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Abstract

Autonomic computing is an approach proposed by IBM that enables a

system to self-configure, self-heal, self-optimize, and self-protect itself,

usually referred to as self-* or self-management. Humans should only

specify higher level policies to guide the self-* behavior of the system.

Self-Management is achieved using control feedback loops that consist of

four stages: monitor, analyze, plan, and execute.

Management is more challenging in dynamic distributed environments

where resources can join, leave, and fail. To address this problem a

Distributed Component Management System (DCMS), a.k.a Niche, is

being developed at KTH and SICS (Swedish Institute of Computer

Science). DCMS provides abstractions that enable the construction of

distributed control feedback loops. Each loop consists of a number of

management elements (MEs) that do one or more of the four stages of a

control loop mentioned above.

The current implementation of DCMS assumes that management

elements (MEs) are deployed on stable nodes that do not fail. This

assumption is difficult to guarantee in many environments and application

scenarios. One solution to this limitation is to replicate MEs so that if one

fails other MEs can continue working and restore the failed one. The

problem is that MEs are stateful. We need to keep the state consistent

among replicas. We also want to be sure that all events are processed

(nothing is lost) and all actions are applied exactly once.

This report explains a proposal for the replication of stateful MEs

under DCMS framework. For improved scalability, load-balancing and

fault-tolerance, different breakthroughs in the field of replicated state

machine has been taken into account and discussed in this report. Chord

has been used as an underlying structured overlay network (SON). This

report also describes a prototype implementation of this proposal and

discusses the results.
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Chapter 1

Introduction

Autonomic computing [1] is an attractive paradigm to tackle management

overhead of complex applications by making them self-managing.

Self-management, namely self-configuration, self-optimization, self-healing,

and self-protection, is achieved through autonomic managers [2], which

continuously monitor hardware and/or software resources and act

accordingly. Autonomic computing is particularly attractive for large-scale

and/or dynamic distributed systems where direct human management

might not be feasible.

Niche [3, 4] is a distributed component management system that

facilitates to build self-managing large-scale distributed systems.

Autonomic managers play a major rule in designing self-managing

systems [5]. An autonomic manager in Niche consists of a network of

management elements (MEs). Each ME is responsible for one or more

roles in the construction of Autonomic Manager. These roles are:

Monitor, Analyze, Plan, and Execute (the MAPE loop [2]). In Niche, MEs

are distributed and interact with each other through events (messages) to

form control loops.

1.1 Motivation

Niche intends to work in a highly dynamic environment with

heterogeneous, poorly managed computing resources [6]. A notable

example of such environments is community-based Grids where individuals

and small organizations create ad-hoc Grid virtual organizations (VOs)
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2 CHAPTER 1. INTRODUCTION

that utilize unused computing resources. Community-based grids are

meant to provide “best-effort“ services to their participants, but because

of the nature of their resources, it cannot provide more strict

quality-of-service (QoS) guarantees [6].

In such a dynamic environment, constructing autonomic managers is

challenging as MEs need to be restored with minimal disruption to the

autonomic manager whenever the resource where MEs execute leaves or

fails. A common way to make a service tolerate machine failures is to

replicate it on several machines. However, replication can only mask a

limited number of failures, and the longer the service runs, the more likely

the failure count will exceed this number [7]. In addition to that, it is easy

to achieve consistency in a replicated service with no changing states. MEs

are stateful entities and they must keep their state consistent with other

replicas. For the sake of this report, we will use the term configuration as

a set of replicated MEs, while a migration is a change in this configuration.

This change can be due to replacing failed machines with the new one or

adding new machines into the system for load-balancing.

1.2 Problem Statement

Niche management elements should : 1) be replicated to ensure

fault-tolerance; 2) survive continuous resource failures by automatically

restoring failed replicas on other nodes; 3) maintain its state consistent

among replicas; 4) provide its service with minimal disruption in spite of

resource join/leave/fail (high availability). 5) be location transparent (i.e.

clients of the RME should be able to communicate with it regardless of its

current location). Because we are targeting large-scale distributed

environments with no central control, such as P2P networks, all

algorithms should be decentralized.

For implementing replication of MEs, we have decided to use

SMART [8] which not only replaces failed machines by the new ones, but

also adds new machines into the system using configuration change

(migration) protocol. Although SMART claims to fulfill many of the

limitations that other approaches have for migrating replicated state

machines [8], yet there are some areas where the information is still very

limited. SMART has been described and tested in an environment with

100 Mb/s Ethernet LAN as the underlying network. This is not enough
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when analyzing the behavior of such a system in larger and dynamic

networks e.g. DHT, CHORD. In addition to that, the experiments

conducted by SMART used few nodes/machines in the system and the

behavior of the protocol with large number of nodes is still unclear. Only

one pseudo-code has been provided with the paper which proved to be

much less information than for implementing a whole system.

Furthermore, there is no practical implementation information available

regarding the underlying protocol including Paxos [9] in such kind of

migration scenarios. Last but not the least, the most important aspect of

such a system is it’s behavior in extreme conditions and high churn

scenarios where multiple nodes can fail at the same time. There is no

information about the behavior of the given system in such kind of

environments.

1.3 Research Questions

Based on the problem statement in the previous section, here are some

Research Questions (RQ) that this thesis work must attempt to address.

RQ-01 : Replication by itself is not enough to guarantee long

running services in the presence of continuous churn.

This is because the number of failed nodes hosting

ME replicas will increase with time. Eventually this

will cause the service to stop. Therefore, we use

service migration [8] to enable the reconfiguration of

the set of nodes hosting ME replicas. However, all this

process should be self-automated. How to automate

re-configuration of replica set in order to tolerate

continuous churn?

RQ-02 : Reconfiguration or migration of MEs will cause extra

delay in request processing. How to minimize this effect?

RQ-03 : Replication of MEs will result in extra overhead on the

performance of the system. How to control this extra

overhead?
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RQ-04 : When a migration request is submitted and decided,

according to SMART, on excution of migrate request,

leader in the configuration will assign its LastSlot, send

JOIN message to host machines in the NextConf and will

propose null requests for all the remaining unproposed

slots until the LastSlot. However, the solution is

unclear if another configuration change request has

already been proposed. It might happen, due to

high churn rate, that multiple configuration change

requests are submitted to the leader at the same time.

If two configuration change will be executed by the

same configuration, it could result in having multiple

NextConf with the same ConfID i.e. duplicate and

redundant configuratons. How to avoid this scenario?

RQ-05 : How to make the system scalable i.e. how to control the

system performance when it is overloaded and churn rate

is high?

RQ-06 : How overlay node count effects the performance of

replicated MEs?

RQ-07 : We have assumed a fair-loss model of message dilvery.

That means, some messages can be lost even when

sending them to alive replicas. How to handle these

lost messages.

RQ-08 : What are the factors other than replication and request

frequency that can influence the performance of a

replicated state machine?

1.4 Note About Team Work

The research presented in this thesis is not a product of the individual effort

of the author of this thesis but rather a joint effort of a team of researchers

from the Swedish Institute of Computer Science (SICS) and KTH the Royal

Institute of Technology Sweden. In addition to thesis author, the team



1.5. THESIS OUTLINE 5

includes Ahmad Al-Shishtawy, Konstantin Popov from SICS and Vladimir

Vlassov from KTH. Most of the parts of this report has been taken from the

paper [10], which includes the contribution from all the above mentioned

authors. The main responsibility of this report’s author was the prototype

implementation, conducting experiments and evaluating results, however he

was also part of other activities as well.

1.5 Thesis Outline

This report explains a generic approach and an associated algorithm to

achieve long-living fault-tolerant services in a structured P2P

environments.It also describes the implementation details and the results

of the simulations conducted to evaluate the proposed algorithms.

The rest of this report is organized as follows: chapter 2 presents the

necessary background required to understand the proposed algorithm. In

chapter 3, we describe our proposed decentralized algorithm to automate

the migration process. Followed by applying the algorithm to the Niche

platform to achieve RMEs in chapter 3.4. In chapter 4 we describes our

prototype implementation of the proposed system and discusses our

experimental results in chapter 5. Finally, Section 6 presents conclusions

and the future work.





Chapter 2

Background

2.1 Niche Platform

Niche [6, 3] is a distributed component management system (DCMS) that

implements the autonomic computing architecture [2]. Niche includes a

programming model, APIs, and a runtime system including deployment

service. DCMS intends to reduce the cost of deployment and run-time

management of applications by allowing developers to program application

self-* behaviors that do not require intervention by a human operator.

Niche has been derived from Fractal Component Model [11] and provides

a mechanism for defining the structure and deployment of the distributed

application using Architecture Description Language (ADL).

2.1.1 Niche in Grid4All

Niche has been developed as part of Grid4ALL project that aims to

prototype Grid software building blocks that can be used by non-expert

users in dynamic Grid environments such as community-based Grids. In

these environments, computing resources are volatile, and possibly of

low-quality and poorly managed. Because of the dynamic nature and

ad-hoc, peer-to-peer styles of creating virtual organizations in

community-based Grids, availability and consumption of computing

resources cannot be coordinated. For achieving this vision, both the

applications and the Grid must automatically adjust themselves to

available resources and load demands that change over time, self-repair

itself after hardware and software failures, protect themselves from

7



8 CHAPTER 2. BACKGROUND

Figure 2.1: Niche in Grid4All Architecture Stack [6]

security threats, and at the same time be reasonably efficient with

resource consumption [6].

2.1.2 Self-Managing Applications with Niche

Niche is a runtime system that seperates application’s functional code

from its non-functional (self-*) code. An application in the framework

consists of a component-based implementation of the applications

functional specification (the lower part of 2.2), and a component-based

implementation of the applications self-* behaviors (the upper part).

Niche provides functionality for component management and

communication which is used by applications, in particular by user-written

implementation of self-* behaviors. Niche implements a run-time

infrastructure that aggregates computing resources on the network used to

host and execute application components.

A self-* code in Niche framework is organized as a network of

management elements (MEs) interacting through events. MEs are stateful

entities that subscribe to and receive events from sensors, and other MEs.
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Figure 2.2: Application Architecture with Niche

This enables the construction of distributed control loops [12]. The self-*

code senses changes in the environment and can affect changes in the

architecture – add, remove and reconfigure components and bindings

between them.

According to Niche framework specification [6], MEs funtionality is

subdivided into watchers (W1,W2 ... on 2.2), aggregators (Aggr1) and

managers (Mgr1). Watchers are meant to monitor the status of individual

components and groups in the system. They usually recieves events from

sensors but can also watch other management elements as well. On the

other hand, an agreegator is subscribed to several watchers and maintains

partial information about the application status at a more course-grained

level. Agreegators can also analyze symptoms and issue change requests to

managers. Managers use the information recieved from different watchers

and aggregators to decide and execute the changes in the infrastructure.

Managers are meant to posess enough information about the status of the

applications architecture as a whole in order to be able to maintain it. In

this sense managers are different from watchers and aggregators where the

information is though more detailed but limited to some parts, properties

and/or aspects of the architecture. For example, in a storage application
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Figure 2.3: Niche container processes on Overlay network

the manager needs to know the current capacity, the desing capacity and

the number of online users in order to meet a decision whether additional

storage elements should be allocated, while the storage capacity

aggregator knows only the current capacity of every storage element.

2.1.3 Niche Runtime Environment

The Niche runtime system consists of a set of distributed container

processes, on several physical nodes, that can host components (MEs and

application components). As shown in figure 2.3, the distributed

containers are connected together through an overlay network. Niche relies

on overlay network for scalable, self-* address lookup and message delivery

services. It also uses overlay to implement bindings between components,

message passing between MEs, storage of architecture representation and

failure sensing. On each physical node, there is a local Niche process that

provides the Niche API to applications, as shown in figure 2.3 . The
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overlay allows to locate entities stored on nodes of the overlay. On the

overlay, entities are assigned unique overlay identifiers and for each overlay

identifier, there is a physical node hosting the identified element. Such a

node is usually refered as “responsible“ node for the identifier.

Responsible nodes for overlay entities can change upon churn. Every

physical node on the overlay and thus in Niche also has an overlay

identifier, and can be located and contacted using that identifier.

Niche maintains several types of entities, in particular components of

the application architecture and internal Niche entities maintaining

representation of the application’s architecture. Niche entities are

distributed on the overlay. Functional components are situated on the

specified physical nodes, while MEs and entities representing the

architecture might be moved upon churn between physical nodes.

2.2 Structured Overlay Networks

Structured Overlay Networks, SONs, are known for their self-organising

features and resilience under churn[13]. We assume the following model of

SONs and their APIs. We believe, this model is representative, and in

particular it matches the Chord [14] SON. In the model, SON provides the

operation to locate items on the network. For example, items can be data

items for DHTs, or some compute facilities that are hosted on individual

nodes in a SON. We say that the node hosting or providing access to an

item is responsible for that item. Both items and nodes posses unique

SON identifiers that are assigned from the same name space. The SON

automatically and dynamically divides the responsibility between nodes

such that there is always a responsible node for every SON identifier. SON

provides a ’lookup’ operation that returns the address of a node

responsible for a given SON identifier. Because of churn, node

responsibilities change over time and, thus, ’lookup’ can return over time

different nodes for the same item. In practical SONs the ’lookup’

operation can also occasionally return wrong (inconsistent) results.

Further more, SON can notify application software running on a node

when the responsibility range of the node changes. When responsibility

changes, items need to be moved between nodes accordingly. In Chord-like

SONs the identifier space is circular, and nodes are responsible for items

with identifiers in the range between the node’s identifier and the identifier
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of the predecessor node. Finally, a SON with a circular identifier space

naturally provides for symmetric replication of items on the SON - where

replica IDs are placed symmetrically around the identifier space circle.

Symmetric Replication [15] is a scheme used to determine replica

placement in SONs. Given an item ID i and a replication degree f ,

symmetric replication is used to calculate the IDs of the item’s replicas.

The ID of the x-th (1 ≤ x ≤ f) replica of the item i is computed as

follows:

r(i, x) = (i+ (x− 1)N/f) mod N (2.1)

where N is the size of the identifier space.

The IDs of replicas are independent from the nodes present in the system.

A lookup is used to find the node responsible for hosting an ID. For the

symmetry requirement to always be true, it is required that the replication

factor f divides the size of the identifier space N .

2.3 Paxos

Paxos [9] is a well known consensus protocol for dynamic distributed

environments. Consensus can be either about agreeing on a set of values

to commit or to make a course of actions or decisions. Paxos, as

standalone protocol is easy to understand, but in real-life scenarios, a

variant of the original protocol is usually used.

2.3.1 Basic Protocol

Paxos describes the actions of the process, involved in the consensus phase,

by their roles in the protocol. These are Client, Acceptor, Proposer, Learner

and Leader. Each process or node can play multiple of these roles at the

same time.

� Client: The Client issues a request to the proposer and waits for the

response.

� Acceptor: Used to choose a single value

� Proposer: On client request, propose a value to be chosen by

Acceptors.
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� Learner: Learn what value has been chosen.

� Leader: Paxos requires a distinguished Proposer (called the leader)

to make progress.

In this paper, every process or node in the system is assumed to be

playing the role of Acceptor, Proposer and Learner at the same time. For

the sake of simplicity, let us assume that one of the processes has been

chosen as the leader and only leader can propose.

There are two phases of the Paxos protocol, as describes by Leslie

Lamport [9] and that works as below:

Phase 1 (Prepare Phase) 1. A proposer selects a proposal number n

and sends a prepare request with number n to a majority of

acceptors.

2. If an acceptor receives a prepare request with number n greater

than that of any prepare request to which it has already

responded, then it responds to the request with a promise not

to accept any more proposals numbered less than n and with

the highest-numbered proposal (if any) that it has accepted.

Phase 2 (Propose Phase) 1. If the proposer receives a response to

its prepare requests (numbered n) from a majority of acceptors,

then it sends an accept request to each of those acceptors for a

proposal numbered n with a value v, where v is the value of the

highest-numbered proposal among the responses, or is any

value if the responses reported no proposals.

2. a)If an acceptor receives an accept request for a proposal

numbered n, it accepts the proposal unless it has already

responded to a prepare request having a number greater than n.

Paxos fulfils Safety property at all time while liveness requirement asserts

that if there are enough non-faulty process are available for a long enough

time, then some value is eventually chosen [16].

2.3.2 3-PHASE PAXOS

There is a variant of basic paxos that reduces the total number of messages

being sent in phase 2 of the protocol. In phase 2, all the processes, rather
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Figure 2.4: Basic Paxos 2-Phase Protocol

than sending the messages to every other process, sends the message only

to the leader. When leader will receives 2b messages from quorum, it will

start phase 3 of the Paxos protocol and inform other processes about the

decision by sending the DECIDE message. This type of Paxos protocol has

fewer number of messages at the cost of two one more message delay.

2.3.3 Multi-Paxos Optimization

In a replicated state machine scenario, a Paxos consensus is required for

every action to be taken by each replicated state machine. As described

above, every consensus has an overhead of at least four message delays. If

a complete Paxos instances will be executed for every action that is to be

taken by each replica, it will be a significant amount of overhead on the

system.

If the leader is relatively stable, phase-1 can be skipped for future

instances of the protocol with the same leader [17]. When a process

becomes a leader, it executes phase-I to get the latest state and to get the

promise for all the future consensus instances until a new leader is

selected. In this way, phase-1 will be executed only once and every time,

when the leader receives a request from the client, it only executes the rest

of the protocol as shown below.
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Figure 2.5: Basic Paxos 3-Phase Protocol

Figure 2.6: 3-Phase Paxos Protocol with stable leader

2.4 Replicated Stateful Serivces

2.4.1 System Model

State machine replication [9, 18, 19] approach is a renown method for

implementing fault-tolerant and consistent distributed services. In this

approach, a copy of the service a.k.a. replica, runs on each machine.

These replicas communicate by passing messages in a communication
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Figure 2.7: Virtual Slots in Replicated State Machine

network. Communication is asynchronous and unreliable where messages

can be duplicated, lost or can take an arbitrarily long time to arrive. But

messages which arrive on the destination machines are not corrupted.

These replicas should be deterministic and their states should only

depend upon the previous states and their inputs. They all begin in the

same initial state. A replica moves from one state to the next by

applying/executing an update/request to its state machine. The next

state is completely being determined by the current state and the update

being executed.

Clients send/request updates to the replicas. Each update is

distinguished by the identifier of the sender client and a client-based

monotonically increasing sequence number. The State Machine

Replication by Paxos for System Builders assumes that each client has at

most one outstanding update at one time.

Replicas use PAXOS protocol to globally order all the clients requests

and execute these requests in the same order. So, every replica should have

the same state after executing the same number of requests.

2.4.2 Maintaining Global Order Using Virtual Slots

To globally order all client requests, every replica has maintained in itself a

list of virtual slots and assigns each clients update/request to one of these

slots. These slots are numbered incrementally and the assigned requests

will be executed in the same order e.g. If request X is assigned to slot 50

and request Y is assigned to slot 51, then first X will be executed and then

Y. To assign requests to a slot, one of the replicas becomes the leader using

some leader election algorithm.
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2.4.3 Request Handling Using PAXOS

A simple sequence of handling of client’s request can be explained as follows:

the client sends a request to the replica group. All replicas, on receiving

this request, will store this message into their pending list. When the leader

replica receives the client request, it will choose the next available virtual

slot and will send the proposal to other replicas. This proposal will be

a tentative suggestion that the given client’s request should occupy the

proposed slot. Each replica, on receiving this proposal, will log it (write it to

some stable storage) and then sends the leader a confirmation message. On

receiving the confirmation message from the quorum, the leader announces

that the proposal has been decided by sending the DECIDE message to

all the replicas. Each replica, receiving the DECIDE message will set the

status of the request slot to ready to be executed. Once all requests with

lower slot numbers are executed, the replicas will execute the request and

send the reply to the client. The client will receive multiple confirmations

for the give request, but will just ignore the additional confirmations for the

same request.

2.4.4 Leader Replica Failure

Replicated state machines are using multi-paxos protocol, in which the

phase-1 (Prepare phase) is only executed once the leader changes. When a

leader fails, other replicas select a new leader using a leader election

algorithm. The newly elected leader will run the Prepare phase for all

future instances of the Paxos protocol (i.e. for all sequence numbers) that

will run until the leader is changed again.

The leader replica will send PREPARE message to start the prepare

phase. The prepare message will contain the last slot number the sender

has executed update till. In the group with newly elected leader, the leader

will make the proposal above that slot number. So this message is to learn

about any accepted proposals for the next slots.

Upon receiving the PREPARE message, a replica will send back a

promise message that contains information about each slot after the last

leader given slot. For each slot, the replica will send the LOGGED

proposals and DECISIONS (if any).

Leader, on receiving the promise messages from quorum, will first update

its status from the DECISIONS and will propose messages that it got as
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part of the Promise messages. After that, leader will be ready to propose

new messages.

2.4.5 Flow Control

As suggested by Lamport [9], to avoid having too much undecided proposals

at one time, our implementation also has a sliding window mechanism for

proposing requests. The size of this sliding window is usually referred to as

a. So, the leader can propose updates from i to i+a after updates 1 through

i are decided.

2.5 Leader Election and Stability without

Eventual Timely Links

In a replicated state machine, the leader replica can fail. So, each replica

uses a HEARTBEAT mechanism to learn if the other replica is still alive. If

the leader fails, other replicas will start a protocol to choose the new leader.

In this section, we will discuss about two of the most well known leader

election algorithms in distributed dynamic environment.

Let us define two important properties of a coordination protocol like

Paxos in a distributed system.

Safety

� Non-triviality: No value is chosen unless it is first proposed.

� Consistency: No two distinct values are both chosen. (two

different learners cannot learn different values).

Liveness

� Termination: We’d like the protocol to eventually terminate.

Paxos safety property must be preserved at all times while its liveness

property depends on the selection of a single leader.
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2.5.1 Eventual Leader Election (Ω)

Eventual Leader Election (Ω) abstraction encapsulates a leader election

algorithm which ensures that eventually the correct processes will elect the

same/single correct process as their leader [20]. It has the following

properties.

� Eventual Accuracy: There is a time after which every correct

process trusts some correct process.

� Eventual Agreement: There is a time after which no two correct

processes trust different correct processes.

While Ω captures the abstract properties needed to provide liveness, it

does not provide much concrete information about system conditions under

which progress can be guaranteed. So we use leader election as described in

2.5.2 Ω with ♦f-Accessibility

Ω has been described with more precise requirements in paper “Ω Meets

Paxos: Leader Election and Stability without Eventual Timely Links“ [21].

It requires ♦f-Accessibility for this protocol to work, which is defined by

this paper as follows:

Timely Link : A link between two processes is timely at time t if the

sender receives the response within d time.

f-accessibility : A process p is said to be f-accessible at time t if there

exist f other processes q such that the link between p and q are timely

at t.

�f-accessibility : There is a time t and a process p such that for all t‘ ≥
t, p is f-accessible at t‘.

In this paper, from now on, we will refer to this algorithm as

♦f-Accessible Leader Election .

There are two major contributions that are made by this algorithm:
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� ♦f-Accessible Leader Election [21] algorithm formulates more

precisely the synchrony conditions required to achieve leader

election. It guarantees to elect a leader without having eventual

timely links. Progress is guaranteed in the following surprisingly

weak settings: Eventually one process can send messages such that

every message obtains f timely responses, where f is a resilience

bound. Such a process is named as ♦f-accessible. These f responders

need not be fixed and may change from one message to another.

This condition is very much according to the workings of Paxos,

whose safety does not necessitate that the f processes with which a

leader interacts be fixed [21].

� The second contribution provided by this algorithm [21] is leader

stability. In Paxos, change of leader is a costly operation as it

necessitates the execution of a prepare phase by the new leader.

This improvement suggests that a qualified leader (a leader which

remains capable of having proposals committed in a timely fashion)

should not be demoted.

In our model for replication of management elements, we have

implemented ♦F-Accessible leader election without the optimization of

leader stability. The optimization for leader stability will be implemented

in future.

2.5.3 Protocol Specification

In this protocol [21], every process maintains for itself a state that

comprises of a non-decreasing epochNum and an epoch freshness counter.

An epochNum is a pair of serialNum and processId that can be null as

well. States are ordered lexicographically i.e. First by epochNum and then

by processId (epochNum is internally ordered first by serialNum and then

by processId. In addition to that each process maintains a copy of registry,

which is a collection of states of all processes in the group. A process

updates the state of another process when it handles REFRESH message

from that process.

There are three timers that are being used in this algorithm. These are

refreshTimer with length ∆ time units, roundtripTimer with δ time unit

and readTimer with (∆+ δ) time units. On expiration of refreshTimer

each process will send a refresh message containing its state to all other
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processes and will start the roundtripTimer with d time units timeout.

When a process receives this request, it updates the sender process state

in its own replica of registry and sends response with a refreshack message.

If the process is able to receive the refreshack messages from f+1 processes

before roundtripTimer expires, the process will be sure that it has timely

links with at least f+1 processes and hence it will increment its freshness

count in its registry. On the other hand, if a process is not able to receive

refreshack messages from f+1 processes, it will increase its serialNum in its

epoch inside the registry.

In addition to registry, every process also records the states of all other

processes in a vector named views. The views vector also contains an expiry

bit for every process in addition to that processs state. The expiry bit is

to indicate whether that processs state has been continuously refreshed or

not. To assess whether a process state (epoch number) has expired, every

process updates its view by periodically reading the entire registry vector

from n-f processes. We have taken n as the total number of processes and f

as n/2. The full specification of the algorithm can be read from the original

paper [21].

2.6 Migration of Replicated Stateful

Services

SMART [8] is a technique for changing the set of nodes where a replicated

state machine runs, i.e. migrate the service. The fixed set of nodes, where

a replicated state machine runs, is called a configuration. Adding and/or

removing nodes (replicas) in a configuration will result in a new

configuration.

SMART is built on the migration technique outlined in [22]. The idea

is to have the current configuration as a part of the service state. The

migration to a new configuration proceeds by executing a special request

that causes the current configuration to change. This request is like any

other request that can modify the state. The change does not happen

immediately but is scheduled to take effect after α slots.This gives the leader

the flexibility to safely propose requests to α slots concurrently, without

worrying about configuration change. This technique of proposing multiple

concurrent requests is also known as pipelining.
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The main advantage of SMART over other migration technique is that

it allows to replace non-failed nodes. This enables SMART to rely on an

automated service (that may use imperfect failure detector) to maintain the

configuration by adding new nodes and removing suspected ones.

An important feature of SMART is the use of configuration-specific

replicas. The service migrates from conf1 to conf2 by creating a new

independent set of replicas in conf2 that run in parallel with replicas in

conf1. The replicas in conf1 are kept long enough to ensure that conf2 is

established. This simplifies the migration process and help SMART to

overcome problems and limitations of other techniques. This approach can

possibly result in many replicas from different configurations to run on the

same node. To improve performance, SMART uses a shared execution

module that holds the state and which is shared among replicas on the

same node. The execution module is responsible for modifying the state

by executing assigned requests sequentially and producing output. Other

than that each configuration runs its own instance of the Paxos and leader

election algorithm independently without any sharing. This makes it, from

the point of view of the replicated state machine instance, look like as if

the Paxos algorithm is running on a static configuration. Conflicts

between configurations are avoided by assigning a non-overlapping range

of slots [FirstSlot, LastSlot] to each configuration. The FirstSlot for conf1

is set to 1. When a configuration change request appears at slot n this will

result in setting LastSlot of current configuration to n + α − 1 and setting

the FirstSlot of the next configuration to n+ α.

Before a new replica in a new configuration can start working it must

acquire a state from another replica that is at least FirstSlot-1. This can be

achieved by copying the state from a replica from the previous configuration

that has executed LastSlot or from a replica from the current configuration.

The replicas from the previous configuration are kept until a majority of

the new configuration have initialised their state.

2.7 KOMPICS

Kompics [23] is a reactive component model that is used for programming,

configuring and executing distributed protocols as software components

that interact asynchronously using data-carrying events [24, 25, 26].

Kompics is similar to Fractal component model which is a modular,
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extensible and programming language agnostic component model that can

be used to design, implement, deploy and reconfigure systems and

applications, from operating systems to middleware platforms and to

graphical user interfaces [11]. As DCMS has been derived from Fractal

Component Model [11], so to mimic the fractal programming model and

to ease the development, we have used Kompics [25] framework to

implement our prototype.

Kompics components are reactive, concurrent and they can be

composed into complexed architecture of composite components. These

components are safely configurable at runtime and allow for sharing of

common subcomponents at various levels in the component hierarchy [26].

Components communicate by passing data-carying events through typed

bidirectional ports connected by channels. Ports are event-based

component interfaces and they represent a service or protocol abstraction.

There are two directions of port i.e. + and -. A + event will go to + side of

the port and - event will go to - side. A component either provides + or

requires - as port [23].

Kompics has developed a set of utility components and methodology

for building and evaluating P2P systems. The framework provides many

reusable components e.g. bootstrap service, failure detectors, network and

timers. Kompics has developed and evaluated a Chord overlay to

demonstrate the practicality of Kompics framework.

2.7.1 Chord Overlay Using Kompics

Kompics has developed and evaluated a Chord overlay to demonstrate the

practicality of Kompics P2P framework [23]. It also has provided a

simulation environment where the whole Chord overlay system can be

executed. The Chord simulation architecture is as shown in figure 2.8.

The simulation environment is a single process running all the peers,

bootstrap and monitor server within the same process.

ChordSimulationMain is executed using a single-thread simulator

scheduler for deterministic replay and simulated time advancement.

P2pOrchestrator is a generic component that interprets experiment

scenarios and sends the scenario events e.g. chordJoin, chordLookup to

the ChordSimulator. P2pOrchestrator also provides a network abstraction

and can be configured with a specific latency and bandwidth model.
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Figure 2.8: Kompics simulation architecture [23]

Figure 2.9: Architecture of Chord Implementation as developed by Kompics
[23]

P2pSimulator and P2pOrchestrator can be replaced with each other, but

P2pOrchestrator simulate everything in real time. It uses

KingLatencyMap[12] to simulate a real-life overlay network. The detail of

KingLatencyMap will be discussed in section “Real-Time Network

Simulation“.

ChordSimulator in Kompics simulation environment consist of all

ChordPeers in the overlay. A ChordPeer simulate a node abstraction in

Chord overlay. A detail architecture of ChordPeer is shown in figure 2.9

ChordPeerPort is used to pass all events to ChordPeer including

ChordLookup and ChordJoin. The Network and Timer abstractions are
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provided by the MinaNetwork [27] and JavaTimer component. The

ChordMonitorClient periodically check the Chord status and send it to

the ChordMonitorServer, as shown in figure 7.1. For detail about working

of the Chord, please refer to Building and Evaluating P2P Systems using

the Kompics Component Framework [23]

2.7.2 REAL-TIME NETWORK SIMULATION

In Kompics, as described above, P2pOrchestrator provides a real-time

network abstraction for applications working in wide area networks. To

provide such an abstraction, P2pOrchestrator uses KingLatencyMap [28].

KingLatencyMap is used to estimate latency between any two Internet

hosts, from any other Internet host. The accuracy of this estimation can

be further verified from King: Estimating Latency between Arbitrary

Internet End Hosts [28].





Chapter 3

Proposed Solution for Robust

Management Elements

In this section we present our approach and associated algorithm to

achieve robust services. Our algorithm automates the process of selecting

a replica set (configuration) and the decision of migrating to a new

configuration in order to tolerate resource churn. This approach, which

includes our algorithm combined with the replicated state machine

technique and migration support, will provide a robust service that can

tolerate continuous resource churn and run for long period of time without

the need of human intervention.

Our approach was mainly designed to provide Robust Management

Elements (RMEs) abstraction that is used to achieve robust

self-management. An example is our platform Niche [3, 4] where this

technique is applied directly and RMEs are used to build robust

autonomic managers. However, we believe that our approach is generic

enough and can be used to achieve other robust services. In particular, we

believe that our approach is suitable for structured P2P applications that

require highly available robust services.

We assume that the environment that will host the Replicated State

Machines (RSMs) consists of a number of nodes (resources) that form

together a Structured Overlay Network (SON). The SON may host

multiple RSMs. Each RSM is identified by a constant ID drawn from the

SON identifier space, which we denote as RSMID in the following. RSMID

permanently identifies an RSMs regardless of the number of nodes in the

system and node churn that causes reconfiguration of set of replicas in an

27
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RSM. Given an RSMID and the replication degree, symmetric replication

scheme is used to calculate the SON ID of each replica. The replica SON

ID is used to assign a responsible node to host each replica in a similar

way as in Distributed Hash Tables (DHTs). This responsibility, unlike the

replica ID, is not fixed and changes overtime because of node churn.

Clients that send requests to RSM need to know only its RSMID and

replication degree. With this information clients can calculate identities of

individual replicas according to the symmetric replication scheme, and

locate the nodes currently responsible for the replicas using the lookup

operation provided by the SON. Most of the nodes found in this way will

indeed host up-to-date RSM replicas - but not necessarily all of them

because of lookup inconsistency and node churn.

Fault-tolerant consensus algorithms like Paxos require a fixed set of

known replicas that we call configuration. Some of replicas, though, can

be temporarily unreachable or down (the crash-recovery model). The

SMART protocol extends the Paxos algorithm to enable explicit

reconfiguration of replica sets. Note that RSMIDs cannot be used for

neither of the algorithms because the lookup operation can return over

time different sets of nodes. In the algorithm we contribute for

management of replica sets, individual RSM replicas are mutually

identified by their addresses which in particular do not change under

churn. Every single replica in a RSM configuration knows addresses of all

other replicas in the RSM.

The RSM, its clients and the replica set management algorithm work

roughly as follows. A dedicated initiator chooses RSMID, performs lookups

of nodes responsible for individual replicas and sends to them a request to

create RSM replicas. Note the request contains RSMID, replication degree,

and the configuration consisting of all replica addresses, thus newly created

replicas perceive each other as a group and can communicate with each

other directly withoud relying on the SON. RSMID is also distributed to

future RSM clients.

Because of churn, the set of nodes responsible for individual RSM

replicas changes over time. In response, our distributed configuration

management algorithm creates new replicas on nodes that become

responsible for RSM replicas, and eventually deletes unused ones. The

algorithm consists of tow main parts. The first part runs on all nodes of

the overlay and is responsible for monitoring and detecting changes in the

replica set caused by churn. This part uses several sources of events and
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Figure 3.1: Replica Placement Example: Replicas are selected according to
the symmetric replication scheme. A Replica is hosted (executed) by the
node responsible for its ID (shown by the arrows). A configuration is a
fixed set of direct references (IP address and port) to nodes that hosted the
replicas at the time of configuration creation. The RSM ID and Replica
IDs are fixed and do not change for the entire life time of the service. The
Hosted Node IDs and Configuration are only fixed for a single configuration.
Black circles represent physical nodes in the system.

information, including SON node failure notifications, SON notifications

about change of responsibility, and requests from clients that indicates the

absence of a replica. Changes in the replica set (e.g. failure of a node that

hosted a replica) will result in a configuration change request that is sent

to the corresponding RSM. The second part is a special module, called the

management module, that is dedicated to receive and process monitoring

information (the configuration change requests). The module use this

information to construct a configuration and also to decide when it is time

to migrate (after a predefined amount of changes in the configuration).

We discuss the algorithm in greater detail in the following.

3.1 Configurations and Replica Placement

Schemes

All nodes in the system are part of SON as shown in Fig. 3.1. The Replicated

State Machine that represents the service is assigned an RSMID from
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Algorithm 1: Helper Procedures

1: procedure GetConf(RSMID)
2: ids[ ]← GetReplicaIDs(RSMID) . Replica Item IDs
3: for i← 1, f do refs[i]← Lookup(ids[i])
4: end for
5: return refs[ ]
6: end procedure

7: procedure GetReplicaIDs(RSMID)
8: for x← 1, f do ids[x]← r(RSMID, x) . See equation 2.1
9: end for
10: return ids[ ]
11: end procedure

the SON identifier space of size N . The set of nodes that will form a

configuration are selected using the symmetric replication technique [15].

The symmetric replication, given the replication factor f and the RSMID,

is used to calculate the Replica IDs according to equation 2.1. Using the

lookup() operation, provided by the SON, we can obtain the IDs and direct

references (IP address and port) of the responsible nodes. These operations

are shown in Algorithm 1. The rank of a replica is the parameter x in

equation 2.1. A configuration is represented by an array of size f . The

array holds direct references (IP and port) to the nodes that form the

configuration. The array is indexed from 1 to f and each element contains

the reference to the replica with the corresponding rank.

The use of direct references, instead of using lookup operations, as the

configuration is important for our approach to work for two reasons. First

reason is that we can not rely on the lookup operation because of the

lookup inconsistency problem. The lookup operation, used to find the

node responsible for an ID, may return incorrect references. These

incorrect references will have the same effect in the replicatino algorithm

as node failures even though the nodes might be alive. Thus the incorrect

references will reduce the fault tolerance of the replication service. Second

reason is that the migration algorithm requires that both the new and the

previous configurations coexist until the new configuration is established.

Relying on lookup operation for replica IDs may not be possible. For

example, in Figure 3.1, when a node with ID = 5 joins the overlay it

becomes responsible for the replica SM r4 with ID = 2. A correct

lookup(2) will always return 5. Because of this, the node 7, from the

previous configuration, will never be reached using the lookup operation.

This can also reduce the fault tolerance of the service and prevent the

migration in the case of large number of joins.
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Figure 3.2: State Machine Architecture: Each machine can participate in
more than one configuration. A new replica instance is assigned to each
configuration. Each configuration is responsible for assigning requests to
a none overlapping range of slot. The execution module executes requests
sequentially that can change the state and/or produce output.

Nodes in the system may join, leave, or fail at any time (churn).

According to the Paxos constraints, a configuration can survive the failure

of less than half of the nodes in the configuration. In other words, f/2 + 1

nodes must be alive for the algorithm to work. This must hold

independently for each configuration. New configuration, on receiving

JOIN messages will reply with READY messages. Once a configuration

receives READY messages from more than half the replicas in new

configuration, it considers the new configuration as established and can

destroy itself. The detail of this process is explained in SMART [8].

Due to churn, the responsible node for a certain replica may change.

For example in Fig.3.1 if node 20 fails then node 22 will become

responsible for identifier 18 and should host SM r2. Our algorithm,

described in the remainder of this section, will automate migration process

by detecting the change and triggering a ConfChange requests when churn

changes responsibilities. The ConfChange requests will be handled by the

state machine and will eventually cause it to migrate to a new

configuration.



32CHAPTER 3. PROPOSED SOLUTION FOR ROBUST MANAGEMENT ELEMENTS

3.2 State Machine Architecture

The replicated state machine (RSM) consists of a set of replicas, which

forms a configuration. Migration techniques can be used to change the

configuration (the replica set). The architecture of a replica is shown in

Fig. 3.2. The architecture uses the shared execution module optimization

presented in [8]. This optimization is useful when the same replica

participate in multiple configurations. The execution module executes

requests. The execution of a request may result in state change, producing

output, or both. The execution module should be a deterministic

program. Its outputs and states must depend only on the sequence of

input and the initial state. The execution module is also required to

support checkpointing. That is the state can be externally saved and

restored. This enables us to transfer states between replicas.

The execution module is divided into two parts: the service specific

module and the management module. The service specific module

captures the logic of the service and executes all requests except the

ConfChange request which is handled by the management module. The

management module maintains a next configuration array that it uses to

store ConfChange requests in the element with the corresponding rank.

After a predefined threshold of the number and type (join/leave/failure) of

changes. The management module decides that it is time to migrate. It

uses the next configuration array to update the current configuration

array resulting in a new configuration. After that the management module

passes the new configuration to the migration protocol to actually preform

the migration. The reason to split the state in two parts is because the

management module is generic and independent of the service and can be

reused with different services. This simplifies the development of the

service specific module and makes it independent from the replication

technique. In this way legacy services, that are already developed, can be

replicated without modification given that they satisfy execution module

constraints (determinism and checkpointing).

In a corresponding way, the state of a replica consists of two parts: The

first part is internal state of the service specific module which is application

specific; The second part consists of the configurations.

The remaining parts of the replica, other than the execution module,

are responsible to run the replicated state machine algorithms (Paxos and

Leader Election) and the migration algorithm (SMART). As described in
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the previous section, each configuration is assigned a separate instance of

the replicated state machine algorithms. The migration algorithm is

responsible for specifying the FirstSlot and LastSlot for each

configuration, starting new configurations, and destroying old

configurations after the new configuration is established.

The Paxos algorithm guarantees liveness when a single node acts as a

leader, thus it relies on a fault-tolerant leader election algorithm. Our

system uses the algorithm described in[21]. This algorithm guarantees

progress as long as one of the participating processes can send messages

such that every message obtains f timely (i.e. with a pre-defined timeout)

responses, where f is a algorithm’s constant parameter specifying how

many processes are allowed to fail. Note that the f responders may

change from one algorithm round to another. This is exactly the same

condition on the underlying network that a leader in the Paxos itself relies

on for reaching timely consensus. Furthermore, the aforementioned work

proposes an extension of the protocol aiming to improve leader stability so

that qualified leaders are not arbitrarily demoted which causes significant

performance penalty for the Paxos protocol.

3.3 Replicated State Machine Maintenance

This section will describe the algorithms used to create a replicated state

machine and to automate the migration process in order to survive resource

churn.

3.3.1 State Machine Creation

A new RSM can be created by any node in the SON by calling CreateRSM

shown in Algorithm 2. The creating node construct the configuration

using symmetric replication and lookup operations. The node then sends

an InitSM message to all nodes in the configuration. Any node that

receives an Init SM message (Algorithm 6) will start a state machine

(SM) regardless of its responsibility. Note that the initial configuration,

due to lookup inconsistency, may contain some incorrect nodes. This does

not cause problems for the replication algorithm. Using migration, the

configuration will eventually be corrected.
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Algorithm 2: Replicated State Machine API

1: procedure CreateRSM(RSMID)
. Creates a new replicated state machine

2: Conf [ ]← GetConf(RSMID)
. Hosting Node REFs

3: for i← 1, f do
4: sendto Conf [i] : InitSM(RSMID, i, Conf)
5: end for
6: end procedure

7: procedure JoinRSM(RSMID, rank)
8: SubmitReq(RSMID,ConfChange(rank,MyRef))

. The new configuration will be submitted and assigned a slot to be executed
9: end procedure

10: procedure SubmitReq(RSMID, req)
. Used by clients to submit requests

11: Conf [ ]← GetConf(RSMID)
. Conf is from the view of the requesting node

12: for i← 1, f do
13: sendto Conf [i] : Submit(RSMID, i, Req)
14: end for
15: end procedure

3.3.2 Client Interactions

A client can be any node in the system that requires the service provided

by the RSM. The client need only to know the RSMID and the replication

degree to be able to send requests to the service. Knowing the RSMID, the

client can calculate the current configuration using equation 2.1 and lookup

operations (See Algorithm 1). This way we avoid the need for an external

configuration repository that points to nodes hosting the replicas in the

current configuration. The client submits requests by calling SubmitReq

as shown in Algorithm 2. The method simply sends the request to all

replicas in the current configuration. Due to lookup inconsistency, that can

happen either at the client side or the RSM side, the client’s view of the

configuration and the actual configuration may differ. We assume that the

client’s view overlaps, at least at one node, with the actual configuration

for the client to be able to submit requests. Otherwise, the request will fail

and the client need to try again later after the system heals itself. We also

assume that each request is uniquely stamped and that duplicate requests

are filtered. In the current algorithm the client submits the request to

all nodes in the configuration for efficiency. It is possible to optimise the

number of messages by submitting the request only to one node in the

configuration that will forward it to the current leader. The trade off is

that sending to all nodes increases the probability of the request reaching
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Algorithm 3: Execution

1: receipt of Submit(RSMID, rank,Req) from m at n
2: SM ← SMs[RSMID][rank]
3: if SM 6= φ then
4: if SM.leader = n then SM.schedule(Req) . Paxos schedule it
5: else . forward the request to the leader
6: sendto SM.leader : Submit(RSMID, rank,Req)
7: end if
8: else
9: if r(RSMID, rank) ∈]n.predecessor, n] then . I’m responsible
10: JoinRSM(RSMID, rank) . Fix the configuration
11: else
12: DoNothing . This is probably due to lookup inconsistency
13: end if
14: end if
15: end receipt

16: procedure ExecuteSlot(req) . The Execution Module
17: if req.type = ConfChange then . The Management Module
18: nextConf [req.rank]← req.id

. Update the candidate for the next configuration
19: if nextConf.changes = threshold then
20: newConf ← Update(CurrentConf,NextConf)
21: SM.migrate(newConf)

. SMART will set LastSlot and start new configuration
22: end if
23: else . The Service Specific Module handles all other requests
24: ServiceSpecificModule.Execute(req)
25: end if
26: end procedure

the RSM . This reduces the negative effects of lookup inconsistencies and

churn on the availability of the service. Clients may also cache the reference

to the current leader and use it directly until the leader changes.

3.3.3 Handling Lost Messages

We have assumed a fair-loss model of message dilvery. That means, some

messages can be lost even when sending them to alive replicas. To increase

the probability of handling every message sent by the clients every client

submits the requests to each replica in a RSM. Each non-leader replica

will forward the message to the leader replica, which will ignore duplicate

messages. This approach might result in overloading leader with too many

messages, especially when the degree of replication is large. To avoid this

situation, there is another mechanism that has been tested. Each recieved

message should be tagged with the recieved timestamp and should be stored

by each replica in a pending requests queue. Periodically, every repica

checks the pending requests queue and if a request has been in the pending
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Algorithm 4: Lost Message Handling

1: receipt of Submit(RSMID, rank,Req) from m at n
2: SM ← SMs[RSMID][rank]
3: if SM 6= φ then
4: if SM.leader = n then SM.schedule(Req) . Paxos schedule it
5: else . tag and save request in pending list
6:
7: Req.rcvdts← currts . tag recieved Request
8: store pendingReqs : Store(RSMID,Req)
9: end if
10: else
11: if r(RSMID, rank) ∈]n.predecessor, n] then . I’m responsible
12: JoinRSM(RSMID, rank) . Fix the configuration
13: else
14: DoNothing . This is probably due to lookup inconsistency
15: end if
16: end if
17: end receipt

18: procedure CheckExpiredRequest(RSMID, rank) .
19: SM ← SMs[RSMID]
20: for i← 1, sizeof(SM.pendingReqs) do . check every request in pending list
21: if (currts− SM.PendingReqs[req].rcvdts) > threshold then
22:
23: SM.PendingReqs[req].rcvdts← currts . reset timestamp
24: sendto SM.leader : Submit(RSMID, rank, SM.PendingReqs[req]) . forward

the request to the leader
25: end if
26: end for
27: end procedure

28: procedure DecideSlot(RSMID, req) . The Execution Module
29: SM ← SMs[RSMID]
30: SM.PendingReqs[req].remove() . Remove request from pending list
31: ExecuteSlot(req)
32: end procedure

list for a long time, it is retransmitted to the leader. Algorithm 3 Submit

method can be modified as shown in Algorith 4. Once the request is decided,

it is removed from the pending list.

3.3.4 Request Execution

The execution of client requests is initiated by receiving a submit request

from a client and consists of three phases. Checking if the node is responsible

for the request, scheduling the request and then execute it.

When a node receives a request from a client it will first check, using

the RSMID in the request, if it is hosting the replica to which the request

is directed to. If this is the case, then the node will submit the request to

that replica. The replica will try to schedule the request for execution if the
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Algorithm 5: Churn Handling

1: procedure NodeJoin . Called by SON after the node joined the overlay
2: sendto successor : PullSMs(]predecessor,myId])
3: end procedure

4: procedure NodeLeave
sendto successor : NewSMs(SMs) . Transfer all hosted SMs to Successor

5: end procedure

6: procedure NodeFailure(newPred, oldPred)
. Called by SON when the predecessor fails

7: I ←
Sf

x=2 ]r(newPred, x), r(oldPred, x)]
8: multicast I : PullSMs(I)
9: end procedure

replica believes that it is the leader. Otherwise the replica will forward the

request to the leader.

On the other hand, if the node is not hosting a replica with the

corresponding RSMID, it will proceed with one of the following two

scenarios: In the first scenario, It may happen due to lookup inconsistency

that the configuration calculated by the client contains some incorrect

references. In this case, a incorrectly referenced node ignores client

requests (Algorithm 3 line 12) when it finds out that it is not responsible

for the target RSM. In the second scenario, it is possible that the client is

correct but the current replica configuration contains some incorrect

references. In this case, the node that discovers through the client request

that it was supposed to be hosting a replica will attempt to correct the

current configuration by sending a ConfChange request replacing the

incorrect reference with the reference to itself (Algorithm 3 line 10). The

scheduling is done by assigning the request to a slot that is agreed upon

among all replicas in the configuration (using the Paxos algorithm).

Meanwhile, scheduled requests are executed sequentially in the order of

their slot numbers. These steps are shown in Algorithm 3. At execution

time, the execution module will direct all requests except the ConfChange

request to the service specific module for execution. The ConfChange will

be directed to the management module for processing.

3.3.5 Handling Churn

Algorithm 5 shows how to maintain the replicated state machine in case

of node join/leave/failure. When any of these cases happen, a new node

may become responsible for hosting a replica. In case of node join, the
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Algorithm 6: SM maintenance (handled by the container)

1: receipt of InitSM(RSMID,Rank,Conf) from m at n
2: new SM . Creates a new replica of the state machine
3: SM.ID ← RSMID
4: SM.Rank ← Rank . 1 ≤ Rank ≤ f
5: SMs[RSMID][Rank]← SM . SMs stores all SM that node n is hosting
6: SM.Start(Conf) .
7: end receipt

8: receipt of PullSMs(Intervals) from m at n
9: for each SM in SMs do
10: if r(SM.id, SM.rank) ∈ I then
11: newSMs.add(SM)
12: end if
13: end for
14: sendto m : NewSMs(newSMs)
15: end receipt

16: receipt of NewSMs(NewSMs) from m at n
17: for each SM in NewSMs do
18: JoinRSM(SM.id, SM.rank)
19: end for
20: end receipt

new node will send a message to its successor to get information (RSMID

and replication degree) about any replicas that the new node should be

responsible for. In case of leave, the leaving node will send a message to its

successor containing information about all replicas that it was hosting.

In the case of failure, the successor of the failed node needs to discover

if the failed node was hosting any replicas. This can be done in a proactive

way by checking all intervals (line 7) that are symmetric to the interval that

the failed node was responsible for. One way to achieve this is by using

interval-cast that can be efficiently implemented on SONs e.g. using bulk

operations [15]. The discovery can also be done lazily using client requests

as described in the previous section and Algorithm 3 line 10. The advantage

of using lazy apprpoach reduces message burden on the system. However, in

the proactive way, the system does not have to depend on the client’s request

frequency and in this way, it could be more robust. Both of these approached

could be used together to make the system more fault-tolerant. All newly

discovered replicas are handled by NewSMs (Algorithm 6). The node will

request a configuration change by joining the corresponding RSM for each

new replica. Note that the configuration size is fixed to f . A configuration

change means replacing reference at position r in the configuration array

with the reference of the node requesting the change.
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3.3.6 Handling Multiple Configuration Change

When a migration request is submitted and decided, SMART [8] protocol

is used to migrate a SM from one configuration to another. According to

SMART, on excution of migrate request, leader in the configuration will

assign its LastSlot, send JOIN message to host machines in the NextConf

and will propose null requests for all the remaining unproposed slots until

the LastSlot. However, the situation is unclear if another ConfChange

request has already been proposed. It might happen, due to high churn

rate, that multiple ConfChange requests are submitted to the leader at the

same time. If two ConfChange will be executed by the same configuration,

it could result in having multiple NextConf with the same ConfID. To avoid

having this situation, as shown in algorithm 3, everytime a ConfChange

request is executed, it will replace at position r in the configuration array

with the reference of the node who requested this change. This way, only

one NextConf will be created. This will make sure to avoid any conflicts due

to multiple configurations with the same ConfId and also to have redundant

configurations.

There can be different scenarios with multiple ConfChange. In one

scenario, replicas placed on different nodes fails at the same time, the

successors of all these nodes will get infomation from the ME group as

explained before and will request for replacing the failed replicas with the

newly created replicas. On the other hand, there can be a situation where

multiple replicas are hosted on the same node in the overlay. This could

happen due to high churn rate and less number of nodes available in the

overlay. If that node fails, the successor of that node will pull all failed

replicas, will create these replicas on its own node and will request for

multiple ConfChange requests. To optimize this situation, the new node

can also send a single ConfChange request with a list of new replicas to be

replaced.

3.3.7 Reducing Migration Time

The system can become unresponsive during the migration time i.e. when

NextConf is created and until it recieves the FINISH message and a new

leader is elected. This duration is very crutial for scalability and

responsiveness of the system. In case of high-churn scenarios, there can be

many migrations during a short span of time. An optimization, which is
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Algorithm 7: SM maintenance (handled by RSM replica)

1: receipt of Join(RSMID,Rank,Conf,ConfId) from m at n
2: SM ← SMs[RSMID][rank]
3: if SM [ConfId].Started = false then . If Replica is not started yet
4: SM [ConfId].leader = Conf [0] . Choosing lowest rank replica as leader
5: StartFeld(()RSMID,Rank,Conf,ConfId) . Starting FELD
6: if SM [ConfId].leader = n then StartPromisePhase(()ConfId) . Paxos start

promise phase
7: end if
8: end if
9: end receipt

10: receipt of Elect(RSMID,Leader, Conf,ConfId) from m at n
11: SM ← SMs[RSMID][rank]
12: if SM [ConfId].leader = n then StartPromisePhase(()ConfId) . Paxos start

promise phase
13: end if
14: end receipt

already proposed, is to wait for a certain number of replica failures in a

RSM before deciding to migrate. This is also shown in figure 3 line 19 and

will be referred as replica Fault-Tolerance. However, this does not

reduce the time of migration when it happens. Migration time depends

mainly on the time to detect failure and the leader election algorithm.

To handle this situation and to further optimize our algorithm, we have

modified the startup of an RSM as shown in Algorithm 7. Our implemented

♦f-Accessible Leader Election is choosing the lowest ranked most responsive

replica as the leader. On joining an RSM, every SM will choose replica with

lowest rank as the default leader before starting the leader election. Most

of the time all the replicas in an RSM are alive and responsive. This would

mean that, when a replica node will join the RSM it will assume replica with

lowest rank as the default leader. This will reduce the migration time as

replicas will start their Paxos’s first phase without waiting for the leader

election to finish.

In worst scenarios, if the lowest ranked replica is faulty (not working

properly), then eventually a new leader will be chosen by the leader election

and the leader then will start proposing the requests from pending request

queue.
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3.4 Applying Robust Management

Elements In Niche

The autonomic manager in Niche is constructed from a set of management

elements. To achieve robustness and high availability of Autonomic

Managers, in spite of churn, we will apply the algorithm described in the

previous section to management elements. Replicating management

elements and automatically maintaining them will result in what we call

Robust Management Element (RME). An RME will:

� be replicated to ensure fault-tolerance. This is achieved by replicating

the service using the replicated state machine algorithm.

� survive continuous resource failures by automatically restoring failed

replicas on other nodes. This is achieved using our proposed approach

that will automatically migrate the RME replicas to new nods when

needed.

� maintain its state consistent among replicas. This is guaranteed by

the replicated state machine algorithm and the migration mechanism

used.

� provide its service with minimal disruption in spite of resource

join/leave/fail (high availability). This is due to replication. In case

of churn, remaining replicas can still provide the service.

� be location transparent (i.e. clients of the RME should be able to

communicate with it regardless of its current location). The clients

need only to know the RME ID to be able to use an RME regardless of

the location of individual replicas.

The RMEs are implemented by wrapping ordinary MEs inside a state

machine. The ME will serve as the service specific module shown in

Figure 3.2. However, to be able to use this approach, the ME must follow

the same constraints as the execution module. That is the ME must be

deterministic and provide checkpointing.

Typically, in replicated state machine approach, a client sends a request

that is executed by the replicated state machine and gets a result back. In

our case, to implement feedback loops, we have two kinds of clients from

the point of view of an RMS. A set of sending client Cs that submit requests
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to the RME and a set of receiving clients Cr that receive results from the

RME. The Cs includes sensors and/or other (R)MEs and the Cr includes

actuators and/or other (R)MEs.

To simplify the creation of control loops, that are formed in Niche by

connecting RMEs together, we use a publish/subscribe mechanism. The

publish/subscribe system delivers requests/responses to link different stages

(RMEs) together to form a control loop.



Chapter 4

Implementation Details

To evaluate the performance of our approach and to show the practicality

of our algorithms, we built a prototype implementation of Robust

Management Elements using the Kompics [29] component model. As

described before, Kompics is a framework for building and evaluating

distributed systems in simulation, local execution and distributed

deployments. For the underlying SON, we used Chord implementation

that is provided by Kompics. This Chord implementation provides the

functionality to resolve a SON Id to an address of the node responsible for

it. Nodes are able to directly communicate with each other using this

address. Every physical node know the range of SON Id:s it is currently

responsible for. We use lookup and failure detection facilities from this

implementation.

4.1 Underlying Assumptions

� A fail-stop model has been assumed i.e. nodes can fail only by

stopping. Other models including byzantine failures will be handled

in future.

� Messages are delivered fair-loss to alive replicas i.e. some messages

can be lost.

� All assumption for Paxos and Replicated State Machine should hold

e.g. Less than half of the nodes can fail. Majority of the nodes or

quorum should stay alive.

43
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4.2 Basic Underlying Architecture

4.2.1 Data structures

Slots Every request recieved by RMEs is being

assigned to virtual slots. This is used to

ensure the order of requests execution by the

RMEs. An RME can execute request from

slot n+1 only if it had already executed input

from slot n.

FirstSlot The starting slot number for a configuration

to which the client requests can be assigned.

LastSlot The last slot for a configuration to assign a

request.

ServiceState This is use to abstract the state of a

replica. As described before, it consists

of internal state of the service specific

module, configurations (current and next

configuration) and Paxos and SMART

specific state information. The migration

algorithm is responsible for specifying

the FirstSlot and LastSlot for each

configuration.

PendingRequests Clients are sending requests to each replica

in a configuration. Each replica, on

recieving the requests, stores the requests

in a PendingRequests list. If a request

remains in the pending list for more than the

allowed time, it is considered as expired and

is resubmitted to the leader.
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Figure 4.1: Robust Management Element components inside Kompics

MERI Used to uniquely identify a replica in an

RSM. It Contains replica number (rank),

SON ID, IP and address information of a

particular replica in the configuration.

MEI Contains RSMID and replication degree.

RSMID uniquly identifies an RSM and

is used, together with replication degree,

to find the replica IDs as specified in

Algorithm 1.

4.2.2 Robust Management Element Components

The basic entities of the implmented protype are MEInitiator,

MEMonitor, MEContainer, MEReplica, MESensor and FELD. These

entities are implemented as Kompics components and are shown in dark

colors in the component diagrams below.
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MEInitiator MEInitiator is responsible for initializing

the system and starting up the RME

configuration. It is implemented as

a Kompics component and lies outside

the structured overlay network (SON)

component i.e. Chord in our case. It is

shown in figure 4.1.

MEMonitor MEMonitor is used for evaluating system

performance. It gathers all the data

needed for calculating the latency and

message overhead due to robust management

elements. Just like MEInitiator, MEMonitor

also lies outside of the structured overlay

network.

MEContainer The DCMS runtime system consists of a set

of distributed container processes on several

physical nodes for hosting components (MEs

and application components). MEContainer

is an abstraction of these DCMS containers.

Every node in structured overlay network

will host a Container. A Container is

responsible for getting requests from the

Initiator for creating and starting a replica.

When a predecessor of a ChordPeer fails,

this information is also indicated to the

MEContainer, which will then start the

process to find and replace the failed ME.

A Container can host multiple replicas

which are uniquely identified by their MERI.

Changes in the successors and predecessors

of a node in the overlay are being informed

to the Container. Container can also request

the ME group to replace a replica with a new

replica.
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Figure 4.2: ChordPeer architecture with RME

Figure 4.3: ChordPeer architecture with new components

MEReplica This is the main component entity

responsible for implementing all the

functionalities of a RME replica. When a

replica is started, it is provided with its

unique MERI in addition to RSMID and the

replication degree. MERI uniquely identifies

a MEReplica and consists of information

including its SON ID, IP address and the

physical node address. This can be used

to directly communicate with a specific

MEReplica. It is also provided the MERIs

of all replicas that are part of the same

configuration. MEReplica implements the

SMART protocol for migration in addition

to Paxos for deciding and executing client’s

requests.
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FELD This component is used to implement

the functionality of ♦f-Accessible Leader

Election [21]. When a MEReplica is

started, it starts its FELD and provides the

configuration Id and MERI of replicas which

are part of the same configuration.

MESensor This entity is used to capture the

abstraction of Sensors inside Niche

framework. MESensors will generate

requests periodically to RSM without waiting

for the reply.

4.3 Node Join and Failures using Kompics

To fail a node, Kompics Chord framework provide a special message

ChordPeerFail that can be used to fail a specific node in the overlay. It

takes the overlay id of the node as part of the input message and will

destroy the ChordPeer, along with all the components inside that

ChordPeer. The failure of the node will be indicated to the successor

ChordPeer and ultimately to its MEContainer.

To create a node in the Kompics Chord overlay, there is a special message

ChordPeerJoin that can be used. It takes as input the SON ID of the node,

creates a node and will try to join this node into an existing SON. If there

is no already created SON, then it will create one and will make the node

part of this SON. Every node has a MEContainer that is also created as

part of the initialization.

4.4 System Startup

System starts when the MEInitiator gets a request to start an RSM. The

system assumes that underlying SON is already initialized and contains

some valid physical nodes. The request also contains a MEI with RSMID

and replication degree for the RSM. The Initiator, on receiving this message,

creates MERI for each replica by first calculating the symmetric Son Id and

then getting the node address for this SON Id from the Chord overlay as
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Figure 4.4: A simple non-optimized system startup

described in section 3. A simple scenario of system startup is shown in

figure 4.4.

However, with the optimization as proposed in section 3.3.7, the replicas

will choose the lowest ranked replica as the leader and the leader will start

the promise phase, without waiting for the leader election.

4.5 Churn Model

The most important aspect of evaluating our algorithms is to verify its

behavior in extreme churn scenarios. SMART has shown its experiments

with a very basic and simple setup which is enough to understand the

working of the SMART yet may not be enough to understand the scalability

of a system. On the other hand, although Paxos for System builders [19]

has shown paxos with respect to extreme scenario, but they did not involve

failure of nodes in their tests, which is also very important to learn the

scalability of the system.

To experiment the performance of our algorithms in various churn

scenarios, we have used the lifetime-based node failure model [13, 30] with

shifted Pareto lifetime Distribution. The sample java code of this model is

shown below while a sample output of this algorithm is shown in

Figure 4.5.



50 CHAPTER 4. IMPLEMENTATION DETAILS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800  900  1000

Li
fe

tim
e 

(m
in

ut
es

)

Life Number

Lifetime-based churn model

Figure 4.5: Lifetime model with average lifetime=30 and alpha=2

double rand = randomGenerator.nextDouble();

double avgLifeTimeInMinutes = 30;

double alpha = 2;

double beta = avgLifeTimeInMinutes * (alpha - 1);

double base = 1 - rand;

double power = -(1/alpha);

double powerResult = Math.pow(base, power);

double lifetime = beta * (powerResult - 1);

As you can see in figure 4.5, there are very few nodes with longer

life-time, most of the nodes have very short life-time near to 0. Java

Random() function is used to generate uniform random numbers. These

random number are used to calculate lifetime.

The intensity of Churn depends on averageLifeTimeInMinutes

variable. For high churn we used 30 and for low churn we used 150

minutes as its value.
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When a node lifetime is finished, it is removed from the Chord and at

the same time another node with a random Overlay Id is added into the

system. This is to make sure that nodes will go up and down, but the mean

number of nodes will be the same.

4.6 Client Request Model

In the experiments that we conducted, clients (sensors) are making

requests to RSM. For the sake of simplicity, an integer data value is being

replicated over RSM. Every sensor is issuing command to add or subtract

some number from that stored data value. We have chosen this model to

make the execution of the request as quickly as possible while still be able

to watch the consistency of the replicated data.

In our experiments, we have tried to replicate the behaviour of a failure

detector Sensor/Client inside Niche platform. Sensors are generating

request with a modeled request frequency based on lifetime-based node

failure model. This is to abstract the behaviour that Sensors are generting

requests whenever there is some node failure detected. The algorithm of

this model is similar to the one mentioned above for churn. Sample java

code of Sensor’s functionality is shown below:

1. Generate a random request.

2. Sleep for Pareto time, calucated as below:

double rand = randomGenerator.nextDouble();

int avgLifetimeInMs = nicheConfig.getSensorRequestAvgIntervalInMs();

double avgLifeTimeInSec = ((double)avgLifetimeInMs)/1000.0;

double alpha = 2;

double beta = avgLifeTimeInSec * (alpha - 1);

double base = 1 - rand;

double power = -(1/alpha);

double powerResult = Math.pow(base, power);

double finalResult = beta * (powerResult - 1);

int sleepTime = (int)(finalResult * 1000.00);

3. Wake up. Go to step 1.





Chapter 5

Analysis and Results

To evaluate the performance of our proposed model and to show the

practicality of our algorithms, we built a prototype implementation of

Robust Management Elements using the Kompics [29] component model.

In this section we describe our experiments, the methodology of our

experiments and the analysis of the results.

5.1 Testbed Environment

We used Kompics as an underlying framework to develop our prototype and

conduct our experiments. More explanation about compics is described in

section 2.7. Kompics provides an implementation of Chord that we used as

our underlying structured overlay network. It provides lookup and failure

detection facilities and also a unique id for each node including an IP address

and port. This unique id can be used for direct communication with the

destination node.

In order to make network simulation more realistic, we used King

latency dataset, available at [31], that measures the latencies between DNS

servers using the King [32] technique. To experiment the performance of

our algorithms in various churn scenarios, we have used the lifetime-based

node failure model [13, 30] with shifted Pareto lifetime Distribution.

53
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5.2 Methodology

There are various factors in a dynamic distribution environment that can

influence the performance of our approach. Input parameters include

� Numeric (architectural) parameters:

– Number of RSM: 1

– Number of clients: 4

– Overlay size (the number of nodes) in the rage 200 to 600

– Replication degree which varies from 1 to 25. 1 means no

replication (base-line case).

– Fault Tolerance: this is the number of failures that will cause the

RSM to migrate. This can range from 1 to strictly less than half

of the number of replicas.

� Timing (operational) parameters

– Pareto distribution of requests with a specified mean time

between consecutive requests from a client to the RSM. It

ranges from 500ms to 4 seconds.

– Pareto distribution of churn events (joins and failures) with a

specified mean time between consecutive churn events of 30

minutes (high churn rate), 90 minutes (medium churn rate),

150 minutes (high churn rate)

Clients send requests to the RSM that receives the requests, handles

them (i.e. performs all the actions related to replicated state machine and

makes a state transition) and finally replies to requesters. In our tests,

we have enabled pipelining of requests as suggested by SMART. We are

using alpha value equal to 10 i.e there can be 10 requests being handled

by manager in parallel. In all plots, unless otherwise stated, we simulated

8 hours. The plot is the average of 10 independent runs with standard

deviation bars.

We estimate performance of the manager as a request latency which is

a time between sending a request to the manager and receiving a response

from it. We also measure the complexity of the replication (including leader

election and Paxos) and migration (including SMART and our algorithm)
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caused by churn. We estimate the complexity as the number of messages

due to replication and churn.

The base line in our evaluation is the system with no replication and

no churn. We expect that the base-line system has highest performance

compare to performance of a system with replication and with/without

churn, because the replication mechanism as well as churn (migration

caused by it) introduce performance overhead to maintain replication and

to tolerate churn (to migrate SMs).

The difference in performance of the base-line system and a system with

replication indicates the replication overhead and the overhead caused by

churn (if any). There are three kinds of overhead in the system. (i) Paxos

(which happens on arrival of requests to RSM), (ii) SM migration (which

happens on churn), and (iii) leader election (which happens all the time).

All the overheads cause increase in the number of messages and may cause

performance degradation, i.e. increase of the request latency.

5.3 Experiments and Performance

Evaluations

5.3.1 Request Timeline

we conducted our first experiment to present the timeline of a single

request with constant link latency of 1ms. This test setup has a single

RSM with a replication degree 10 and overlay node size 200. Although in

later experiments, the underlying network delay is using King latency

map, yet the idea of this experiment is to show the validity of the

implemented system and a very basic idea about a single request handling.

As shown in figure 5.1, the processing time on each SM is almost zero.

Similar to the above experiment, we conducted another experiment to

show the effect of network delay on the client’s request latency. As shown in

figure 5.2, the request latency increases in propotion to the network delay.

Here also, the network delay is constant and is not based on King Latency

Map [32]
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Figure 5.1: Effect of additional network delay on the latency
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Figure 5.2: Effect of additional network delay on the latency
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5.3.2 Effect of Churn on RSM Performance

To get the effect of churn on the performance of robust management

elements, we conducted experiment as shown in figure 5.3 . This figure

depicts all requests latency for a single client during 8 hours of high churn

rate. Every other parameter was kept constant as described before.

Fault-Tolerance was set to 1 i.e. system will migrate after any replica

failure. The replication degree was set to 10 in this experiment. During

these 8 hours, around 100 replica failure happened. However, the effect of

a non-leader replica failure is minimal and this is because of the

optimization that we did for leader selection during migration. This is

described in section 3.3.7.
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Figure 5.3: Request latency for a single client (high churn)

Out of more than 7000 requests only less that 20 requests were severely

affected. The spike happened when the leader in Paxos algorithm fails.

This is because Paxos can not proceed (assign the request to a slot) until

a new leader is elected. This delay is around 6 seconds on average, and
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mainly depends on the time taken to detect the failure of the current leader

and electing a new leader according to the leader election parameters used

in the simulations. During this time any request that arrive at the RSM

will be delayed. Non-leader failure does not seems to pose much impact on

the performance. In this experiment, a migration due to non-leader replica

takes on average around 300 milliseconds to complete.

5.3.3 Effect of Replication Degree on RSM

Performance

To check the performance overhead due to replication degree, we conducted

various experiments while keeping all the parameters fixed and varying the

replication degree. We changed replication degree from 1 to 25 while keeping

the overlay node size 500, client request frequency as 4 seconds and number

of clients as 4. The effect of replication degree on the client request latency

is shown in figure 5.4. Experiments result data is written in appendix B
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From the figure 5.4, we can see that the replication degree does

increase the request latency if we compare it with the non-replicated

system. However, the situation does not become worse if the replication

degree is increased. Infact, increasing replication degree does not seem to

have any impact over the request latency. This is due to the fact that

processing time on a single replica is almost equivalent to zero. That

means sending a message to one replica or multiple replicas takes the same

amount of time. To further verify this conclusion and keeping in view our

previous experiment about churn effect on the performance, we concluded

that churn (node failures) effect happens severely when a leader replica

fails. So, we performed more experiments with variable replication degree

and calculated the failure count of Leader Replicas. These experiments

were conducted with different churn rates as shown in figure 5.7.

Figure 5.7 shows churn rate has an obvious impact on the leader replica

failures i.e. the higher the churn rate, the more leader replicas will fail.

However, the replication degree does not seems to have much relation with

the leader replica failures.
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To check the impact of replication degree over message overhead we

conducted further experiments. As shown in figure 5.5 replication degree

does increase the message overhead two to three times compared to no

replication. This increase is mainly due to Paxos messages for every

request. These messages further increases if we increase the replication

degree. However, if we compare the message overhead per replica per

minute, then this difference becomes negligible as shown in figure 5.5.

Although, there is still a slight increase in message overhead while

increasing the replication degree. This is because, when the replication

degree is high, there are more replica failures. This is also shown in

figure 5.6. And in addition to that, when the replication degree is high,

there are more messages for migration. However, as shown in 5.6, there

are 50 replica failures for replication degree 5 during 8 hours of simulation

and 100 replica failures for replication degree 10. These are quite low

compared to the Paxos messages due to large number of requests from the

client. So, SMART or migration messages are not putting much impact on

the curve in figure 5.5.
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Figure 5.8: Effect of Replication Degree on Leader Election Messages

The effect of replication degree over leader election messages is shown
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in figure 5.8. As expected, the leader election message increases with

increase in replication degree. In other experiments, the effect of

replication degree on discovery messages and delay is shown in figure 5.9

and figure 5.10. In these figures, Recovery Messages are referred to as

Niche Overhead and similarly Recovery Delay is referred to as Niche

Delay. Recovery messages are those messages that are used to discover a

failed replica due to churn. Whereas, Recovery Delay is the time to

discover a failed replica. The discovery delay decreases with more replicas.

This is because discovering one replica is sufficient and with more replicas

the higher probability to find a close replica (in terms of link latency).

More detail about Recovery Messages and Recovery Delay are

explained in section 5.4.2.

5.3.4 Optimization using Fault Tolerance (Failure

Tolerance)

As shown in figures 5.5, figure 5.8 and figure 5.10, replication degree does

have an influence over the message overhead. The more replication degree

the more number of messages in the system. To reduce these messages and

to further optimize our solution, we did further experiments while increasing

fault tolerance. This optimizaton is discussed in more detail in section 3.3.7.

The result of these experiments is shown in figure 5.11. Fault tolerance of

1 means that the RSM will migrate immediately after a failure while fault

tolerance of 10 means that the RSM will wait for 10 replica failures before

migrating. For making the results more obvious and easy to understand,

we set the request frequency of four clients to 1000ms for this experiment

and used replication degree as 25.

From this figure 5.11, it is clear that increase in failure-tolerance does

decrease the number of messages (Paxos and Migration). This optimization

is important for making our proposal suitable in scenarios with high churn

rate.

5.3.5 Effect of Overlay Node Count on RSM

Performance

In another set of experiments, we tested the effect of overlay node count on

the RSM performance. We kept the replication degree to 10 and the sensor
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Figure 5.11: Effect of Fault Tolerance on Message Overhead (replication
degree = 25)

count to 4 for these experiments. The sensors were making requests with

mean average interval of 4 seconds. The results of these experiments are

shown in figure 5.12 and figure 5.13.

As shown in figure 5.13, overlay node count does not have any impact

over message overhead (SMART+Paxos). However, according to

figure 5.12 increase in overlay node count is slightly increasing the client

request latency. This is due to the fact that if there are more nodes in the

overlay, the replicas will be more widely dispersed inside SON. As we are

using King Latency Map for network delay, so the more dispersed the

replicas are the more time it will take for communicating with each other

i.e. more time for request handling.

5.3.6 Effect of Request Frequency on RSM

Performance

In addition to the above experiments, we conducted another series of

experiments in which we tested the performance of RSM with different
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client’s request frequencies. Normally, in previous experiments,

clients/sensors were making requests to RSM with a mean average request

frequency of 4 seconds. As there were 4 sensors that were making the

requests, so in effect the mean average request frequency was 1 second.

However, in these experiments, the request frequency is changed from

500ms to 2500ms. These settings are made to be sure to overload the

RSMs and get some impact due to request frequency. The result of these

experiments are shown in figures 5.14 and 5.15. We only performed

relevant experiments under this category i.e. Request Frequency Vs.

Leader Election Messages does not make any sense as ELD messages

are higly unlikely to be effected by an increase in request frequency.
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Figure 5.14: Request Latency for variable request frequency

Figure 5.14 shows that when request frequency is around 500ms and 4

sesors are making continous requests based on client request frequency

model 5.3.6, then higher churn has more impact on latency over lower

churns. This is because of the fact that RSM is constantly overloaded by

pending messages and the more the RSM has to migrate, the longer will

be these pending message queue. However, this difference reduces when we

decrease the request frequency to 1000 or beyond. When analyzing these
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Figure 5.15: Recovery Message Overhead for variable request frequency

results, the reader should also take into account the fact that migration

time heavily depends on failure detection and leader election time.

If we analyze the effect of request frequency over message overhead

(SMART+Paxos), it is clearly obvious from figure 5.15 that the higher the

request frequency, the more will be the messages. The shape of the curve

is also due to the frequency request model that clients are using to

generate requests. The detail of this request model is explained in section .

5.4 Summary of Evaluation

In evaluating the performance we are mainly interested in measuring the

message complexity and the time complexity of our approach. The

evaluation is divided in three main categories: critical path evaluation,

failure recovery evaluation, and periodic maintenance of the SON and

leader election.
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5.4.1 Request Critical Path

In this category, we studied the input parameters that has impact on the

time and message complexity related to handling client requests. This

does not include the lookup preformed by clients to discover the replica

set (configuration). This is because it is not on the critical path. Clients

may cache the configuration or periodically update it. For this reason the

performance is not affected by the overlay size because all critical

messages (Paxos and Migration) involve direct links that do not use the

overlay. Leader election messages are also not included for the same

reason and this issue is discussed below.

The effect of churn on performance (request latency) is minimal unless

the system is overloaded with pending messages. As discussed in

section 5.3.2 and shown in Figure 5.3, out of more than 7000 requests only

less that 20 requests where severely affected. The spike is due to leader

replica failure.

The number of critical messages (Paxos and Migration) is affected by

the replication degree. This is because of the Paxos algorithm that

requires more messages to reach consensus with higher number of replicas.

However, as shown in Figure 5.5 if we calculate the message overhead per

replica per minute, difference in message overhead per replica becomes

neglegible for different replication degrees. Only Migration messages then

remains the obvious influencing factor. On the other hand, as shown in

figure 5.4, request latency is not affected due to increase in replication

degree because Paxos requires two phases regardless of the number of

messages. The number of messages is also affected by churn because the

higher the churn the more migration is required.

The number of critical messages is also affected by the fault tolerance

parameter. Higher fault tolerance means that the RSM waits more before

it decides to migrate and thus requires less messages. Figure 5.11 shows the

message overhead for an RSM with 25 replicas and variable fault tolerance.

5.4.2 Fault Recovery

When an overlay node fails another node (the successor) becomes

responsible for any replicas on the failed node. The successor node need to

discover if any replicas where hosted on the failed mode. In the simulation

experiments we used overlay range cast to do the discovery. This process
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is not on the critical path for processing client requests since both can

happen in parallel.

Figure 5.9 depicts the average discovery delay of replica failures for

different replication degree. The discovery delay decreases with more

replicas. This is because discovering one replica is sufficient and with more

replicas the higher probability to find a close replica (in terms of link

latency). As shown in Figure 5.10 higher rates of churn requires more fault

recovery and thus higher message overhead.

5.4.3 Other Overheads

Maintaining the SON introduces overhead in term of messages. We did not

include these messages in our study because they vary a lot depending on

the type of the overlay and the configuration parameters. One important

parameter is the failure detection period that affects the delay between

a node failure and the notification produced by the SON. This delay is

configurable and was not included in the previous section when discussing

the discovery delay.

Another source of message overhead is the leader election algorithm.

Figure 5.8 shows the average number of leader election algorithm for

different replication degree. The number of messages increases linearly

with the number of replicas. This overhead is configurable and affects the

period between leader failure and the election of a new leader. In our

simulations this delay was configured to be maximum 10 seconds. This

delay is on the critical path and affects the execution of requests as

discussed in section 5.4.1.





Chapter 6

Conclusion

In this report, we presented an approach to achieve robust management

elements that will simplify the construction of autonomic managers. The

approach uses replicated state machines and relies on our proposed

algorithm to automate replicated state machine migration in order to

tolerate churn. The algorithm uses symmetric replication, which is a

replication scheme used in structured overlay networks, to decide on the

placement of replicas and to monitor them. The replicated state machine

is used, beside its main purpose of providing the service, to process

monitoring information and to decide when to migrate. Although in this

paper we discussed the use of our approach to achieve robust management

elements, we believe that this approach might be used to replicate other

services in structured overlay networks in general.

6.1 Answers to Research Questions

Let us now address those research questions that I mentioned in the

introduction of this report:
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RQ-01 : Replication by itself is not enough to guarantee long

running services in the presence of continuous churn. This

is because the number of failed nodes hosting ME replicas

will increase with time. Eventually this will cause the

service to stop. Therefore, we use service migration [8]

to enable the reconfiguration of the set of nodes hosting

ME replicas. However, all this process should be self-

automated. How to automate re-configuration of replica

set in order to tolerate continuous churn?

Findings This report proposed a decentralized algorithm 5 that

will use migration to automatically reconfigure the set of

nodes hosting ME replicas. It contains a special module

called Container that exist on all nodes of the overlay

and is responsible for monitoring and detecting changes in

the replica set caused by churn. More detail is given in

section sec:handlingchurn.

RQ-02 : Reconfiguration or migration of MEs will cause extra delay

in request processing. How to minimize this effect?

Findings As described in section 3.3.7, we proposed to reduce

migration time by letting all replicas in a configuration

to choose a common leader before starting the leader-

election process. For example, every replica when starts

choose replica with lowest rank as the default leader. This

would mean to start the prepare face immidiately without

waiting for leader-election to choose a leader. In addition

to that, number of migrations can be controlled using

Fault-Tolerance as described in section 3.3.7.

RQ-03 : Replication of MEs will result in extra overhead on the

performance of the system. How to control this extra

overhead?

Findings Replication of MEs does have an impact on the request

latency if we compare it with a non-replicated ME.

However, in a RSM, increasing this replication degree

further does not increase the request latency as shown in

figure 5.4. This is with the assumption that processing

time of messages on any replica is zero. On the other

hand, SMART and failure replica discovery messsages does

increase due to increase in replication degree. This can be

further controlled and optimized using Fault-Tolerance

as described in section 3.3.7.
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RQ-04 : When a migration request is submitted and decided,

according to SMART, on excution of migrate request,

leader in the configuration will assign its LastSlot, send

JOIN message to host machines in the NextConf and will

propose null requests for all the remaining unproposed

slots until the LastSlot. However, the solution is unclear

if another configuration change request has already been

proposed. It might happen, due to high churn rate, that

multiple configuration change requests are submitted to

the leader at the same time. If two configuration change

will be executed by the same configuration, it could result

in having multiple NextConf with the same ConfID i.e.

duplicate and redundant configuratons. How to avoid this

scenario?

Findings To avoid having this situation, as shown in algorithm 3

and described in section 3.3.6 , everytime a ConfChange

request is executed, it will replace at position r in the

configuration array with the reference of the node who

requested this change. This way, only one NextConf will

be created. This will make sure to avoid any conflicts due

to multiple configurations with the same ConfId and also

to have redundant configurations.

RQ-05 : How to make the system scalable i.e. how to control the

system performance when it is overloaded and churn rate

is high?

Findings When the system is overloaded with client’s requests,

the performance of the system can be optimized by

incrementing the pipeline i.e. the number of requests being

handled in parallel. However, in overloaded scenarios,

the churn or migration effect can become obvious. The

maximum impact of Churn or Migration happens when a

leader replica fails. As shown in figure 5.11, churn effect can

be further controlled using Fault-Tolerance i.e. waiting

for a certain number of replica failures before deciding to

migrate.
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RQ-06 : How overlay node count effects the performance of

replicated MEs?

Findings As shown in figure 5.5, overlay node count does

not seems to have any impact over message overhead

(SMART+Paxos). However, increase in overlay node count

is slighly increasing the client request latency. This is due

to the fact that if there are more nodes in the overlay,

the replicas will be more widely dispersed inside SON. As

we are using King Latency Map for network delay, so the

more replicas will be dispersed, the more time it will take

for communication with each other.

RQ-07 : We have assumed a fair-loss model of message dilvery. That

means, some messages can be lost even when sending them

to alive replicas. How to handle these lost messages.

Findings To increase the probability of handling every message sent

by the clients, every client will submit the requests to each

replica in a RSM. Each non-leader replica, on recieving the

message, will forward the message to the leader replica,

which will ignore duplicate messages. This approach

might result in overloading leader with too many messages,

especially when the degree of replication is large. To avoid

this situation, there is another mechanism that has been

tested. Each recieved message should be tagged with the

recieved timestamp and should be stored by each replica

in a pending requests queue. Periodically, every repica

checks the pending requests queue and if a request has

been in the pending list for a long time, it is retransmitted

to the leader. More detail is described in section 3.3.3 and

algorithm 4. Once the request is decided, it is removed

from the pending list.

RQ-08 : What are the factors other than replication and request

frequency that can influence the performance of a

replicated state machine?

Findings There are many other factors that can influence the

performance of RME system. Most important of these are:

failure detection time (the time to detect a failure), leader

election time, churn rate and the fault-tolerance factor.

If the failure detection and leader election time is short,

it will reduce discovery delay, however, it will put an

extra burden of running these protocol too often i.e. more

messages. So these parameters should be chosen carefully.



6.2. SUMMARY AND FUTURE WORK 75

6.2 Summary and future work

In order to validate and evaluate our approach, we have implemented a

prototype that includes the proposed algorithms. We conducted various

simulation tests that validated our approach and showed its performance

in various scenarios. In our future work, we will integrate the implemented

prototype with the Niche platform to support robust management elements

in self-managing distributed applications. We also intend to optimise the

algorithm in order to reduce the amount of messages and we will investigate

the effect of the publish/subscribe system used to construct control loops

and try to optimise it. In addition to that, we will verify how our proposal

works in overlays other than Chord. This will give us good understanding

of how generic our approach is. Finally, we will try to apply our approach

to other problems in the field of distributed computing.
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Appendix A

How to use our Prototype

We have made a prototype implementation of our proposed model using

kompics framework. A framework for testing has also been implemented

where user can define tests in a file and can run the tests for a longer

duration of time. In this chapter, we will describe how the user can use this

test framework. The package can be provided to the user on request.

A.1 Package Contents

The provided package will contain the follwing important files:

niche.jar Protype implementation of our proposed model.

log4j.properties For defining log level.

tests.in Fefined experiments.

NicheExperiments.class Experiment test framework main class.

Stats.class Class to calcualte the result statistics.

TestResult.class Class to process the results.

A.2 Defining Experiments

A test framework is provided with our protype that can be used to run a

batch of experiments. These experiments are defines in file tests.in. The
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sytax to define tests is as follows:

TestCycles

OverlayNodeCount

ReplicationDegree

TolerateFailures

SensorCount

SensorStartDelayInMin

SensorRequestAvgIntervalInMs

TestDurationInMin

nodeAverageLifeTime

linkLatency

seed

F-ReplicaNumber-Interval

Here is the decription of the parameters;

TestCycles Number of cycles for a particular test.

OverlayNodeCount These number of nodes will be created in Kompics

Chord overlay before starting the experiment.

ReplicationDegree Number of RMEs in an RSM.

TolerateFailures This will instruct the experiment to weight for give

number of failure of replicas in an RSM before deciding to migrate.

SensorCount Number of clients/sensors making the requests to the RSM.

SensorStartDelayInMin Delay for the sensors before starting the

requests. Sensors should be started after enough time e.g. 60

minutes, for the system to initialize itself properly.

SensorRequestAvgIntervalInMs Sensor request frequency depends

upon this parameter. This specifies the mean average interval

between two requests of the sensor. The sensor request model is

defined using life-base model with shifted pareto distribution.

TestDurationInMin Test Duration in Minutes. Test duration starts after

the sensors start making the requests.
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nodeAverageLifeTime This is an alpha value for lifetime-based node

failure model [13, 30] with shifted Pareto lifetime Distribution. Used

to generate Churn in the system. A zero value means no churn.

linkLatency Should be set to 0. 0 means the King [32] technique.

Otherwise the specified value will be used as latency for every link in

the system.

seed A random value for the initialization of the system.

F-ReplicaNumber-Interval should be set to NoExplicitFailure.

A test file tests.in is provided with the package and it already has

some sample defined experiments. A chunk of experiments, from this file, is

shown below. In these experiments, we are testing the effect of replication

degree on the system. The replication degree varies from 1 to 25 while 1

means no replication.

1 500 1 1 4 60 4000 480 0 0 0 NoExplicitFailure

1 500 5 1 4 60 4000 480 0 0 0 NoExplicitFailure

1 500 10 1 4 60 4000 480 0 0 0 NoExplicitFailure

1 500 15 1 4 60 4000 480 0 0 0 NoExplicitFailure

1 500 20 1 4 60 4000 480 0 0 0 NoExplicitFailure

1 500 25 1 4 60 4000 480 0 0 0 NoExplicitFailure

A.3 Defining Log Levels

User can define log levels for the experiment inside log4j.properties

file. This file is provided as part of the package. The main module of the

experiments is log4j.logger.se.kth.niche whos level is set to OFF.

The user can increase the loglevel by changing its value. The available log

levels are: TRACE, DEBUG, INFO, WARN, ERROR, FATAL.

When the tests are executed, the results and logs will be generated in a

folder named “Log“. This Log folder will be created in the same directory

as the executable jar file. Some of the important log files are:

smart.log This will log information about the migrations and replica

failures happening inside the system.
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niche.log General logging of the system

nichedelay.log Logging recovery delay for each replica failure.

sensorXXX.log Information about sensor requests and the latency of each

request is logged here.

Once a test is complete, a subdirectory inside Log will be created and

these log files will be moved to that directory.

A.4 Running Experiments

After defining the experiments, the user can start the tests using the

following command.

>>java -jar NicheExperiments tests.in

If the tests has been defined in a file different than tests.in, provide

the name of that test file instead of tests.in above.

A.5 Collecting Results

All the defined tests in the file are executed in sequence. If any of the test

is complete, it’s result will be logged in file Tests.result with its unique

testId. The result of an experiment is a single line and consists of following

values in the sequence described:

TestCycles

OverlayNodeCount

ReplicationDegree

TolerateFailures

SensorCount

SensorStartDelayInMin

SensorRequestAvgIntervalInMs

TestDurationInMin

nodeAverageLifeTime

linkLatency
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seed

totalSensorRequest

averageRequestLatency

averageLinkDelay

averageNicheDelay

nicheMsgCountPerReplicaPerMinute (Paxos+SMART)

nicheEldMsgCountPerReplicaPerMinute

nicheRecoveryMsgCountPerReplicaPerMinute

leaderReplicaFailureCount

nonLeaderReplicaFailureCount

unknownReplicaFailureCount

Decription of these results values are:

TestCycles Number of cycles for a particular test.

OverlayNodeCount These number of nodes will be created in Kompics

Chord overlay before starting the experiment.

ReplicationDegree Number of RMEs in an RSM.

TolerateFailures This will instruct the experiment to weight for give

number of failure of replicas in an RSM before deciding to migrate.

SensorCount Number of clients/sensors making the requests to the RSM.

SensorStartDelayInMin Delay for the sensors before starting the

requests. Sensors should be started after enough time e.g. 60

minutes, for the system to initialize itself properly.

SensorRequestAvgIntervalInMs Sensor request frequency depends

upon this parameter. This specifies the mean average interval

between two requests of the sensor. The sensor request model is

defined using life-base model with shifted pareto distribution.

TestDurationInMin Test Duration in Minutes. Test duration starts after

the sensors start making the requests.

nodeAverageLifeTime This is an alpha value for lifetime-based node

failure model [13, 30] with shifted Pareto lifetime Distribution. Used

to generate Churn in the system. A zero value means no churn.
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linkLatency Should be set to 0. 0 means the King [32] technique.

Otherwise the specified value will be used as latency for every link in

the system.

seed A random value for the initialization of the system.

totalSensorRequest Average Total number of request that each sensor

made .

averageRequestLatency Average request latency of each request by each

sensor.

averageLinkDelay Average link delay between sensor and the replica.

averageNicheDelay Average discovery delay for all replica failures.

nicheMsgCountPerReplicaPerMinute Message overhead

(SMART+Paxos) per replica per minute.

nicheEldMsgCountPerReplicaPerMinute Message ovheard (leader

election) per replica per minute.

nicheRecoveryMsgCountPerReplicaPerMinute Message overhead

(recovery messages) per replica per minute.

leaderReplicaFailureCount number of times the leader replica failed.

nonLeaderReplicaFailureCount number of times non-leader replica

failed.

unknownReplicaFailureCount some times are replica is failed even

before becoming part of any configuration. So we put that replica

into this category.

A detail result of each test is also logged in file

Monitor testId.result.
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Experiment Result Data

B.1 Variable Replication Degree

Fixed Test Parameters:

Replication Degree = 500, Fault-Tolerance = 1, Sensor Count = 4, Sensor

Request Frequency = 4000, Test Duration = 8 hours.

Table columns:

Replication Degree, Churn Rate, Total Client Requests, Avg Request

Latency, Avg Discovery Delay, Avg Msg Overhead, Avg Leader Election

Msg Overhead, Avg Discvoery Msg Overhead, Avg Leader Replica Failure,

Avg Replica Failure

1 0 29067 134.27 0 121.11 0 0 0 0

5 0 28729 276.92 0 287.3 432.49 0 0 0

10 0 28357 303.97 0 289.48 928.71 0 0 0

15 0 28612 295.44 0 294.08 1420.96 0 0 0

20 0 28407 284.56 0 292.95 1911.99 0 0 0

25 0 28654 272.31 0 296.1 2399.4 0 0 0

5 30 28548 258.09 626.73 285.27 410.45 1.99 11.9 45.2

10 30 28761 349.97 619.28 297.17 849 5.53 10.15 97.85

15 30 28864 298.94 465.96 301.14 1207.29 6.05 10.43 138.43

20 30 28649 363.11 530.36 309.99 1621.92 9.53 8.64 194.82

25 30 28761 380.41 451.87 320.46 1975.36 11.07 13.25 236.85
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5 90 28801 264.11 616.96 288.72 427.06 0.81 6.67 20.67

10 90 28773 339.12 560.82 294.96 881.63 2.04 4.79 46.43

15 90 28589 306.34 435.02 299.38 1356.73 2.65 4.64 70.86

20 90 28874 319.9 478.15 309.84 1842.23 4.5 6.21 97.43

25 90 28801 283.09 397.43 314.9 2268.62 4.95 5.27 122.88

5 150 28528 256.04 666.33 286.36 434.09 0.52 3.29 13.36

10 150 28529 299.67 628.73 293.34 911.23 1.96 3.21 31.71

15 150 28523 272.06 437.79 298.26 1385.97 1.86 4.21 51.5

20 150 28362 284.76 486.28 302.39 1876.76 3.09 3 71.79

25 150 28531 306.95 394.85 307.99 2342.49 3.11 3.92 81.15
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