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Abstract
The past years have shown an increasing demand to process data of various
kinds and size in real-time. A common representation for many real-world
scenarios is a graph, which shows relations between entities, such as users of
social networks or pages on the Internet. These graphs increase in size over
time and can easily exceed the capacity of single machines.
Graph partitioning is used to divide graphs into multiple subgraphs on dif-
ferent servers. Traditional partitioning techniques work in an offline manner
where the whole graph is processed before partitioning. Due to the recently
increased demand for real-time analysis, online partitioning algorithms have
been introduced. They are able to partition a graph arriving as a stream, also
referred to as a streaming graph, without any pre-processing step.
The goal of a good graph partitioning algorithm is to maintain the data lo-
cality and to balance partitions’ load at the same time. Although different
algorithms have proven to achieve both goals for real-world graphs, they often
require to maintain a state. However, modern stream processing systems, such
as Apache Flink, work with a shared-nothing architecture in a data-parallel
manner. Therefore, they do not allow to exchange information along with par-
allel computations. These systems usually use Hash-based partitioning, that
is a fast stateless technique but ignores the graph structure. Hence, it can lead
to longer analysis times for streaming applications which could benefit from
preserved structures.
This work aims to develop a state-sharing parallel streaming graph partitioner
for Apache Flink, calledWinBro, implementing well-performing partitioning
algorithms. In order to do this, existing streaming graph algorithms are stud-
ied for possible implementation and then integrated into WinBro.
For validation, different experiments were made with real-world graphs. In
these experiments, the partitioning quality, and partitioning speed were mea-
sured. Moreover, the performance of different streaming applications using
WinBro was measured and compared with the default Hash-based partition-
ing method.
Results show that the new partitionerWinBro provides better partitioning qual-
ity in terms of data locality and also higher performance for applications with
requirements for locality-based input data. Nonetheless, the Hash-based par-
titioner shows the highest throughput and better performance for data locality-
agnostic streaming applications.
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Sammanfattning
De senaste åren har det skett en ökande efterfrågan på att bearbeta data av oli-
ka sorter och storlek i realtid. En vanlig representation för många scenarier är
diagram som visar relationer mellan enheter, till exempel användare av sociala
nätverk eller sidor på Internet. Dessa grafers storlek ökar över tiden och kan
enkelt överstiga kapaciteten hos individuella maskiner.
Grafpartitionering används för att dividera grafer i flera delgrafer på olika serv-
rar. Traditionella partitioneringstekniker fungerar offline, där hela grafen be-
arbetas före partitionering. Baserat på den nyligen ökade efterfrågan på real-
tidsanalys har online-partitionsalgoritmer introducerats. De kan partitionera
en graf som kommer strömmande, även kallad ett strömmande diagram, utan
förbehandling.
Målet med en bra grafpartitioneringsalgoritm är att behålla datalokalitet och
balansera partitionernas belastning samtidigt. Även om olika algoritmer har
visat möjligheten att uppnå båda målen för realvärldsgrafik, behöver de ofta
behålla ett tillstånd. Moderna strömbehandlingssystem, som Apache Flink, ar-
betar emellertid med en gemensam-ingenting-arkitektur på ett data-parallellt
sätt. Därför tillåter de inte att utbyta information under parallella beräkningar.
Dessa system brukar använda Hash-baserad partitionering, vilket är en snabb
tillståndslös teknik men ignorerar grafstrukturen. Därför kan det leda till läng-
re analystider för strömmande applikationer som kan dra nytta av bevarade
strukturer.
Detta arbete har som mål till att utveckla en tillstånsdsdelande, parallellström-
mande grafpartitionering för Apache Flink, kallad WinBro, som implemente-
rar välpresterande partitioneringsalgoritmer. För att nå målet studeras befintli-
ga strömmande grafalgoritmer för möjlig implementering och sedan integreras
i WinBro.
För validering görs olika experiment med realvärldsgrafik. I våra experiment
mäter vi partitioneringskvaliteten och partitioneringshastigheten. Dessutom
kvantifierar vi prestanda för olika strömmande applikationer medWinBro och
jämför den med en standard Hash-baserad partitionsmetod.
Resultat visar att den nya partitionern WinBro ger bättre partitioneringskva-
litet när det gäller datalokalitet och även högre prestanda för applikationer
med krav på lokalitetsbaserad inmatningsdata. Alternativt visar den Hash-
baserade partitionen den högsta genomströmningen och bättre prestanda för
datalokalitets-agnostiska strömmande applikationer.
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Chapter 1

Introduction

During the last two years, 90 percent of all ever created data was produced
[1]. Dealing with data of this size is a great challenge in information tech-
nology. Especially real-time analyses are increasingly important, for example,
to detect credit card fraud or trends in social media. In this context, graphs
play an important role because they can represent many real-world problems
and scenarios. Graphs consist of vertices (nodes) and edges. While vertices
usually represent objects or persons, edges connect vertices and symbolize re-
lationships of any kind. For instance, the friendship graph of social network
Facebook consists of over 1 billion users (vertices) and 140 billion friendships
(edges) between them [2].
Analyzing real-world graphs of such size is not trivial because they are often
too big to be processed or even stored on a single machine. Thus, partition-
ing techniques are used to divide graphs into multiple subgraphs on different
servers. This task is especially challenging when graphs must be processed
while they are still evolving, i.e. in real-time. This is also referred to as stream-
ing graphs since their edges and vertices are continuously added or removed.
Today, there exist different algorithms to partition these streaming graphs, such
as HDRF or DBH.
However, stream processing systemswhich can process graphs, such asApache
Flink, are still missing a data-parallel partitioning algorithm providing good
partitioning quality. Thus, this thesis aims to scale-out existing centralized
partitioners and to develop a parallel streaming graph partitioner for Apache
Flink.

1
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1.1 Motivation
The combination of two different trends experienced increasing attention in in-
dustry and research: (a) Processing large graphs, and (b) streaming data analy-
sis [3, 4]. When working with streaming graphs, applications have to flexibly
handle graph data. It cannot be assumed how large, densely connected, or
structured these graphs are. Thus, especially partitioning and processing large
streaming graphs is a challenge.
Modern stream processing systems, such asApache Flink, useHash-based par-
titioning as a default technique to divide graphs to parallel working machines.
Hashing allows assigning vertices or edges with their hash values very fast but
ignores the graph structure. The consequence is a short partitioning period
but a longer computation phase for the applications which rely on an intact
graph structure. To address this problem, different algorithms for real-world
networks were developed in the past, such as HDRF or DBH. They provide
better partitioning quality in terms of low graph cuts because they maintain
locality by keeping neighboring vertices in the same partitions. The downside
of these algorithms is their need to maintain a state, e.g. a table with vertex
degree information [3]. This is not complicated on a single machine. How-
ever, when the computation is done in parallel on large graph sets, this state
information needs to be exchanged between machines.
Recent research has shown that there is an interest in partitioning graphs in a
streaming environment. Furthermore, to partitioning graphs with billions of
edges is generally feasible, as shown by [5]. Both single and parallel parti-
tioners have already been integrated into stream processing systems, such as
Apache Flink. But there is not yet a parallel partitioner available which pro-
vides good results in a shared-nothing environment.

1.2 Objective
Derived from the motivation, the goal of this thesis is to develop this stream-
ing graph partitioner with data-parallel computations in a pure streaming en-
vironment framework, using existing partitioning algorithms. In detail, the
following objectives are planned:

To study existing streaming graph partitioning algorithms and identify those
which are suitable for unbounded streams while giving good results.

To study different state sharing techniques in Apache Flink and determine
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which of them can be used for efficient state sharing with streaming
graph partitioning algorithms.

To develop a parallel streaming graph partitioner for a stream processing sys-
tem with shared-nothing infrastructure

To evaluate the developed partitioner with experiments with real-world graph
data sets for measuring the performance based on the following criteria:
partitioning quality, partitioning speed and overall run time for graph
applications, such as Connected Components Labeling or Bipartiteness
Check. These results are compared with the performance of a regular
Hash-based partitioner.

1.3 Contributions
This thesis comes with the following main contributions:

- A study of state of the art online graph partitioning algorithms with a fo-
cus on their usability for unbounded streaming graphs in a data-parallel
context.

- The introduction of WinBro, a new parallel partitioning framework for the
stream processing system Apache Flink. It is fully integrated with the
Flink, and yields a partitioned Data Stream of Edges which can be used
as input for applications in Flink. Its main advantage is that it computes
partitions in a data-parallel manner along the stream pipeline, and does
not need a shared state architecture or non-parallel operations for this.

- Parallel versions of two well-performing centralized online graph partition-
ers, namely HDRF and DBH, integrated into WinBro.

- An evaluation ofWinBro’s performance. Experiments in a fully-distributed
Flink cluster show that WinBro delivers better partition quality than
Hash on different real data sets, from a few million to 2.6 billion edges.
Also integrated into streaming applications with a need for locality-
based input data, the overall edge throughput is higher.
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1.4 Limitations
Although this thesis has different contributions, some aspects can be consid-
ered shortcomings and delimit this work:

- The graph data sets and all experiments assume only growing graphs with
an increasing number of edges, thus no edges are removed in the stream.
Furthermore, every edge is streamed only once.

- All experiments were run on four physical servers so that any parallelism
greater than four implied shared computing resources, i.e. no propor-
tional scalability. Consequently, results based on higher parallelism are
not representative in terms of performance.

- Both selected algorithms DBH and HDRF require state information to as-
sign partitions. With regard to scalability, this limits the parallelism of
WinBro to the available server resources because this state is replicated
on all parallel instances.

- The two largest graph test sets (Twitter, Friendster) could not be partitioned
with parallelism eight or higher. Furthermore, successful experiments
with these two data sets only ran successfully twice, lowering the sig-
nificance of the experiments.

- WinBro’s network-intensive broadcast approach is practically bounded to
local area networks because geographically distributed computations
would cause high latency.

1.5 Methodology
This thesis uses different methods to meet the objectives presented in the pre-
vious section. A literature review is done to collect the state of the art in
relevant. This includes 1) graphs, 2) streaming graph partitioning algorithms,
and 3) stream processing systems. Based on this background information, the
intended partitioner is designed and implemented. To finally validate the per-
formance of this new partitioner, experiments are conducted, i.e. an empirical
study is done.
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1.6 Ethics and Sustainability
This thesis focuses on graph partitioning, a pre-step for data analysis. As writ-
ten in the introduction, graphs can model various real-world scenarios. When
persons are represented in graphs, these graphs can often contain sensitive in-
formation, thus privacy is very important. This concerns both legal and moral
issues. A legal framework on how to collect and process data in the European
Union is the General Data Protection Regulation which is in place since 2018
[6]. For this thesis, only anonymized data sets were used, so that graph ver-
tices consist of numbers without indication to personal information.
Another aspect of data processing is security, implying how securely data is
stored or transferred [7]. This issue is especially important when sensitive data
is processed. Last, the environmental aspect is important for large data sets
which are usually stored in data centers. According to Jones [8], their demand
for electricity will reach around 7 percent of the overall electricity worldwide
by 2030. Thus, it is important to reduce the consumption of resources here.
The partitioner presented in this thesis is designed to decrease the run time
of streaming graph applications. Hence, it helps to increase the efficiency of
these applications and finally saves energy.

1.7 Structure of the Thesis
The thesis first provides relevant theoretical concepts in the background chap-
ter, covering graphs, graph streams, and stream processing systems including
Apache Flink. Related Work presents the state of the art in the area of graph
partitioning concepts and algorithms. Chapter 3 presents the concept and de-
sign of WinBro, followed by Chapter 4 which describes the implementation
of WinBro into Apache Flink
The experimental setup with explanations and metrics is elaborated in Chapter
5, followed by Chapter 6 where the results of these experiments are presented
and discussed. In the end, Chapter 7 closes the thesis with Conclusion and
Future Work.



Chapter 2

Background

This chapter presents the theoretical background of important concepts to cre-
ate a basis for all subsequent chapters. First, graphs are introduced in general,
followed by data and graph streams and stream processing systems including
an overview of Apache Flink. Thereafter, the state of the art in streaming graph
partitioning and related work are presented in Sections 2.5 and 2.8.

2.1 Introduction to Graphs
The research area of graph theory is a well-studied field in mathematics and
applied to several research areas, such as biology, social science or physics.
This section briefs about the most important graph-related areas of this thesis.
A graph G consists of two disjoint sets, a vertex set V(X) of size n and an
edge set E(X) of size m. When two vertices are directly linked, an edge is
formed. These vertices are often referred to as source vertex and target vertex,
respectively. Thus, they are adjacent to each other, or simply called neighbors.
When graphs are illustrated, it is common to use diagrams [9], as in Figure 2.1.
It shows a simple graph with four vertices, connected with four edges. It is
called simple because it has neither vertices looping to themselves nor multiple
edges between two vertices Newman [10].

Figure 2.1: Simple undirected graph

6
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In addition to simple connections, Bondy, Murty, et al. [11] show that graphs
can be directed or undirected. While the graph above is undirected, it is also
possible to indicate orientation with arrows, i.e. pointing from source to tar-
get vertex. Directed graphs are common in different application areas, but also
used for Page Rank, a metric to compute the importance of a website, intro-
duced by Google [10]. However, this thesis only deals with undirected graphs.
Thus, this topic is not further elaborated.

Centrality

Newman [10] defines centrality as "how important vertices (or edges) are in a
networked system". There exist different interpretations of centrality in graph
theory, for instance, Eigenvector centrality or Betweenness Centrality. Among
these different metrics,Degree Centrality is one which can be calculated with
ease. The degree of a vertex is defined as "the number of edges attached to it"
[10]. When setting this in relation to the total number of vertices in a graph,
the result is normalized degree centrality.

Subgraph

A graph can be divided into multiple subgraphs, where edges of the subgraph
are also edges of their supergraph. Thus, when parts of a graph are sepa-
rated from each other, different subgraphs exist. This is important for both
graph partitioning and parallel graph streams. Assuming that subgraphs do
not change when being partitioning or processed, they can be reconstructed to
the initial super graph. Formally, Godsil and Royle [9] define a subgraph Y
of graph X as shown in Equation 2.1:

V (Y ) ⊆ V (X), E(Y ) ⊆ E(X) 2.1

Power-Law Graph

Many real-world graphs follow a near power-law degree distribution [10] [12].
When plotting the degrees in a logarithmic scale, they form a slope, as visible
in Figure 2.2 from Twitter social network. This representation shows that only
a very small number of nodes n has a high centrality C(n) whereas the major-
ity has only a few neighbors, i.e. followers. These kinds of networks are also
known as "scale-free networks" [10], and very common in social networks, but
also in many other areas. However, this topic has some controversy because
many graphs are statistically not fully scale-free as this paper from Klarreich
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[13] investigates. Nonetheless, for this work’s research, this mathematical dis-
cussion is not too relevant. Section 2.8 will show that partitioning power-law
graphs is a special challenge and how this is achieved.

Figure 2.2: Power-Law Degree Distribution of Twitter [14]

The metric to determine whether a graph follows power-law degree distribu-
tion is the constant power-law exponentα. Equation 2.2 shows the probability
of a vertex to have a certain degree d. When α→ 0, the density of a graph is
high and the degree distribution is not skewed. The opposite happens when α
→∞, where only a few vertices have the majority of all connections. Then
these vertices can also be called hubs. In fact, the power-law exponent of most
real-world graphs ranges between 2 and 3. [10]

P (d) = d−α 2.2

2.2 Data Streams and Graph Streaming
This section introduces to graph streams and considerations when processing
them. But since graph streams are technically data streams, this concept is
introduced first. Section 2.3 covers different stream processing frameworks
which are used to work with such streaming graphs.
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2.2.1 Data Streams
In the context of data stream processing, the term stream refers to that ele-
ments are continuously sent record-by-record, potentially unbounded. One
stream element can be simple (e.g. a number or a word) but can also be more
complex, e.g. a Facebook post including its metadata. It is possible to pro-
cess them only once, known as single pass, or multiple times. No matter how
often stream records arrive, one challenge of data stream processing is how
to store and aggregate information. Due to data streams’ unbounded nature,
servers can quickly reach their storage limits, so that saving the whole stream is
not advisable. Instead, different techniques exist to get insights into streaming
information.

A synopsis does not store every element but maintains a state of one or more
desired metrics, for example, a maximum value of a stream. Thus, every
element is inspected whether this condition is met and the variable is
adjusted accordingly.

Windows can be used as an alternative or complement to synopses. A win-
dow can be considered as "temporary buffer [...] to split an unbounded
data stream into a smaller batch of tuples" as defined by Sajjad et al.
[15], where a tuple is one stream record.

The scope of a window can be different:

A common implementation is time-based with a distinction between tum-
bling and sliding windows. Tumbling windows have a fixed time with-
out overlapping stream elements whereas sliding windows also have a
fixed time but can be overlapped. A simple example for a tumbling win-
dow is to compute an average for every 60 minutes. In contrast, a sliding
window computes a new average every ten minutes over the last 60 min-
utes.

Fixed sizedwindows evict elements once their buffer is full, e.g. 50 elements.

2.2.2 Graph Streams
A graph stream consists of a potentially unbounded number of edges or ver-
tices arriving one-by-one in a continuous manner. It is possible to represent
streaming graphs in three different ways:

Edge-only streams consist of edges, arriving in any order.
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Combined Vertices and Edges streams have two different streams, one of
vertices, one of edges.

Triplet streams carrying source and destination vertex as well as a value as-
signed to them, such as the weight or other indicators.

The order of graph steams can be random but two different models are usual
- Incidence Model and Adjacency Model [10]. In case of an incident-based
model, a vertex arrives with all its connected edges, i.e. its neighbors, at the
same time. In a pure streaming context, this approach is unsuitable because
the number of edges and their connections is not known in advance. Thus,
the Adjacency model more common. Here, edges arrive in any order without
further dependencies. Nevertheless, storing the whole graph can quickly ex-
ceed the processing servers’ capacities, similar to data streams. For graphs,
the Semi-Streaming Model [16] attempts to lower the space required for graph
streams by exploiting the observation that most graphs have a significantly
lower number of vertices than edges. Hence, storing vertices only reduces the
demand for memory.

2.3 Stream Processing Systems
Beforemoving to the graph partitioning section, this section provides an overview
of different stream processing systems which are capable of handling stream
graphs. It is also justified why the choice of a processing system for this imple-
mentation is Apache Flink. Moreover, Flink is presented in more detail with
a focus on streaming and graph partitioning as well as state management.

2.3.1 Stream Processing Frameworks
With the rise of big data and the need to compute new data with latency after
its creation, several stream processing systems have evolved. Stepping back
to the year 2008, Dean and Ghemawat [17] introduced the MapReduce pro-
gramming framework which enables run programs in parallel on large clusters
with commodity machines. Its two main operators map and reduce first dis-
tribute subtasks of bigger analysis jobs to parallel worker nodes, and second to
combine them again and the end. As a result, the overall computation time is
reduced. Hadoop [18], the most popular framework of this kind, was the ba-
sis for the following tools. Apache Spark [19] makes calculations faster with
in-memory data storage instead of writing intermediate results to disks. How-
ever, both systems process batches of data and are not suitable for real data
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streams which process records one-by-one. Consequently, the developers of
Apache Flink, Carbone et al. [20], introduced a real streaming framework in
2015 which is also compatible with batch processing.
Today, there exist more alternatives, both proprietary and open-source, but
Flink and Spark are among the most famous and established ones. In the past,
several performance benchmarks between Flink and Spark were performed
[21] [22] [23], giving different results. This thesis, however, does not aim
to conclude which framework works fast but which one is more suitable for
(graph) stream processing. Thus, the processing technique is relevant. Apache
Spark processes elements in batches and when referring to streaming, it pro-
cesses them in micro-batches [24]. Consequently, records are not streamed
one by one but in (very) small groups. Flink instead streams records internally
record-by-record. Thus, it is a pure stream processing system and is used for
the implementation in the next chapter.

2.4 Apache Flink
Apache Flink is an open-source data processing framework which allows both
batch but especially stream processing. Figure 2.3 shows the Apache Flink
Stack with Flink’s different layers. Starting from the bottom, Flink can be
run in different environments, such as local, distributed and also in a (public)
Cloud setup. Its core is the runtime with the Distributed Streaming Dataflow
which is explained later in this section. For batch processing exists a DataSet
API whereas data streams are processed with the DataStream API. These ap-
plication programming interfaces (API) are enriched with different libraries,
for example for tables or machine learning but alsoGelly for graph processing.
Unless differently marked, this chapter is based on Carbone et al. [20] and the
official documentation [25]. Since this work is about streaming, all described
concepts refer to the Streaming API or are generally applicable to Flink.
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Figure 2.3: Apache Flink Stack [26]

2.4.1 Dataflow Graph & Job Execution
A Flink program, usually referred to as Flink Job, is commonly displayed as
Dataflow Graph in the form a directed acyclic graph (DAG) containing one
or more sources, transformations (operators), and one or more sinks. A sam-
ple graph is presented in Figure 2.4. Source functions can read from files or
other sources. Typical transformations instead use the input data and compute
according to the instructions. When all calculations are completed, stream
elements are sent to the sink operator.

Figure 2.4: Sample Dataflow Graph [27]

Most of the job operators can be run in parallel. This is where coordination
is required, solved by Flink with a master-workers architecture. The master is
called Job Manager and the workers are Task Managers. Every task man-
ager is a Java Virtual Machine (JVM) and performs tasks and subtasks as-
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signed to it. A task is created based on the operators from the Dataflow Graph.
resulting in parallel, distributed execution of the Flink job.

2.4.2 Windowing Streams
An important feature of data streams in Flink are windows. To fully exploit
their functionality, different prerequisites are required, such as setting a notion
of time and a keyed stream. Both concepts are explained in the following,
before Flink’s implementation of windows is further elaborated.

Notion of Time

When processing data streams in Flink, different time notions can be used for
different purposes. They are presented below:

Event Time: When it is important to consider the actual moment when an
event happened, the event time notion is used in Flink. So, when data
comes with a timestamp, this can be extracted and Flink processes the
record in accordance with the actual event. For instance, when sensor
data arrives with a certain latency but the original time of the measure-
ment matter, event-time is the preferable choice.

Ingestion Time: In contrast to event-time, ingestion time is the moment
when a data record is registered in Flink after arrival.

Processing Time: The last notion of time is processing time. In this case,
the current processing time of Flink matters. This method can be used
without synchronization among task managers and is fast but can lead to
out of order processing of records which were subsequent in the source
system. Depending on the application, this can be disadvantageous.

KeyBy Function

By keying a stream, Flink has an entry point on how to distribute streams
across task managers for different operators in the beginning. To key a stream,
a user-defined function can be written or different pre-defined options can be
chosen from. Keyed streams are also important for windows, as shown in the
next section.
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Windows

As presented in Section 2.2windows are an important technique for data stream
processing. Consequently, Flink takes advantages of them, too. All windows
require a keyed data input if parallel task execution is desired.
Thewindow types in Flink are tumbling, sliding, session and global. While the
first three types were presented earlier, the global session is briefly described:
All windows with the same key are assigned to the same window. This ap-
proach enables custom trigger and eviction functions. With these functions, it
is possible to create custom rules or policies.
Once items of a window are evicted, a process function is used to perform
certain actions. Without detailed explanations, it is possible to use them for
reduce, fold, or aggregate functions. Moreover, custom process functions
can be defined.

2.4.3 Sharing State
Flink offers various ways of sharing state along the dataflow graph. This is
an important feature of Apache Flink because all tasks are executed strictly in
parallel and there is no shared state across them unless a state sharing mecha-
nism is configured. Thus, there is no communication between parallel-running
operators even if the task managers are located on the same physical machine.
Generally, one can distinguish between data-parallel and task-parallel exe-
cution. A data-parallel execution strategy allows to partition data to task man-
agers and to concurrently perform the same calculations on this partitioned
data. Task-parallelism refers to simultaneous computations of different tasks
and operators on the same or on different data sets. [28]
The strategies to share state are different and range in their complexity. Besides
simple data forwarding between operators along the pipeline, it is possible to
broadcast state and send it to all other task managers working with the same
operator. Furthermore, the state can be stored per key or operator on a lo-
cal task manager. Moreover, different backend state solutions are provided by
Flink to handle very large state or to ensure fault-tolerance. [28]

2.5 Graph Partitioning
The rising amount of data combined with higher computational power comes
to a challenge: big graphs often exceed single machines capacities’ to process
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or store them. An often-cited research paper by Stanton and Kliot [4] points
out important aspects of graph partitioning:

NP-Hardness: It is an NP-hard problem to achieve optimal load balance and
minimize the number of cuts in the graph structure. NP-hard describes
the impossibility to solve a problem that satisfies both conditions [29].
Consequently, existing partitioning algorithms attempt to either perform
well on one of these two extremes, or at least to find a compromise.

Locality: Locality in real-world graphs results usually results in good "nat-
ural partitioning". Hence, it is preferable to keeping clusters intact by
assigning them to the same partition. By cutting edges or vertices in a
purely random way, communities are destroyed with high probability.

Cost: Communication cost on machine level is lower than communication
across servers. Even in local area networks, "latency is measured in mi-
croseconds while inter-process communication is measured in nanosec-
onds" [4]. Thus, communication overhead across machines over the net-
work should be as low as possible.

In addition to these aspects, two other general paradigms are important for
graph partitioning. The first one refers to whether to partition edges or vertices.
The second one is about online and offline partitioning. They are presented in
the following two subsections.

2.5.1 Online and Offline Partitioning
Depending on the environmental setup and use case, graphs can be parti-
tioned offline and online. Offline partitioning is a more traditional approach
and assumes that the graph data set is fully available before partitioning pro-
cess starts. For instance, the total number of edges and vertices is known and
identifiable. Many frameworks and algorithms, such as METIS [30] take this
information as an input for their computation. In stark contrast to this, online
partitioning assumes that graph data continuously arrives in the target system
and must be partitioned incrementally. In today’s world, streaming graphs are
very common but their behavior cannot be predicted. Thus, when edges and
vertices arrive, they might change the structure of a graph. For example, when
observing trending topics on Twitter, an unexpected event could become pop-
ular and would have an impact on the overall "Like" and "Retweet" structure.
Another aspect of streaming graphs is that the total graph size is unknown and
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potentially unlimited because events and likes occur in the future.
A side effect of little graph knowledge in online partitioning is that a statemust
be maintained. This may be degree information, vertex or edge assignment or
partitioning loads. Managing state is less relevant for offline partitioning be-
cause it can use knowledge about the graph and also iterate over graphs for
better results, whereas online partitioning focuses on a one-pass strategy due
to the streaming setup. Summarized, online partitioning deals with several
uncertainties that offline partitioning does not have.
Table 2.1 shows the characteristics of both techniques, based on [4, 3]. Es-
pecially implications of online partitioning characteristics are relevant for Re-
lated Work and Implementation.

Table 2.1: Offline and Online Graph Partitioning

Characteristic Offline Online
Graph knowledge full and a-priory incremental, no prior

Partitioning based on full graph subgraph & aggregations

State management less relevant with
to prior knowledge

maintain with
communication overhead

Development paradigm METIS framework focus on 1-pass algorithms

2.5.2 Vertex & Edge Partitioning
Since a graph consists of edges and vertices, two partitioning approaches are
popular in research: Vertex partitioning and edge partitioning [12]. This sec-
tion presents both techniques.
Vertex partitioning splits a graph into multiple subgraphs and distributes its
vertices to k partitions. In order to achieve this, vertex partitioning cuts edges
between vertices where necessary. This is the reason why this technique is al-
ternatively called edge-cut partitioning. Figure 2.5 provides a small example
with a graph divided into two partitions.
Edge partitioning also splits a graph into multiple subgraphs but sends its
edges to k partitions. Hence, edges remain intact but vertices are cut. There-
fore, another name for this method is vertex-cut partitioning. In fact, vertices
are replicated when an algorithm decides to cut them. Hence, all subgraphs
can be re-connected when all copied vertices are identified. Figure 2.6 illus-
trates this technique.



CHAPTER 2. BACKGROUND 17

Figure 2.5: Vertex Partitioning Figure 2.6: Edge Partitioning

Quality Metrics for Edge Partitioning

When recapping the goals of graph partitioning, the number of cuts should be
low and all partitions should be equally balanced. Applying these two objec-
tives to edge partitioners, two metrics are common:
The first indicator is the replication factor. It is the fraction of the number of
replicated vertices over the number of vertices in total, as shown in Equation
2.3. Hence, if the value is small, only a few copies are needed to partition
all edges. If the replication factor is higher, many vertices were split across
partitions.

σ =
Total Number of V ertex Copies

Total Number of V ertices
2.3

The second quality metric for edge partitioners is the load balance of edges in
all partitions. The more equal the total number of edges placed into partitions,
the better is the load. The goal should be a load balance close or equal to 1
where all partitions hold the same number of edges. Equation 2.4 provides the
exact calculation:

λ =
Number of Edges on Highest Loaded Partition

Total Number of Edges
Number of Partitions

2.4

To measuring the quality of vertex partitioners, the load balance is calculated
in the same way, except that vertices are counted instead of edges. However,
the cutting metric is expressed in edge cuts where the total number of edge cuts
in divided by the total number of edges. Since this thesis does not implement
vertex partitioners, this is not further elaborated.

2.6 Graph Partitioning Algorithms
After having studied the different forms of graph partitioning, this section pro-
vides an overview of existing algorithms and briefly describes the advantages
and disadvantages of using them for streaming graphs at the end.



18 CHAPTER 2. BACKGROUND

In an experimental study by Abbas et al. [3] from 2018, a comprehensive com-
parison shows different algorithms for streaming graph partitioning, optimized
for both vertex and edge cuts, as well as a generally applicable Hash algorithm.
As implied by the goals of graph partitioning, these algorithms aim for low
cuts and a good balance. An exception is Hash which concentrates on getting
a good balance.

2.6.1 Vertex Partitioning Algorithms
Linear Deterministic Greedy (LDG) [4] is a vertex partitioning algorithm
with the objective to maximize the number of neighbor vertices in one parti-
tion. Thus, the edge-cut ratio should be as low as possible. In order to do this,
LDG calculates the neighbors of all vertices and keeps track of the partitions in
which vertices are located. Thus, for every vertex, every partition is searched
for most common neighbors. However, LDG sets a capacity limit per partition
based on the total number of vertices and edges, which must be known before
the algorithm starts.

Fennel [31] is a proprietary algorithm developed by Microsoft. Its idea is
based on LDG but using another scoring mechanism and introduces different
parameters to tune the partitioning result. With this optimization Fennel often
outperforms LDG [31] [3]. However, it still requires information about the
graph before starting the process.

2.6.2 Edge Partitioning Algorithms
Greedy [12] is an edge partitioning algorithm assigning edges according to
their vertices’ historic assignments. Thus, it maintains a state of all vertices
and the partitions they are placed into. This approach aims to have a low vertex
cut, i.e. a low replication factor. When an edge arrives, it follows these rules:

1. If both vertices are already the same partitions, assign them to the least-
loaded common partition

2. If both vertices are known, assign to the least-loaded of the already as-
signed partitions

3. If only one vertex is new, assign the edge to the least-leaded partition of
the already assigned partitions of that one

4. If both vertices are new, assign the edge to the least-loaded partition
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Greedy does not need any information about the graph before it starts, but it
requires to store all vertices, their partitions and loads of all partitions.

High-Degree Replicated First (HDRF) [5] has been particularly developed
to process power-law graphs. The motivation is that most of the real-world
graphs have a small number of hubs and a large number of low-degree ver-
tices, as pointed at in Section 2.1. As the name suggests, the aim of HDRF
is to replicate high-degree nodes across partitions. This should lead to a low
replication factor with fewer vertex cuts.
To find the optimal partition for an edge, this algorithm chooses the highest
HDRF score among all partitions when an edge arrives. This score is cal-
culated with the aid of 1) the resulting replication factor when this edge is
placed there, and 2) the load balance of the partitions. For a good cut ratio,
this calculation takes degree information of both vertices and their previously
assigned partitions into account. In addition, parameter λinfluences the par-
titioning load. With the right setting, it handles the load imbalance when the
order the stream elements is known before. Otherwise, when using a default
value of λ= 1, it is more agnostic to order. Further implications of changing
λare explained in [5].
Although the evaluation of HDRF follows later in this chapter, the pseudo code
is shown below. This is because HDRF is one of the three algorithms which
are used for the implementation project in this thesis.
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Figure 2.7: Pseudo Code of HDRF (Abbas et al. [3])

Degree-based Hashing (DBH) [32] combines partial degree information and
hashing to choose a partition for an arriving edge. It looks up the degrees
of both vertices, compares them and hashes the edge to a partition, based on
the value of the vertex with the lower degree. This makes DBH suitable for
power-law graphs without prior knowledge about them. However, it requires
maintaining a degree counter state for every vertex of the stream. [3]
Because DBH is also used to implement the project of this thesis, the pseudo
code for it is printed below:
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Figure 2.8: Pseudo Code of DBH (Abbas et al. [3])

The last partitioning algorithm presented in this thesis isGrid [33] which cre-
ates a squared map, also named grid, of partitions. Arriving edges are hashed
to one of the fields in the grid. From there, all partitions with the same row or
column index are considered potential destination partitions. Out of this set,
the partition with the lowest load is selected for the edge.
Grid comes with the limitation that the number of partitions that must be rep-
resented in a squared matrix, i.e. it must be divisible by four. Moreover, Grid
needs to store the load of all partitions but does not need information about
the graph in advance.[3]

2.7 State in Streaming Graph Partitioning
All algorithms presented in the previous sections have in common that they
require a state to partition streaming graphs online. This was also pointed
out in Section 2.5.1. Bearing the objective of this thesis in mind (data-parallel
streaming graph partitioner without shared state), the topic state requires closer
examination. Table 2.2 shows the state requirements for all presented algo-
rithms from the previous section. Similar to the algorithm overviews, it is
based on Abbas et al. [3]. Since METIS is an offline partitioning framework,
it is not part of this list. Hash does not require state, as mentioned earlier.
Besides this, all algorithms store all distinct vertices of a graph. Furthermore,
all but DBH also keep track of the assigned partitions. HDRF, the best per-
forming, also needs degree information, similar to DBH. Consequently, all
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algorithms require at least a state as big as its number vertices.

Table 2.2: State requirements of selected partitioning algorithms

Algorithm Information stored in the state
LDG vertices, partition assignment
Fennel vertices, partition assignment
HDRF vertices, degree, partition assignment
DBH vertices, degree
Grid vertices, partition assignment

METIS prior state (offline)
Hash –

Looking at existing solutions from graph processing systems, the following
alternatives to maintain state or exchange information are possible:

1. Shared-memory or shared-disk: If a system’s architecture allows this
approach, all data-parallel pipelines can perform read and write opera-
tions on shared memory or shared disk. Examples for graph processing
framework with a shared-memory approach are X-Stream [34] or Ligra
[35]. Flink takes advantage of a shared disk for its backend state, too.
However, this solution aims to enable fault-tolerance rather than state
exchange between nodes [28].

2. Message passing: This or other direct communication approaches use
mechanisms to exchange information iteratively. With regard to dis-
tributed graph processing systems, Pregel [36] uses such a mechanism
but works iteratively with so-called supersteps for every round. In a
streaming graph environment, this method is not suitable, as discussed
earlier.

3. Local State (Replication) is an alternative as long as the size does not
exceed the capacity of a server. Here, the state is locally stored in-
memory or on a disk, similar to the locally executed program. The ad-
vantage is a full picture of all state information, but the drawback is the
required space. Apache Flink provides different stateful functions and
mechanisms such asOperator State or Keyed State, as described in Sec-
tion 2.4.2.
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4. External applications like databases or message brokers such as Kafka
can also store information. If this approach is chosen, the external tool
needs to be available during the whole partitioning process and be able
to cope with numerous read and write operations in parallel. 2.4.2.

In general, it is possible to use any of the above-listed state management
methods. However, modern stream processing systems, such as Apache Flink
or Apache Spark, use a shared-nothing architecture by default because they
run data-parallel. The consequence is that they cannot use shared-memory.
Furthermore, their programming model does not intend message passing in
a way that Pregel does. Since Pregel is also no stream processing system, it
is no alternative for this work. Moreover, an external tool is also not suitable
because the goal is a streaming graph partitioner fully integrated into Apache
Flink. Hence, a connection to another tool is complicated because it might
require additional setup.
The variety of mechanisms suggests that there is no optimal way of how to
work with a state because all options have advantages and drawbacks. At the
time of this thesis, all well-studied and well-performing streaming graph par-
titioners require state, at least as big as the number of vertices. Since this
work aims is to provide a data-parallel streaming graph partitioner in a shared-
nothing setup, this constraint is taken into account and different possibilities
to limit the state size are targeted.

2.8 Related Work
The goal of this thesis, to my best knowledge, is the first attempt to integrate
parallel versions of well-studied online graph partitioning algorithms into a
stream processing system without a shared state. This aims to improve the
speed of streaming graph applications by using these algorithms instead of the
default Hash-based method. Therefore, this section focuses on partitioning
algorithms that can be a base, but also a benchmark, for the implementation
project of this thesis.
Verma et al. [37] compare different partitioning algorithms and their perfor-
mance for distributed graph processing systems, such as PowerGraph, Power-
Lyra or GraphX. Among others, algorithms presented in the previous section
are used for this. However, these graph processing systems are no real stream
processing systems. Thus, they are not suitable for this work.
When it comes to offline graph partitioning, METIS [30] is a well known and
often referenced framework. Different papers for offline and online graph par-
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titioning use METIS computations to benchmark partitioning quality. How-
ever, this framework and all other offline partitioning algorithms need infor-
mation about the data set in advance, mainly the number of edges and vertices.
These prerequisites make them unsuitable for unbounded streams where no as-
sumptions about the structure can be made.
The same applies to LDG [4] and Fennel [31] algorithm for vertex partition-
ing. Although they were tested and validated in a streaming environment and
referred to as streaming algorithms, their input graph parameters need to be
known beforehand.
Concerning streaming graph edge partitioners, all four presented algorithms
(Greedy, HDRF, DBH, Grid) could possibly process unbounded streams. The
study from Abbas et al. [3] shows that the best overall performance among
these algorithms can be observed at HDRF. It provides very good cuts and
it gives satisfying load balance results. These results make HDRF a suitable
candidate. Since DBH also requires degree information, it is also used for the
implementation.
When concerning state, an important aspect of parallel computations, there is
no clearly outstanding example among these four alternatives. Though, Hash
has no state requirements and is the default option to partition data in stream
processing systems.
Table 2.3 shows both algorithms which are identified for the implementation.
Hash is also added for comparison.

Table 2.3: Characteristics of Selected Partitioning Algorithms

Algorithm Optimization State Requirements
HDRF Cuts All degrees, assigned partitions, partition loads
DBH Cuts All degrees
Hash Speed/Load No State



Chapter 3

Data-parallel StreamingGraphPar-
titioner

This chapter is dedicated to the conceptual design ofWinBro, a parallel stream-
ing edge graph partitioner. The actual implementation into Apache Flink is
described in Chapter Implementation.
Based on the finding from Related Work in Section 2.8, the overall best per-
forming edge partitioning algorithm, HDRF, is chosen for WinBro. Alterna-
tively, WinBro can be used with the parallel version of DBH.

3.1 State-based Parallel Partitioning
Two approaches can be considered to implement state-based parallel parti-
tioning. One approach is to use a single global state shared between parallel
partitioning tasks. The alternative is to maintain local states in the parallel
partitioning tasks. Applied to stateful partitioning algorithms such as DBH or
HDRF, they come with different advantages and drawbacks.
Figure 3.1 illustrates the edge flow from reading edges until their assignment
to a partition using a global state. For example, in the case of DBH and HDRF,
degree counting is performed in parallel, and all the degree information is ag-
gregated into the global state in the second step. This single operator possesses
the ground truth with all information about the edges. However, it is also a
bottleneck, causing lower throughput since the global state operator cannot
process edges with the same pace as they arrive. Furthermore, the whole idea
of parallelism becomes obsolete because the flow merges at one point.

25
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Figure 3.1: Global State Design

Figure 3.2: Local State Design

An alternative is the usage of local states, as shown in Figure 3.2. Here, it
is possible that all states work independently. This approach is fast and works
without a bottleneck. However, there is no communication between local states
or parallel partitioning tasks, and the knowledge is limited to the subgraph pro-
cessed in each parallel stream. Since HDRF and DBH require full information
about degrees to work well, the missing holistic view is likely to cause parti-
tion assignments based on incomplete information. Table 3.1 summarizes the
findings of the global and local state approach.

Table 3.1: Global and Local State compared for WinBro

Characteristic Global State Local State
View whole graph local subgraph

Synchronization across nodes —
Parallelism single bottleneck high

Since the two previous approaches are not optimal, WinBro combines both
designs to benefit from certain of the above-mentioned advantages. For this
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purpose, state exchange with broadcasts is an essential part of WinBro. Thus,
it is possible to get a global view without a bottleneck. Specifically, by adding
this functionality, it is possible to send degree information from one task man-
ager to all other task managers. This guarantees that every local state can work
independently but receives all vertex degree information tomake profound par-
titioning decisions. As with all state sharing techniques across machines, this
solution comes with a network overhead. But servers are presumably located
in the same local area network so that no significant delay is expected.

3.2 WinBro Programming Flow
This section is dedicated to the actual implementation of WinBro. It includes
an overview of the whole DAG, which operators it uses, and how windows and
broadcast are integrated into this setup.

Figure 3.3: WinBro DAG

3.2.1 Job Graph Design
WinBro’s DAG is illustrated in Figure 3.3 and is generally adjustable to differ-
ent parallel edge partitioning algorithms requiring shared state. In total, five
operators are used to partition a streaming graph in parallel. Please note that
reading is done with a parallelism of 1 but all other steps run in parallel. To
provide a brief overview, they are shortly described below. Detailed presenta-
tions follow in the next sections.
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1. Read Edges: In the beginning, the input data is read from text file or
HDFS and distributed to all task managers. Additionally, all edges are
labeledwith a unique identifier (ID). This process is explained in Section
3.2.4.

2. Aggregate Degrees: Based on all incoming edges, this operator counts
the degrees of all vertices. The result of this phase is 1) a vertex degree
table containing degree information of all vertices assigned to this win-
dow, and 2) a unique window identifier. They are combined into a tuple
and broadcasted to all other instances after every window.

3. Re-Label Edges: On the other side of the fork, the input edge IDs are re-
labeled in this operator with the aid of windowing. This is a crucial step
to perform a join operation in the next phase where degree information
and edges are merged.

4. Find Partition: All partitioning logic happens in this operator. In asyn-
chronous order, it processes arriving edges and broadcasts. These broad-
cast inputs contribute to a local in-memory state for all vertices and de-
grees that grows over time. Inside the same operator, all edges are par-
titioned with (modified) DBH and HDRF algorithms. The result is a
tuple with an edge and the chosen partition ID.

5. Partition Edges: The final step is to use a partitionCustom method to
send the edge to its destination partition. Alternatively, this can be used
as input for applications.

Keying and Windowing the Graph Input Stream

WinBro works with windows to process smaller amounts of edges at a time.
Thus, there is also a need to identify a reasonable key applicable to all edges.
Based on the background provided earlier, the following decisions are made
for WinBro:

Keying by source vertex is a pragmatic way for WinBro because no prior
knowledge about the graph structure can be assumed. This decision
accepts the risk that many edges with the same source vertex at the same
time, the load might be unbalanced.

Tumbling windows ensure no overlapping and require no conditions. Hence,
they are more suitable than sliding or policy-based windows.
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3.2.2 Aggregate Degrees
DBHandHDRF require vertex degree information of all arrived edges. Hence,
Aggregate Degrees is the first phase of WinBro. Figure 3.4 illustrates the de-
gree aggregation with a small example. For simplicity, parallelism is not con-
sidered here. Given that all edges are in the same time window, those with
the same source vertex are grouped together. These three groups (pentagons)
are forwarded one-by-one to the Aggregate Degrees operator. The result is
one vertex-degree table per key and window, tagged with a window ID, differ-
ent for every key. Every Output is individually broadcasted to all other task
managers.

Figure 3.4: Aggregate Degrees in WinBro

3.2.3 Re-Label Edges
The Edge Re-labeling operator processes the same keyed and windowed edge
stream as the Aggregate Degrees, i.e. all edges are in the same windows. This
allows identifying whether an equivalent broadcast degree table has already
arrived at the Partitioning operator. For better understanding, the concept of
window ID assignment is presented in Figure 3.5. All edges in the same win-
dow are looped over and the window identifier is formed. Afterward, the edges
are emitted to the next operator with this window ID, replacing the edge ID.
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Figure 3.5: Re-Label Edges with a Window ID

3.2.4 Partitioner Match Function
The heart of WinBro is the Partitioner Match Function operator which has two
main tasks:

1. Combine and merge all arriving broadcasts into a local state with a
global view, so that every task manager has a full picture of all vertex
degrees processed by WinBro.

2. Choose the destination partition for all arriving edges based on this snap-
shot of a global view and the given algorithm.

Due to the complexity of the Match Function, it is described in different sec-
tions in this work. The overall procedure concerning the integration of the
broadcasts is explained in this section whereas the technical details are given
in the Implementation chapter. Furthermore, the parallel versions of DBH and
HDRF algorithms are presented in Section 3.3.1 and 3.3.2.

Before any edge can be assigned to a final partition, all partial degree maps
are integrated into the local vertex degree map. Since there is no order guar-
antee for edges and broadcasts in different stream processing systems, there is
a requirement to ensure that the degree map is updated before the algorithm
assigns a partition ID. This is explained in the next section.
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Join Edges and Broadcasts with a Window ID

A problem occurs when an edge arrives before its equivalent degree infor-
mation from the broadcast is integrated into the global state. WinBro uses a
custom Window ID approach to ensure this. The window ID is based on the
individual keyed edges and their IDs and it is guaranteed that both Aggregate
Degrees and Re-Label Edges calculate the same window ID independently.
This window ID allows finding join broadcasts and edges in the Match Func-
tion.
All broadcasts (and all window IDs) arrive at every node in the stream pipeline.
Also, every window of edges eventually arrives at one node once. Conse-
quently, all edges will eventually see their counterpart broadcast. So, even
without order guarantees, all Window IDs will have a match on one of the task
managers. WinBro takes advantage of this and creates temporary window ID
entries for all edges and broadcasts. Once all edges and broadcasts with the
same identifier arrive, it is ensured that the broadcast information is integrated
into the global state and the edges can get a partition assignment. All details
about the selection of this method and its alternatives are presented in Ap-
pendix A1.
The joining process is as follows: When a new broadcast element or a new
edge arrives, it checks if its window ID exists in a join table. If this is not the
case, it creates an entry and either adds an edge or sets the size (broadcast) for
this new entry. This is repeated for every edge in this window. Calculating
the number of edges of an entry with a broadcast element is done by summing
up all degrees in the partial degree table and dividing the result by two. If a
broadcast arrives late, the size is updated later. A join table entry is complete
when the entry size is equal to the number of edges arrived. Then, it is added
to a list of completed joins. After all edges from the window ID entry have
partitions assigned, the entry is removed from the join table and also released
from the Complete List. This ensures that the entries are stored temporarily
only.
To give a visual example of this process, Figure 3.6 displays the final state of a
partitioner match function. Task manager TM 1 shows its full picture whereas
the others only show extracts. For simplification, every window ID has the
same color. Broadcasts elements are symbolized with squares and edges with
circles. For every ready Window ID entry, the edges have assigned partition
IDs. They are sent to the last operator, presented in the next section.
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Figure 3.6: Joining and Partitioning in Match Function

Although this method passed the tests, it comes with certain overhead. In ad-
dition to the global vertex degree map, a join table needs to be maintained,
too. This increases the need for memory. Furthermore, the number of broad-
casts per tasks manager is always higher than the number of edge windows, as
visible above. The consequences are described in Section, 4.3.

3.2.5 Partition Edges
In the last step of WinBro’s partitioning flow, all edges are partitioned with a
partitionCustom operator which get the partition ID as the parameter which
then sends the edge it the selected partition. This last step is illustrated in
Figure 3.7.
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Figure 3.7: Partition Edges in WinBro

3.3 Algorithm Adjustments for Parallel Pro-
cessing

3.3.1 HDRF
Pure HDRF, as presented in Section 2.6, is not designed to run in concurrently
in a shared-nothing environment. Hence, an analysis during the design phase
led to two changes to create a parallel version of HDRF from the original one:
First, edge counting can be done in advance without synchronization. Thus,
it is suitable for parallel computation. This adjustment does not require a big
change and can be achieved by simply not increasing the degree of vertices
during the partition selection. Instead, the algorithm sees the (until that point)
intermediate degree when looking it up. All other calculations, such as the
score or the machine load require a full picture of the state. As mentioned at
the beginning of this chapter, reconciliation is not part ofWinBro in its current
stage. Thus, neither scores nor vertex partitions are synchronized across task
managers.
The second change does not touch parallel computations but is used to cope
with the reduced state, as shown in the next chapter. One consequence of
this design decision is that after a cleanup some low degree vertices might not
present in the global degree map anymore when HDRF selects a partition for a
new edge. In this case, a temporary vertex with degree 1 is created to partition
the edge. This does not significantly affect partitioning quality because the
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cleanup methods only remove low degree vertices.
The code to select a partition with the parallel version of HDRF can be found
in Appendix A3where all differences compared to the original HDRF code are
marked. The implementation of the algorithm is based on HDRF partitioner
in the repository created for Abbas et al. [3]. Besides the marked changes,
the underlying state classes are also adjusted, for example, to allow ignoring
missing edges after state cleanup or for Reservoir Sampling integration.

3.3.2 DBH
Adjusting DBH towards a parallel execution has the same consequences as
modifying HDRF: The vertex degree count is done in the degree aggregation
operator in a previous phase and a placeholder edge temporarily supports the
partitioner, if the original vertex has been removed. Since these changes are
similar to HDRF changes, they are not further explained here.
The code for DBH in its parallel version can also be found in Appendix A2
where also all changes are marked. Similar to the original version of HDRF,
the code for the DBH partitioner from Abbas et al. [3] is reused and accord-
ingly adjusted for WinBro.
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Implementation

After having described the architecture and general design of WinBro, this
chapter presents the implementation into Apache Flink. It follows the same
structure as the previous chapter, i.e. presents the overall structure and the
individual operators subsequently.

4.1 WinBro Dataflow Graph
WinBro’s Flink DAG was presented in Figure 3.3 in the previous chapter, and
Code 1 shows the procedure of WinBro at a high level. In the following sub-
sections, the implementation of these five operators is described.

Read Edges

Read edges outputs a SimpleEdgeStream from Flink Gelly library [38]. Its
edges contain both source and target vertex but also a value that can be used
for weights, for example. Besides edges, it comes with a streaming context and
automatically assigns timestamps to incoming edges. WinBro takes advantage
of both edge value and timestamps for windowing and edge ID creation respec-
tively. Since edges are consumed in text format in the first place, the text files
are transformed into an Edge instance. This requires a flatMap operation.
Technically, this operator is not strictly parallel. For a real parallel setup, cus-
tom Flink functions need to be implemented, or external tool (e.g. Kafka) are
required [39].
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Algorithm 1WinBro Dataflow
// Read Edges from File
SimpleEdgeStream<Edge> edgeInput = readTextFile(input)

.flatMap(String -> Edge<source, target, id>)

// Aggregate Degrees
BroadcastStream<Tuple<Degree Table, WindowId>>

degreeAggregate = edgeInput
.keyBy(source)
.timeWindow(seconds)
.process(new DegreeAggregator)
.broadcast()

// Re-label Edges
DataStream<Edge> edgesWindowed = edgeInput

.keyBy(source)

.timeWindow(seconds)

.process(new EdgeWindowId)

MatchFunction matchFunction = new MatchFunction()

// Match Function
DataStream<Edge> partitionedEdges = edgesWindowed

.keyBy(source)

.connect(broadcastStream)

.process(matchFunction)

// Partition Edges
.partitionCustom(PartitionId)
.addToSink()

Aggregate Degrees

The degree aggregation operator is used to broadcast partial degree informa-
tion to all other task managers. It is implemented with Apache Flink’s Broad-
cast State Pattern. This state sharing technique was initially added to Flink to
exchange information between parallel executions. It uses a broadcast to send
data to downstream operators so that all task managers receive them and can
work with this information. To join a broadcast and a regular stream, it is nec-
essary to combine them with this broadcast state pattern [40]. Flink requires



CHAPTER 4. IMPLEMENTATION 37

windows to allow broadcasts in the dataflow. Hence, the edge input stream is
keyed and windowed before the degree aggregation starts. In this context, it
is important to mention that this class is newly instantiated for every window
and every key because every windowis processed individually and only partial
degree information is broadcasted. In other words, whenever a process func-
tion is called, it creates a new degree table for a (little) subgraph of the whole
graph. Code 2 shows how this count is performed.

Algorithm 2 Aggregate Degrees class procedure
input: all edges in one window

procedure createDegreeMap {

for (both vertices v of all edges in window) {
if (degreeMap contains vertex)

degreeMap.vertex(v).setDegree += 1;
else

add vertex to degreeMap, degree = 1;
}

output: Tuple(degreeMap, WinodowID)
}

Re-Label Edges

In order to have amatching edge for every broadcast element, this operator cre-
ates the unqiue window ID. It uses the same mechanism as Aggregate Degrees
but emits only edges and forwards them to the next operator.

Find Partition

The fourth operator chooses the partition ID for all arriving edges. It connects
and co-processes the degree aggregator stream and the re-labeled edge stream.
In contrast to the Aggregate Degrees and Re-Label Edge operators, the Match
Function class is instantiated once per Flink job, not per window. Thus, every
update remains in the degree map and can be accessed during the whole par-
titioning process.
Code 3 provides a simplified overview of the Match Function class. Every
time when a broadcast arrives at this operator, processBroadcastElement is
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called. In contrast, an arriving edge triggers the processsElement to find a
partition for this edge. These two functions are described below.

Algorithm 3 High Level Methods of Partitioner Match Function
void processBroadcastElement(degreeMap,windowId)

updateGlobalDegreeMap(degreeMap);
checkIfEdgesArrived(windowId)
choosePartitionId()

void processElement(Edge edge)
checkIfBroadcastArrived(edge.getWindowId)
choosePartitonId()

1. ProcessBroadcastElement: A broadcasted degree map is first inte-
grated into the global state, i.e. it is checked whether the vertex ID
already exists. If so, it adds the degree count from the local state. Oth-
erwise, it adds the vertex to the global state with the according degree.
The other two methods, checkIfEdgeArrived and choosePartitionId are
necessary to enable the window join operation and to emit all edges re-
spectively. The latter is called in both process functions because the
missing order guarantee of Flink can lead to broadcasts arriving after
edges. If this was the case without a method call in the broadcast sec-
tion, edges might be several waiting edges at the end.

2. ProcessElement: All arriving edges are processed here. Due to the
necessity to join by window IDs, this calls checkIfBroadcastArrived and
finally emits all edges marked "complete".

All three functions, checkIfEdgeArrived, checkIfBroadcastArrived and chooseP-
artitionId are shown in Code 4.
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Algorithm 4 Find Partition with Window ID Join
// called by processBroadcastElement()
void checkIfEdgesArrived()

if (windowId in joinTable)
set size of windowId entry
if (sizeBroadcast == sizeEdges)

add entry to completeList
else

add windowID to joinTable

// called by processElement()
void checkIfBroadcastArrived()

if (windowId in joinTable)
add edge to windowId entry
if (sizeBroadcast == sizeEdges)

add entry to completeList
else

add windowId to joinTable

// called by both process functions
void choosePartitionId()

for (windowId entry in completeList)
choosePartitionForEdges()
remove entry from joinTable
remove entry from completeList

Partition Edges

The final step of WinBro in Algorithm 1 sends all edges to the previously
selected partitions with a partitionCustom function. With the given partition
ID, Flink assigns the edge accordingly. Technically, this is no newDataStream
but for demonstration, this last step is separated from the others. Consequently,
the result is a data stream which can be further processed with any (streaming)
application in Flink which uses edges in this format.
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4.2 Hash Partitioner
By default, Flink partitions data with hashing (MurMurHash), resulting in
good balance and speed also having high vertex cuts. In contrast to the paral-
lel DAG with broadcasting state across machines, the implementation of this
partitioner is simple, as presented in the straight line Flink Job graph in Figure
4.1. Below that, the operators are briefly described.

Figure 4.1: Parallel Hash Partitioner DAG

1. Read Edges: The read operator is similar to the operator used for the
WinBro flow, i.e. it reads from the default file system or HDFS with the
same parallelism limitations. The only difference is that there is no need
to generate a windows ID because this DAG works without windows.

2. Find Partition: All edges get their partition ID in this operator. The
partition ID is the modulo of the hashed source vertex value and the
number of partitions, as presented in the Background section.

3. Partition Edges: In the last job vertex, the edge is sent to the assigned
task manager which writes it to a sink.

The simplified DAG Java code to partition edges with a default murmurhash
function looks as follows:
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Algorithm 5 Hash Partitioning Flink DAG
// similar to read in WinBro DAG
SimpleEdgeStream<Edge> edgeInput = readTextFile(input);

DataStream<Edge> partitionerStream = edgeInput
.partitionCustom(murmurHash(source.hashCode() %

numOfPartitions));

DataStream<Edge> partitionedEdges =
partitionerStream.addToSink();

4.3 State and Memory Optimization
A growing number of vertices and window IDs also increases the need for
memory in the JVM. Thus, limiting the overall state size can either be achieved
with a lower number of elements (objects). During the implementation phase
three areas showed potential to save limit the memory consumption.

1. Number of entries in the join table

2. Dynamically state entry removal

3. State limitation with Reservoir Sampling

Join Table Cleanup

As written in Section 3.2.4, the window ID join mechanism causes for two
different reasons: First, it requires the creation of edge IDs and window IDs
in operators prior to the Match Function. Second, a high number of window
ID join entries created by broadcast degree information is never updated. The
reason is simple: The amount of broadcasts arriving at one task manager is
proportional to the overall parallelism. This can be seen in the same Figure
3.6, on Task Manager 1 (TM1): Although all entries with incoming edges
are marked complete, those with only broadcasts are not. With parallelism 2,
around 50 percent of all entries are not updated, with parallelism 4 75 per-
cent, and so on. In order to reduce this, a scheduled cleanup method is part
of WinBro. This helps to reduce overhead by removing not updated map en-
tries. Although the cleanup interval can be freely chosen, different small tests
show that the waiting time between broadcasts and edges, and vice versa, is in
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milliseconds to seconds range. In order to be on the safe side, all experiments,
the cleanup interval was set to several minutes.

Dynamic State Reduction

Another method of cleaning state is to dynamically remove vertex degree in-
formation during the partitioning process. The idea is to continuously measure
the throughput of processed edges. Once it significantly slows down over a pe-
riod of time, low degree vertices are removed with one-time operations. The
rationale behind removing these vertices is the same as explained for Reservoir
Sampling. However, this method is not yet fully developed and tested. With
the current version of WinBro, this operation is triggered when a given thresh-
old is reached. In this case, low degree vertices with a degree lower than 10
percent of the average degree are removed. Though, this method needs further
analysis.

Limit State with Reservoir Sampling

Regular cleanup methods help to lower the memory consumption during the
partitioning process but do not solve the general scaling issue of HDRF and
DBH: the state size is at least as big as the number of vertices and their degrees.
Thus, a possibility to reduce memory demands with increasing parallelism is
to limit the state size with a representative sample of the stream. Reservoir
Sampling [41] algorithm collects a representative sample of a data stream and
statistically guarantees that all elements have the same probability to be added
to the sample.
Reservoir Sampling works as follows: Until the sample size is full, every
stream element is added to the sample. Once it is full, every newly arriv-
ing element is kept with a probability of (s/n) where s denotes the sample
size and n is the number the arrived element. If this element is added to the
sample, it replaces a randomly chosen sample element.
This method was implemented into WinBro and first tests were done but the
current version of WinBro needs tuning with respect to removing high-degree
nodes. Since high-degree nodes are important for DBH andHDRF, they should
not be replaced as easily as low-degree vertices. Consequently, a centrality-
based second check of sample replacement should be performed.
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Experiments

After having elaborated background and implementation forWinBro, this chap-
ter presents the experimental setup, the test data sets, explains which experi-
ments are executed and finishes with an experiment plan for a final overview.
All results and their interpretations are shown in the next chapter.

5.1 Environment Setup
All experiments are conducted on a fully-distributed Flink cluster on four Cen-
tOS 7.6 servers. Every server has an Intel Xeon X5660 processor with 2.80
Gigahertz, and a total of 24 central processing units (CPU). Furthermore, ev-
ery machine has 40 GB random access memory (RAM) and 6 TB of disk
space. All machines are physically located in the same rack in a research data
center and are interconnected via GigaBit network cables.
Apache Flink runswith version 1.7.1with Java version 1.8. The cluster has one
Job Manager and four Task Managers. As distributed file system acts HDFS
(Hadoop 3.1.2) in a fully distributed way on the same servers.

5.2 Graph Data Sets
All experiments are executed on real-world social network graphs, with the
exception of Skitter which is a power-law graph of autonomous systems con-
nected to each other. The motivation behind this decision is that, as shown in
Section 2.1, most real graphs have a power-law distribution. Also, HDRF and
DBH perform well on power-law distribution.
These graphs are provided by the KONECT project from Koblenz University
[14] that provides large data sets under Creative Commons license. Table 5.1
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lists all graphs used for experiments. TwitterSmall is a subgraph of the Twitter
data set, cut after 1.1 billion edges.

Table 5.1: Graph Data Sets for Experiments

Graph Name Vertices (n) Edges (m)
Skitter 1,696,415 11,095,298
Orkut 3,072,441 117,184,899
Twitter 41,652,230 1,468,365,182

TwitterSmall 36,901,926 1,100,000,000
Friendster 68,349,466 2,586,147,869

5.3 Metrics
Partitioning Quality

When recapping the goals of graph partitioning, the number of cuts should be
low and all partitions should be equally balanced. Applying these two objec-
tives to edge partitioners, two metrics are common:

The first indicator is Replication Factor, introduced in 2.5.2 which mea-
sures the total number of vertex copies compared to the total number of
vertices in a graph. Generally, a low value is desirable for good parti-
tioning results, indicating that the not many vertices are cut during the
partitioning process.

The second metric in this category is the load balance of edges in all parti-
tions, also shown in Section 2.5.2. For a perfect balance, the load bal-
ance should be exactly 1, indicating that all partitions received the same
number of edges.

Partitioning Speed

The run time of a partitioning process is important to measure because it can
influence the decision for or against an algorithm. To get a holistic view of the
overall performance, the throughput is used as a metric, in edges per second. A
second metric is the throughput per task manager. This allows measuring how
the partitioner performs with an increasing parallelism. For both criteria, the
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objective is to have a high throughput of edges, showing a low total partitioning
time. Hence, the following two metrics are used for the speed:

- Throughput of edges per second

- Throughput of edges per second per task manager

Streaming Applications

Although measuring the quality and speed of partitioning algorithms can pro-
vide good insights for different application areas and objectives, one should
bear in mind that running a partitioning algorithm is usually an intermediate
step for distributed applications. Consequently, the actual goal is to use parti-
tioned (sub)graph data as input for concrete computations. In order to see the
performance of applications using WinBro, two different programs, namely
Connected Components and Bipartiteness Check, are run with subgraphs pro-
duced byWinBro as input. This is compared with Hash-based partitioned data
input.
The experiments look as follows: A streaming application with an integrated
version of WinBro is run on different graph data sets and different degree of
parallelism in Apache Flink. The metric to measure is the throughput of edges
per second, recorded after different run times. The goal in this streaming setup
is not to finish the partitioning process because it shall simulate an unbounded
stream.
The following two algorithms are used to validate WinBro with streaming ap-
plications

1. Connected Components: The connected components application uses
an edge stream input to identify all components of a graph. For exam-
ple, when all vertices can be reached from all other vertices, one large
component exists. However, graphs can be disjoint where communi-
ties are not connected to each other. The algorithm works as follows:
It keeps adding edges to disjoint data sets and checks both vertices for
neighbors in the assigned component. If these vertices co-exist in both
sets, they are merged into one because this edge connects them. When
running this algorithm in a distributed manner, regular merge operations
attempt to find cross-partition components to get a global picture of all
connected components. The assumption is that partitions with a low
replication factor result in a smaller number of connected components
per instance because their locality is already reflected during the parti-
tioning process. This decreases the number of needed merge operations.
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2. Bipartiteness Check: A graph is bipartite if it has two vertices types or
groups, where one vertex is linked to other vertices it belongs to. Usu-
ally, these vertices are graphically represented as two opposing groups
of nodes, as shown in Figure 5.1. What makes this graph special is that
no connection exists within one group. A common example of a bipar-
tite network is an actor and movie graph where actors point to movies
they play a role in [10]. With regard to this application, all vertices of
one group must point to the other vertex group. If edges exist within
one group, a graph is not bipartite. The Bipartite Check algorithm adds
edge vertices to these groups, always checking whether this new vertex
keeps the bipartite structure. If not, it is marked as non-bipartite. The
parallel version of this algorithm works in a similar way but adds pe-
riodical updates across partitions and merges these groups accordingly.
This ensures that the global graph is examined for bipartiteness.

Figure 5.1: Bipartite graph

5.4 Overview of all experiments
After having described differentmetrics, this closing section provides an overview
of all experiments conducted for WinBro. In general, every setting compares
the following three algorithms implemented in WinBro: HDRF, DBH and
Hash. Furthermore, all experiments were run at least three times to verify
the results where the average value is taken for the result.

Replication Factor and Load Balance

The experiment plan to measure Replication Factor and Load Balance is pre-
sented in Table 5.2. Due to limited computational power and memory (4
servers with 40 GB RAM each), the big graphs (Twitter and Friendster) are
not partitioned with parallelism higher than 4. This is discussed in the Results
section.
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Table 5.2: Replication Factor Experiment Plan

Parallelism (k)
Graph 2 4 8 16 24
Skitter x x x x x
Orkut x x x x -

Twitter(small) x x - - -
Twitter x x - - -

Friendster x x - - -

Partitioning Speed

The experiment plan to measure the partitioning speed is similar to the one
measuring load and cut, and looks as in Table 5.3:

Table 5.3: Partitioning Speed Experiment Plan

Parallelism (k)
Graph 2 4 8 16 24
Skitter x x x x x
Orkut x x x x -

Twitter(small) x x - - -
Twitter x x - - -

Friendster x x - - -

Streaming Application Performance

The setup to test WinBro with streaming applications is presented below. In
contrast to the two other categories mentioned above, streaming a big graph is
feasible here because the applications never complete since they are made for
streams. Instead, the throughput is recorded at different checkpoints, shown
in Table 5.4.

Table 5.4: Streaming Applications Experiment Plan

Minutes
Graph 15 30 45 60
Twitter x x x x
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Results & Discussion

This chapter shows the experimental results for comparingWinBro usingHDRF
and DBH with results from Hash partitioning in terms of partitioning quality,
speed and the effect of these partitioning methods for various streaming appli-
cations. Unless differently marked, the structure is similar to the Experiment
chapter. Every category is presented separately with all experiments, followed
by a brief summary, and closing with a discussion.

6.1 Partitioning Quality
Replication Factor

Twitter
The replication factor of Twitter with a parallelism of 4 is shown in Figure 6.1.
DBH shows the lowest cuts, followed by HDRF, whereas Hash cuts the highest
number vertices. WinBro was unable to partition Friendster with HDRF, see
more details below the graph.
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Figure 6.1: Replication Factor of Twitter Graph (parallelism 4)

The significance of the results is low because all experiments were only run
once or twice, partly giving different results. Thus, a general statement needs
more experiments. Furthermore, due to inference on the experiment clus-
ter and limited memory capacity, WinBro was unable to partition with par-
allelism higher than 4, even with Hash. Moreover, the replication factor of
Friendster could not be calculated due to the same memory constraints even
though the partitioning process was successful for DBH and Hash. Further-
more, HDRF and DBH failed multiple times with parallelism of 2 for both
Twitter and Friendster. Thus, these results are omitted.

TwitterSmall
Figure 6.2 shows the replication factor of HDRF, Hash, and DBH for the Twit-
terSmall graph with 1.1 billion edges for parallelism two and four. The best
cuts are provided by DBH on both levels of parallelismwith replication factors
of 1.28 and 1.71 respectively. The replication factor of HDRF ranks second
with 1.52 and 2.46. The highest number of cuts is done by Hash which repli-
cates vertices with a factor of around 1.74 and 2.92.
Overall, the results show that replication is higher when parallelism is in-
creased. Also here, the environmental setup did not allow a higher parallelism
to finish the experiments due to too high memory load.
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Figure 6.2: Replication Factor on TwitterSmall Graph

Orkut
When studying the replication factor for different levels of parallelism for
Orkut in Figure 6.3, it shows that DBH and HDRF always perform better than
Hash and the replication factor increases with a higher level of parallelism for
all three algorithms, although parallelism gives nearly identical results. It is
visible that the curve of DBH is not as steep as the one of HDRF or Hash.
Thus, DBH’s vertex cuts increase slower compared to HDRF and Hash.

Figure 6.3: Replication Factor on Orkut Graph

Skitter
The results for Skitter graph are presented in a diagram in Figure 6.4. Skitter
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is the smallest of all test graphs and it was possible to go up to parallelism 24
with the cluster for the experiments. The Hash partitioner could even succeed
to partition with parallelism 32. For every increasing level of parallelism, the
number of cuts for all algorithms increases. Though, the slope of DBH is not
as steep as the one of HDRF and Hash. Throughout all levels of parallelism
DBH performs best, followed by HDRF and Hash.

Figure 6.4: Replication Factor on Skitter Graph

Load Balance

Twitter
Due to the same issues faced with the replication factor, Friendster and Twit-
ter are only partitioned on low parallelism, also missing HDRF for Friendster.
Similarly, the load could not be calculated for Friendster. Regarding Twitter in
Table 6.1, it is visible that the load is nearly perfect for all algorithms on both
graphs because it is very close to 1.0.

Table 6.1: Twitter Load Balance (4 partitions)

Algorithm Load Balance
DBH 1.01
Hash 1.01
HDRF 1.00
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TwitterSmall
For the TwitterSmall graph, all algorithms produce practically the same load
balance on both parallelism 2 and 4. Hence, hardly any difference is remark-
able in Table 6.2:

Table 6.2: TwitterSmall Load Balance

Partitions
Algorithm 2 4

DBH 1.02 1.00
Hash 1.00 1.01
HDRF 1.00 1.00

Orkut
Orkut graph data, similar to TwitterSmall, does not indicate differences con-
cerning the load balance, as presented in Table 6.3, even though four different
levels of parallelism up to 16 were tested.

Table 6.3: Orkut Load Balance

Partitions
Algorithm 2 4 8 16

DBH 1.00 1.00 1.00 1.00
Hash 1.00 1.00 1.01 1.01
HDRF 1.00 1.00 1.00 1.00

Skitter
The final partitions of the Skitter graph are evenly balanced for all levels of
parallelism for DBH and HDRF. A different picture can be seen for Hash, as
visible in Table 6.4. While it partitions almost perfectly balanced on paral-
lelism 2 and 4, the load imbalance increases especially with parallelism 16
and 24, where it reaches 1.08 and 1.20 respectively.
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Table 6.4: Skitter Load Balance

Partitions
Algorithm 2 4 8 16 24

DBH 1.00 1.00 1.00 1.00 1.01
Hash 1.00 1.02 1.04 1.08 1.20
HDRF 1.00 1.00 1.00 1.00 1.03

In the following, the main findings of this category are summarized. Below
that, the results are discussed:

- The main observation is that increasing parallelism also increases the num-
ber of cuts for all three algorithms.

- For all levels of parallelism, DBH provides the best cuts on all graphs.
HDRF gives the second-best cuts whereas Hash creates the highest num-
ber of vertex copies.

- The load balance of all three algorithms is very close to 1.0 in most experi-
ments, but for Skitter an increased load imbalance is observed for Hash
algorithm with parallelism 16 and 24.

The results of this category can be explained as follows: With a higher num-
ber of partitions and increasing parallelism, edges must be distributed to more
machines. Hence, the graphs are divided into more subgraphs, which causes
more cuts and a higher replication factor. This finding is confirmed in different
studies [3] [4].
However, DBH performs better than HDRF is most of the cases. This differs
from other studies. The reason is that partitioners in these studies were either
non-parallel or used shared state mechanisms for DBH and HDRF. WinBro
runs in parallel without a shared state instead. As a result, HDRF has no syn-
chronization mechanism after the degree count. Thus, two important factors
contributing to the HDRF score, machine load and partition assignment, are
not reconciled in a later stage. This leads to different results and thus higher
cuts. DBH performs better because it sends edges to partitions based on the
hash value of the vertex with the lower degree, a piece of information which
is fully available to the global state in every parallel instance. To a certain
extent, this is more consistent The result of the Hash partitioner with the high-
est cuts can be explained with the model-agnostic implementation of Hash, as
explained earlier in the thesis. Furthermore, this finding is confirmed by other
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studies. Finally, the load balance is overall very good with nearly all levels of
parallelism and graphs showing an almost perfect load balance of 1.0. Only
for Skitter, Hash provides a worse load for a high level of parallelism. One rea-
son can be that the graph is skewed, i.e. not densely connected. With simple
hashing, this can lead to an uneven load balance.

6.2 Partitioning Speed
Throughput in Edges per Second

All Graphs
Figure 6.5 shows the duration of a complete partitioning process for different
graphs, not considering different levels of parallelism. The run time is dis-
played in throughput (edges per second). Thus, a higher throughput refers to
a lower partitioning time.
Hash shows the highest throughput of edges for all graphs. DBH has the sec-
ond highest speed on all graphs but Skitter, where it is 1000 edges per second
slower than HDRF. Besides this, HDRF always shows the lowest throughput
but is partly very close to DBH.

Figure 6.5: Edge Throughput per Algorithm for all Graphs

Since Twitter and Friendster were only successfully tested with a parallelism
of 4, a separate graph is omitted. Moreover, even though some of these results
are very clear, it must be admitted that the variation of execution times differs
significantly for the same experiments. This is caused by interference with
other processes simultaneously running on the test servers.
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Throughput in Edges per Second per Task Manager

TwitterSmall
TwitterSmall could only be partitioned on with parallelism 2 and 4, as visible
in Figure 6.6 but it is sufficient to provide results here. The number of edges
per second increases for Hash from 125,000 to 160,000 with increasing par-
allelism whereas DBH achieves nearly the same throughput for parallelism 2,
but drops instead to roughly 80,000 edges per second with increasing paral-
lelism. HDRF has the highest execution time, also with declining throughput
from 90,000 and 80,000 edges.

Figure 6.6: Throughput on TwitterSmall per Task Manager by Parallelism

Orkut
The throughput of edges per task manager for parallelism 2 to 16 for the Orkut
graph can be seen in Figure 6.7. With parallelism 2, all algorithms show a
comparable processing speed of 100,000 to 120,000 edges per second. How-
ever, when parallelism increases, the performance of HDRF and DBH contin-
uously drops, until to roughly 40,000 edges per second for HDRF and 50,000
for DBH. A different observation is made for Hash. It gives almost the same
throughput, behaving nearly agnostic to parallelism. Throughout all levels of
parallelism, the edges per second range between 96,000 and 110,000.
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Figure 6.7: Throughput on Orkut per Task Manager by Parallelism

Skitter
The same metric looks different for the Skitter graph, see Figure 6.8. In this
case, the throughput of all algorithms decreases with increasing parallelism. It
is visible that their trendlines form the same shape. Hash is always partitioned
faster than DBH and HDRF though. DBH and HDRF produce nearly the same
throughput but usually, process around 15,000 to 20,000 edges less per second.
Only with parallelism 24, DBH and HDRF approach Hash.

Figure 6.8: Throughput on Skitter per Task Manager by Parallelism



CHAPTER 6. RESULTS & DISCUSSION 57

Before starting the discussion of the processing speed, the speed results can
be summarized as follows:

- In all cases, Hash partitioning is faster than DBH and HDRF, especially
when parallelism increases.

- The results for DBH and HDRF are different; they share the second and
third rank depending on the graph.

The obvious result of a high-performing Hash algorithm can be justified with
its lightweight implementation. The decision for an edge partition assignment
is state-agnostic so that no information such as vertex degree or previously
assigned edges is required. This makes it different from DBH which also uses
hash but requires degree information of the vertices. The consequence is that
it must be collected and also searched. HDRF does not only collect degree
information but also all vertex assignments and the partition load.
The increased lookup and calculation time is not the only reason for the poorer
performance ofHDRF andDBH.Another reasonwhy they performworsewith
increasing parallelism, is the increasing demand for memory when the state
grows. Asmentioned in the test setup, the experiments were run on four 40 GB
RAM machines. Once the parallelism was set to 8 and higher, this memory
had to be shared between at least two task managers. With the maximum
parallelism of 24, 6 task managers were sharing one physical server.
Furthermore, especially big graphs partitioned with DBH and HDRF reached
the machines’ memory limits quickly. Consequently, the underlying operating
system triggered swapping mechanisms which slowed down the process even
more, resulting in increasing run time.

6.3 Streaming Applications
After having evaluated experiments with an isolated view on the partitioning
performance and quality, the next step is to integrate WinBro into real stream-
ing application to measure its capabilities to provide good input data for graph
analysis tasks.
Connected Components
Figure 6.9 displays the number of edges processed per second during Con-
nected Components application on Twitter. Snapshots are taken every 15 min-
utes. DBH has the highest throughput in the beginning with almost 30,000
edges per second, whereas HDRF processed nearly 25,000 edges/second un-
til then and Hash has even 2000 less. The second snapshot after 30 minutes
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shows that the throughput decreases in total to 15,000 to 20,000 with the
same order. At the next two checkpoints at 45 and 60 minutes, the ranking
does not change but HDRF approaches DBH and Hash falls behind, so that
only 36 Million edges were processed in total for Hash. In contrast, DBH and
HDRF processed 55 and 50 million edges at the same time.

Figure 6.9: Connected Components on Twitter Graph, parallelism 4

Bitpariteness Check
The second streaming application forWinBro evaluation is Bipartiteness Check.
Figure 6.10 provides an overview of the results for Twitter parallelism 4. In
this case, only a single snapshot after 15 minutes is necessary to identify the
best performing algorithm: Hash processed an average of 1.6 Million edges
per second, nearly double the speed of HDRF and DBH which processed in
average 700,000 and 850,000 edges per second in the same time respectively.
After 17 minutes, the whole Twitter graph was partitioned with Hash.
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Figure 6.10: Bipartiteness Check on Twitter Graph, parallelism 4

As a summary of the streaming applications, the following is observed:

- DBH gives the best performance for Connected Components, followed by
HDRF. Hash is behind these two algorithms.

- When running a Bipartiteness Check withWinBro, Hash outperforms DBH
andHDRF by factor 2. The latter two have a comparable result, although
DBH is slightly faster.

The good result for DBH and HDRF seen with the Connected Components
algorithm comes from the need for data-locality to identify neighboring ver-
tices and to receptively assign a common value to a local community. This
leads to high communication cost if many vertices are replicated. Both DBH
and HDRF give low cuts, as shown previously in this chapter. Consequently,
the Connected Components application benefits from this effect. On the other
side, Hash does not consider locality when choosing a partition, leading to
higher communication cost between vertices.
Concerning Bipartiteness Checker, the outstanding result of the Hash parti-
tioner can be explained with the requirements for the Bipartiteness Check al-
gorithm. In contrast to Connected Components, the merge phase requires only
a small amount of data exchange in every merge phase, practically only both
vertex groups in form of a list with the label whether it is bipartite or not. The
consequence is a faster merging phase and less communication than required
by Connected Components.
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6.4 Summary
Different sets of experiments with WinBro either HDRF or DBH algorithm
were made, always in comparison with a regular Hash partitioner. These ex-
periments used real graphs, all of them following a power-law degree distri-
bution. The metrics measured included partitioning quality, speed, and per-
formance in different streaming applications. Because WinBro is a parallel
partitioner, most of these experiments were run for different levels of paral-
lelism.

Partitioning Quality
With regard to the partitioning quality and replication factor, results provide
evidence that Hash produces more vertex-cuts than HDRF and DBH, and thus,
has a lower quality of partitioning. This is the case for all networks and all lev-
els of parallelism. DBH provides the best partitioning quality because it shows
the lowest cuts overall. HDRF can be found between DBH and Hash. This can
be justified missing synchronization of edge assignments and machine load
after the initial partitioning decision in the parallel HDRF version. Hence, un-
aligned decisions on parallel running instances are possible. This drawback is
not observed with DBHwhich works degree-based but eventually uses a hash-
ing mechanism for the edge assignment. Thus, it provides more consistency
with regard to final partition assignments. Nevertheless, the replication factor
always increases when the level of parallelism increases. This observation is
covered by different studies.
The second metric, load balance, is very good with 1.0 for all graphs and
nearly all levels of parallelism so that good quality overall is concluded. How-
ever, more experiments with higher parallelism, especially on large graphs
could help to validate the findings in this category.

Partitioning Speed
All experiments to measure the throughput of edges during the partitioning
process give a clear answer, especially when looking at higher levels of paral-
lelism. The Hash partitioner outperforms HDRF and DBH. The reason is that
it does not require state information and can run fast even with a high system
load. An increasing number of edges does not influence the speed, thus the
edges processed per second are nearly constant. The opposite is the case for
HDRF and DBH. Since both need historical knowledge about the graph, more
arriving edges increase the cost of a partition assignment. This leads to the is-
sue that their state requirements are proportional to the graph size. With regard
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to parallelism, two options exist to have the same performance for increasing
parallelism: Either resources (mainly memory) is added proportionally, or the
state size must be limited to constant size without a loss of partitioning quality.

Streaming Applications
The final category of experiments was the integration of WinBro into stream-
ing applications to see if their presumably better cuts help to improve the per-
formance of the applications: This was the case for the ConnectedComponents
application which benefits from good cuts when running in parallel because
the result is a smaller number of partial components. Thus, fewer merging op-
erations need to be performed on the inter-cluster level. Consequently, DBH
and HDRF always increase the throughput of edges compared to Hash, show-
ing that higher partitioning time is compensated with faster processing time in
the application afterward.
When integrating WinBro before Bipartiteness Check application, Hash per-
forms much better than DBH and HDRF, i.e. it provides a higher throughput
of edges. This can be justified with the actual merge phase of a Bipartiteness
Check. As explained earlier, every phase only exchanges two lists of vertex
lists without complex requirements. This does not significantly interrupt the
process and Hash can continue faster.

Table 6.5 provides an overview of the different categories with the best per-
forming algorithms, based on the findings from the experiments:

Table 6.5: Result Table for Parallel Algorithms with WinBro

Category Preferable Algorithm
Cuts DBH
Speed Hash
Load all

Apps relying on locality HDRF/DBH
Apps agnostic to locality Hash



Chapter 7

Conclusion

The main objective of this thesis was to implement a parallel graph parti-
tioner for a stream processing system without a shared state mechanism based
on well-performing state-based partitioning algorithms HDRF and DBH. The
second objective was to find out whether this parallel partitioner produces bet-
ter partitioning results on real-world graphs compared to the default Hash-
based partitioner.
After having evaluated the experiments, the main objective can be concluded
as fulfilled. This work’s contribution is WinBro, a DBH and HDRF based
parallel edge partitioner developed in Java and fully integrated into Apache
Flink, a pure stream processing system. WinBro uses broadcasts to share de-
gree information across the streaming pipeline. Furthermore, HDRF andDBH
algorithm were implemented in the way that they can run in parallel.
To validate the second objective regarding the comparison of WinBro with
Hash partitioning, experiments were conducted with different levels of paral-
lelism and on different real-world graph data sets. The following results are
important:
As expected, Hash-based partitioning has the highest speed, also for stream-
ing applications without the need for well-partitioned input streams. However,
it gives a low partitioning quality. In contrast, WinBro, either with DBH or
HDRF, results in lower vertex cuts. The better quality pays off in streaming
applications relying on intact structures, where WinBro has an overall shorter
run time than Hash.
These findings lead to the following conclusion: When usingWinBro for real-
world graphs following power-law degree distribution, it gives better results
than the default Hash partitioner in Apache Flink. Even more important, Win-
Bro improves the performance of streaming graph applications requiring well-
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partitioned input data.
Although this conclusion proves WinBro a good performance, the scalability
of WinBro is bound to state requirements of HDRF and DBH and needs to be
addressed in the future.

7.1 Future Work
AlthoughWinBro is generally verified, different limitations could be identified
and need to be addressed in the future. It is possible to categorize them as state,
scalability, and algorithm. They are described in the following paragraphs:

State: Addressing the state size of HDRF andDBH is crucial for parallel exe-
cution because the current implementation replicates the whole state on
every task manager. Different possibilities to reduce this state need fur-
ther examination. A first step was the implementation of Reservoir Sam-
pling but it requires a better tuning. It might be necessary to change cer-
tain parameters or to find other ways to reduce the state without lowering
the replication factor or increasing the partitioning time. Different ideas
for state reduction are possible but need exploration, e.g. caching high-
degree vertices combined with shared-state, or adding another vertex
eviction policy with event-based cleanup methods. A very recent publi-
cation fromHua et al. [42] suggests performing parallel streaming graph
partitioning with a game theory approach. This approach promises very
little state requirements and could be taken into account in the future.

Scalability: The main challenge for the experiments was dealing with the
scalability. In the future, bigger graphs need to be tested with more
powerful machines to continue the development and to increase the sig-
nificance of the results.

Algorithm: The actual procedure of WinBro does exchange further state
information after the degree broadcast. It might be beneficial for the
partitioning quality to synchronize machine loads or assigned partitions.
One potential solution for more data exchange is Flink’s experimental
new feature of Iterative Streaming. Also, initial edge keying/hashing
after reading could be improved by sending edges to predictable nodes,
so that every task manager is responsible for a certain range of edges.
However, both options must be thoroughly considered and tested.
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Appendix

A1 Join Operation Alternatives
For regular windows, Flink provides a window join function [43] but it is lim-
ited to two keyed streams. Thus, there is no out-of-the-box join operation
available for broadcast streams in combination with windowed keyed streams.
Broadcast streams are not keyed because their nature requires to send infor-
mation to all nodes. Consequently, it is necessary to find a suitable joining
method, and all options below were validated for effectiveness and efficiency:

1. Add an edge to a queue if vertex degree information is unavailable

2. Low level joins with Flink ValueState in CoProcess function

3. Join with the aid of watermarks

4. Join with the aid of a custom Window ID

The first approach was implemented in the beginning and was effective for
small graphs. When a new broadcast element arrived, the whole list was it-
erated over and edges whose vertex information arrived were partitioned ac-
cordingly. However, this approach has two main disadvantages. First, every
iteration has a complexity of o(w) where w is the number of waiting edges.
With an increasing number of unprocessed edges, this leads to significant de-
lays. Second, this method has no matching logic but iterates without any indi-
cation that (many) edges can be processed after having added one additional
broadcast to the state. The window ID solution has an advantage compared to
this waiting edges approach. It only iterates over edges once their equivalent
broadcasts arrived. This ensures a single call per edge before getting assigned
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to a partition. With waiting edges, it was repeated once per arriving broadcast
element, i.e. at least once, but much more often in reality.
The official Flink documentation suggests implementing low level operations
on a CoProcess function in combination with timer [44]. Attempts to imple-
ment this solution did not lead to success, either. The reason is that timers
can only be used by keyed streams (not to broadcast). Different ways to work
around this limitation did not solve the problem. One result was that a signif-
icant amount of edges was never partitioned but never left this operator. Sec-
ond, when a timer call did not lead to emitting edges, it had to be repeated. The
consequence was a very high number of unnecessary timer calls, that eventu-
ally slowed down the partitioning process.
Joins with watermarks are also no suitable option. This lies in Flink’s imple-
mentation of watermarks. Although all edges have the same watermark when
they leave the Read Edges operator, every downstream operator creates a new
watermark stamp on the edge metadata. Consequently, there is no guarantee
that broadcasts and their counterpart edges have the same watermark when
arriving from the Read and Re-Label Edges operator. This behavior could
quickly be observed during the first tests, confirming that it is no reliable join-
ing option.

A2 Parallel DBH
All changes compared to the original version are marked with commands
(green). The code is written in Java but slightly simplified to improve read-
ability.

// DBH Select Partition
public int selectPartition(Edge edge) \{

if (state.contains(source)
first_vertex = state.get(source)

else
first_vertex = new DummyEdge // dummy added

if (state.contains(target)
second_vertex = state.get(target)

else
second_vertex = new DummyEdge // dummy added

degree_u = first_vertex.getDegree(); // removed +1
here

degree_v = second_vertex.getDegree(); // removed
+1 here
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if (degree_u < degree_v)
machine_id = hash(firstVertex) \%

numOfPartitions;
else if (degree_v < degree_u)

machine_id = hash(second_vertex) \%
numOfPartitions;

else
machine_id = random(numOfPartitions)

return machine_id;

A3 Parallel HDRF
All changes compared to the original version are marked with commands
(green). The code is written in Java but slightly simplified to improve read-
ability.

// HDRF Select Partition
public int selectPartition(Edge<Integer, Long> edge) {

boolean madeup1 = false; // placeholder vertex 1
boolean madeup2 = false; // placeholder vertex 2

StoredObjectFixedSize first_vertex;
StoredObjectFixedSize second_vertex;

if (currentState.get(soureVertex)) {
first_vertex =

currentState.getRecord(edge.getSourceVertex);
} else {
// add placeholder v1

first_vertex = new StoredObject();
first_vertex.setDegree(1);
madeup1 = true;

}
if (currentState.get(targetVertex)) {

second_vertex =
currentState.getRecord(edge.getTargetVertex);

} else {
// add placeholder v2

second_vertex = new StoredObject();
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second_vertex.setDegree(1);
madeup2 = true;

}

LinkedList<Integer> candidates = new
LinkedList<Integer>();

// for all partitions, calculate HDRF score
for (int m = 0; m < k; m++) {
// if "madeup" -> getDegree will return 1

degree_u = first_vertex.getDegree();
degree_v = second_vertex.getDegree();
...

// all other calculations remain untouched
// create candidate partitions
}
machine_id = candidates.get(choice);
currentState.incrementMachineLoad(machine_id, e);

// Degree Update - removed because degree
information is updated by broadcat

return machine_id;
}
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