control theoretical model for quality of
service adaptations. In In Proceedings of Sixth International Workshop on
Quality of Service, pages 145–153, 1998.

[38] Baochun Li and Klara Nahrstedt. A control-based middleware framework for
quality of service adaptations. IEEE Journal on Selected Areas in Communi-
cation, 1999.

[39] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. Automated control for
elastic storage. International Conference on Autonomic Computing, pages 1–
10, 2010.

[40] Harold C. Lim, Shivnath Babu, Jeffrey S. Chase, and Sujay S. Parekh. Auto-
mated control in cloud computing: Challenges and opportunities. Automated
Control for Datacenters and Clouds, pages 13–18, 2009.

89



BIBLIOGRAPHY

[41] C. Lu, T. Abdelzaber, J. Stankovic, and S. Son. A feedback control approach
for guaranteeing relative delays in web servers. In Real-Time Technology and
Applications Symposium, 2001. Proceedings. Seventh IEEE, pages 51–62, 2001.

[42] Saverio Mascolo. Classical control theory for congestion avoidance in high-
speed internet. In Decision and Control, December 1999.

[43] Peter Mell and Timothy Grance. The nist definition of cloud computing (draft).
Technical Report 800-145, National Institute of Standards and Technology,
January 2011.

[44] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal,
Zhikui Wang, Sharad Singhal, and Arif Merchant. Automated control of mul-
tiple virtualized resources. In 4th ACM European conference on Computer
systems, pages 13–26, 2009.

[45] Sujay S. Parekh, Joe Hellerstein, T. S. Jayram, Neha Gandhi, Dawn Tilbury,
and Joe Bigus. Using control theory to achieve service level objectives in per-
formance management, 2001.

[46] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpret-
ing the data: Parallel analysis with sawzall. Scientific Programming Journal,
Special Issue on Grids and Worldwide Computing Programming Models and
Infrastructure, 13(4):277–298, January 2006.

[47] Martin Placek and Rajkumar Buyya. A taxonomy of distributed storage sys-
tems. Technical Report GRIDS-TR- 2006-11, Grid Computing and Distributed
Systems Laboratory, The University of Melbourne, Australia, July 2006.

[48] Anders Robertsson, Björn Wittenmark, and Maria Kihl. Analysis and design
of admission control in web-server systems. In In American Control Conference
(ACC), 2003.

[49] David Steere, Ashvin Goel, Joshua Gruenberg, Dylan Mcnamee, Calton Pu,
and Jonathan Walpole. A feedback-driven proportion allocator for real-rate
scheduling. In Operating Systems Design and Implementation (OSDI), Febu-
rary 1999.

[50] Matt Welsh, David Culler, and Eric Brewer. Seda: An architecture for well-
conditioned, scalable internet services. 18th ACM Symposium on Operating
Systems Principles, pages 230–243, October 2001.

90



 



www.kth.se

TRITA-ICT-EX-2011:247


	Acknowledgements
	Abstract
	Referat
	List of Figures
	List of Tables
	Listings
	Introduction
	Background
	Objectives
	Thesis Outline

	Autonomic Computing
	Properties of Self-managing Systems
	Autonomic Computing Architecture

	Design Methodology for Self-Management 
	Steps in Designing Distributed Management
	Orchestrating Autonomic Managers

	Cloud Computing
	Delivery Models
	What is Elastic Computing?


	Survey and State of the Art
	Distributed Storage Systems
	Google Bigtable
	Amazon Dynamo
	Hypertable
	Yahoo! PNUTS
	Apache HBase
	Terrastore
	Self-* in Distributed Storage Systems Context
	Summary

	Application of Control Theory in Computing Systems
	System Identification
	Automated control of multiple virtualized resources
	MIMO Control of Apache Web Server
	Controller Analysis and Design
	Desired Objectives
	Summary


	Control Analysis and Design
	Problem Definition and System Description
	System Identification
	Basic Steps of System Identification
	State Space Model
	State Variables
	State Space Model
	Parameter Estimation
	Solving State Dynamics
	Model Evaluation

	Control Analysis and Design
	Dynamic State Feedback
	LQR Optimal Control Design
	Controllability
	Stability
	Fuzzy Controller
	Method of designing controller for elastic storage in cloud

	Summary

	Simulation Framework Implementation
	Introduction
	Implementation
	Cloud Instance Component
	Cloud Provider Component
	Elastic Controller

	Summary

	Experiment
	System Identification
	Preprocessing of collected data
	Model Evaluation
	Estimating Controller gains

	Controller Design
	Experimenting with Controller

	Summary

	Conclusion and Future Works
	Summary and Conclusion for the thesis
	Study Distributed Data Storage (DSS) Systems
	Study the application of control theory in Computing Systems
	System Identification and appropriate controller design
	Method of designing controller for elastic storage in cloud
	Implementation of a Simulation Framework for Cloud
	Experiment with the controller with simulation framework

	Future work

	Appendices
	Simulation Framework Usages Described
	Bibliography

