DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

STOCKHOLM, SWEDEN 2018

Scalable System-Wide Traffic Flow
Predictions Using Graph
Partitioning and Recurrent Neural
Networks

JON REGINBALD IVARSSON

Scalable System-Wide Traffic
Flow Predictions Using Graph
Partitioning and Recurrent
Neural Networks

JON REGINBALD IVARSSON

Master’s program in Software Engineering of Distributed Systems
Date: December 20, 2018

Supervisor: Zainab Abbas and Ahmad Al-Shishtawy

Examiner: Vladimir Vlassov

Swedish title: Skalbara systemdvergripande trafikprognoser med
grafpartitionering och aterkommande neurala natverk

The School of Electrical Engineering and Computer Science

Acknowledgments

First and foremost, I would like to dedicated this thesis to my par-
ents, fvar Jonsson and Lilja Mésesdoéttir, whose encouragement and
support was vital while pursuing my academic ambitions. I would
like to express my sincere gratitude to my supervisors, Zainab Abbas
and Ahmad Al-Shishtawy, and my examiner, Vladimir Vlassov. Their
guidance, ideas and knowledge proved invaluable throughout the the-
sis work. Special thanks to RISE SICS, Research Institutes of Sweden,
and KTH, the Royal Institute of Technology in Stockholm Sweden, for
giving me the opportunity to work on this project. Finally, I would
also like to thank my friends and classmates for their support and my
opponents, Porsteinn Porri Sigurdsson and Cosar Ghandeharioon, for
their helpful feedback during the review of the thesis.

Reykjavik Iceland, December, 2018
Jon Reginbald lvarsson

Abstract

Traffic flow predictions are an important part of an Intelligent Trans-
portation System as the ability to forecast accurately the traffic condi-
tions in a transportation system allows for proactive rather than reac-
tive traffic control. Providing accurate real-time traffic predictions is a
challenging problem because of the nonlinear and stochastic features
of traffic flow. An increasingly widespread deployment of traffic sen-
sors in a growing transportation system produces greater volume of
traffic flow data. This results in problems concerning fast, reliable and
scalable traffic predictions.

The thesis explores the feasibility of increasing the scalability of
real-time traffic predictions by partitioning the transportation system
into smaller subsections. This is done by using data collected by Trafik-
verket from traffic sensors in Stockholm and Gothenburg to construct
a traffic sensor graph of the transportation system. In addition, three
graph partitioning algorithms are designed to divide the traffic sensor
graph according to vehicle travel time. Finally, the produced trans-
portation system partitions are used to train multi-layered long short-
term memory recurrent neural networks for traffic density predictions.
Four different types of models are produced and evaluated based on
root mean squared error, training time and prediction time, i.e. trans-
portation system model, partitioned transportation models, single sen-
sor models, and overlapping partition models.

Results of the thesis show that partitioning a transportation system
is a viable solution to produce traffic prediction models as the average
prediction accuracy for each traffic sensor across the different types of
prediction models are comparable. This solution tackles scalability is-
sues that are caused by increased deployment of traffic sensors to the
transportation system. This is done by reducing the number of traffic
sensors each prediction model is responsible for which results in less
complex models with less amount of input data. A more decentralized
and effective solution can be achieved since the models can be dis-
tributed to the edge of the transportation system, i.e. near the physical
location of the traffic sensors, reducing prediction and response time
of the models.

Keywords: Traffic Flow Prediction; Machine Learning; Recurrent Neu-
ral Network; Graph Partitioning; Big Data

Sammanfattning

Prognoser for trafikflodet dr en viktig del av ett intelligent transportsy-
stem, eftersom mojligheten att prognostisera exakt trafiken i ett trans-
portsystem mojliggdr proaktiv snarare dn reaktiv trafikstyrning. Att
tillhandahalla noggrann trafikprognosen i realtid dr ett utmanande
problem pa grund av de olinjdra och stokastiska egenskaperna hos
trafikflodet. En alltmer utbredd anvanding av trafiksensorer i ett vax-
ande transportsystem ger storre volym av trafikflodesdata. Detta leder
till problem med snabba, palitliga och skalbara trafikprognoser.

Avhandlingen understker mojligheten att 6ka skalbarheten hos re-
altidsprognoser genom att dela transportsystemet i mindre underav-
snitt. Detta gors genom att anvdnda data som samlats in av Trafik-
verket fran trafiksensorer i Stockholm och Goéteborg for att konstru-
era en trafiksensor graf for transportsystemet. Dessutom é&r tre graf-
partitioneringsalgoritmer utformade for att dela upp trafiksensor gra-
fen enligt fordonets kortid. Slutligen anvands de producerade trans-
portsystempartitionerna for att trana multi-layered long short memo-
ry neurala nit for forspanning av trafiktdthet. Fyra olika typer av mo-
deller producerades och utvdrderades baserat pa rotviardes kvadrat-
fel, traningstid och prediktionstid, d.v.s. transportsystemmodell, parti-
tionerade transportmodeller, enkla sensormodeller och 6verlappande
partitionsmodeller.

Resultat av avhandlingen visar att partitionering av ett transport-
system dr en genomforbar 16sning for att producera trafikprognosmo-
deller, eftersom den genomsnittliga prognoser noggrannheten for var-
je trafiksensor over de olika typerna av prediktionsmodeller &r jam-
forbar. Denna 16sning tar itu med skalbarhetsproblem som orsakas av
okad anvandning av trafiksensorer till transportsystemet. Detta gors
genom att minska antal trafiksensorer varje trafikprognosmodell &r
ansvarig for. Det resulterar i mindre komplexa modeller med mind-
re mangd inmatningsdata. En mer decentraliserad och effektiv 16s-
ning kan uppnds eftersom modellerna kan distribueras till transport-
systemets kant, d.v.s. ndra trafiksensorns fysiska ldage, vilket minskar
prognos- och responstid for modellerna.

Nyckelord: Trafikprognoser; Maskininlirning; Aterkommande Neu-
ralt Natverk; Graf Partitionering; Big Data

Contents

1 Introduction

1.1 Problem Definition
1.2 Purpose, Goals and Research Questions
1.3 Methodology
1.4 Delimitation
15 Contributions
1.6 Ethics
1.7 Sustainability
1.8 Outline
2 Background

2.1 TrafficSensors

2.1.1 Inductive Loop Detectors

212 MicrowaveRadar

2.1.3 Video Image Processor
22 TrafficFlowTheory

2.2.1 Performance Measures
23 GraphTheory

2.3.1 Graph Concepts

2.3.2 Graph Separation

24 Machine Learningo L.
2.5 Traffic Predictions

25.1 Naive Methods

2.5.2 Parametric Methods

25.3 Non-Parametric Methods

3 Related Work

vi

11
11
12
13
14
15
15
17
17
19
20
24
25
27
27

29

CONTENTS vii

4 Implementation 33
41 Datasets 33
42 Graph. 37
4.3 Sequential Weight Based Graph Partitioning 40

43.1 Forward Sequential Weight Based Graph Parti-
tioning L 42
4.3.2 Backward Sequential Weight Based Graph Parti-
tioning o oo oL 44
43.3 Opverlapping Sequential Weight Based Graph Par-
titioning 46
4.4 Neural Networks for Traffic Density Predictions 49
441 Transportation System Neural Network 51
442 Partitioned Transportation System Neural Net-
work . ..o 52
443 Single Sensor Neural Network 53
444 Opverlapping Partition Neural Network 54

5 Experiments 55
51 Graph. 0 . 55
5.2 Sequential Weight Based Graph Partitioning 57
5.3 Traffic Density Predictions 60

53.1 Hyperparameter Tuning 62

6 Results 65
61 Graph. 65
6.2 Sequential Weight Based Graph Partitioning 70
6.3 Traffic Density Predictions 76

6.3.1 Hyperparameter Tuning 80
6.3.2 Measured and Predicted Data Evaluation 87
6.3.3 Time Evaluation 92
6.3.4 Root Mean Squared Error Evaluation 94
6.3.5 Sensor Group Evaluation within a Partition 101

7 Conclusion and Future Work 119
71 Limitations 0., 121
72 FutureWork oo 122

7.2.1 Sensor Graph Refinement 122
7.2.2 Graph Partitioning Improvements 123
7.2.3 Deep Learning Exploration 123

724 Model Training 123

viii CONTENTS

72,5 Parallel Training 124
7.2.6 Distributed Traffic Prediction System 124
7.2.7 Federated Learning 124
Bibliography 125

A Source Code and Software 129

List of Figures

1.1
1.2

21
2.2
2.3

24
25
2.6
2.7
2.8
29

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
49
4.10

51
52

53
54

Sensor statistics from Stockholm and Gothenburg

Hierarchy of data processing

Key components of an inductive loop detector

The two types of waveforms used in traffic detection
Relationship between flow, demand and capacity dur-

ing non-congested and congested conditions
GraphExamples
Graph divided into two groups of equal sizes
Simple neural network 0L
Recurrent neural networkneuron
Long short-term memory neuron
Taxonomy of traffic prediction methods

Density data from four sensors in November 2016
Traffic sensors’ sitesinSweden
Sensor sites in Stockholm center
A traffic sensor’s spatial dependencies
Difference between forward and backward partitioning .
Simple example of an overlapping partition
Transportation System Neural Network
Partitioned Transportation System Neural Network . . .
Single Sensor Neural Network
Overlapping Partition Neural Network

An example of a straight road section in Stockholm
An example of a complicated road interchange in Stock-

holm
Simple evaluation scenario
Complex evaluation scenario

ix

12
13

16
18
20
22
23
24
25

36
36
37
41

46
52
53
54
54

56

X

LIST OF FIGURES

55

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9
6.10

6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

6.22

Overlapping evaluation scenario 60

The directed graph of Trafikverket’s traffic sensors’ sites 66
Trafikverket’s traffic sensors’ site graph of Stockholm

overlaidontopofamap 67
Trafikverket’s traffic sensors’ site graph of Gothenburg
overlaidontopofamap 68
Trafikverket’s traffic sensor site graph overlaid of Stock-
holm centerontopofamap 69
Results for Stockholm when partitioning the transporta-
tion system with a weight criteria of 3 minutes 71
Results for Stockholm when partitioning the transporta-
tion system with a weight criteria of 5 minutes 72
Results for Stockholm when partitioning the transporta-
tion system with a weight criteria of 10 minutes 73

Results for Stockholm when partitioning the transporta-
tion system with a weight criteria of 20 and 30 minutes . 74

Example of a overlapping partition in Stockholm 76
Relationship between training time and average num-

ber of trafficsensors Lo 0L 79
Relationship between prediction time and average num-

ber of trafficsensors 0oL 80
Validation loss for transportation system model 81
Validation loss for a 20 Minute partition model 81
Validation loss for a 10 Minute partition model 82
Validation loss for a 5 Minute partition model 82
Validation loss for a 3 Minute partition model 83
Validation loss for a single sensormodel 83
Relationship between model complexity and training time

for the transportation system model 84
Relationship between model complexity and training time

for the 20 minute partitioned transportation system model 85
Relationship between model complexity and training time
for the 10 minute partitioned transportation system model 85
Relationship between model complexity and training time
for the 5 minute partitioned transportation system model 86
Relationship between model complexity and training time
for the 3 minute partitioned transportation system model 86

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41

6.42

6.43

LIST OF FIGURES Xi

Relationship between model complexity and training time

for the single sensormodel 87
Comparison of measured and predicted density for the
Transportation System Model 88
Comparison of measured and predicted density for the

20 Minute Partitioned Transportation System Models . . 89
Comparison of measured and predicted density for the

10 Minute Partitioned Transportation System Models . . 89
Comparison of measured and predicted density for the

5 Minute Partitioned Transportation System Models . . . 90
Comparison of measured and predicted density for the

3 Minute Partitioned Transportation System Models . . . 90
Comparison of measured and predicted density for Sin-
gleSensorModels, 91
Comparison of measured and predicted density for Over-
lapping PartitionModels 91
Average training time for eachmodel 92
Total sequential training time for each model 93
Average prediction time for eachmodel 94
Comparison of average RMSE between all models for

all trafficsensors L. 96
Comparison of average RMSE between all models for

all trafficsensors L. 97
Average RMSE of all traffic sensors for the Transporta-

tion System Model 98
Average RMSE of all traffic sensors for the 20 Minute
Partition System Models 98
Average RMSE of all traffic sensors for the 10 Minute
Partition System Models 99
Average RMSE of all traffic sensors for the 5 Minute Par-
tition System Models o L. 99
Average RMSE of all traffic sensors for the 3 Minute Par-
tition System Models 0oL 100
Average RMSE of all traffic sensors for the Single Sensor
Models 100
Average RMSE of all traffic sensors for the Overlapping
PartitionModels 101

Average RMSE comparison between sensor groups in
the 20 Minute Partition System Models 103

Xii LIST OF FIGURES

6.44 Average RMSE comparison between sensor groups in

the 10 Minute Partition System Models 104
6.45 Average RMSE comparison between sensor groups in

the 5 Minute Partition System Models 105
6.46 Average RMSE comparison between sensor groups in

the 3 Minute Partition System Models 106

6.47 Comparison of average RMSE of traffic sensors in the

start group in the 20 Minute Partition System Models . . 107
6.48 Comparison of average RMSE of traffic sensors in the

center group in the 20 Minute Partition System Models . 108
6.49 Comparison of average RMSE of traffic sensors in the

end group in the 20 Minute Partition System Models . . . 109
6.50 Comparison of average RMSE of traffic sensors in the

start group in the 10 Minute Partition System Models . . 110
6.51 Comparison of average RMSE of traffic sensors in the

center group in the 10 Minute Partition System Models . 111
6.52 Comparison of average RMSE of traffic sensors in the

end group in the 10 Minute Partition System Models . . . 112
6.53 Comparison of average RMSE of traffic sensors in the

start group in the 5 Minute Partition System Models . . . 113
6.54 Comparison of average RMSE of traffic sensors in the

center group in the 5 Minute Partition System Models . . 114
6.55 Comparison of average RMSE of traffic sensors in the

end group in the 5 Minute Partition System Models . . . 115
6.56 Comparison of average RMSE of traffic sensors in the
start group in the 3 Minute Partition System Models . . . 116

6.57 Comparison of average RMSE of traffic sensors in the
center group in the 3 Minute Partition System Models . . 117
6.58 Comparison of average RMSE of traffic sensors in the
end group in the 3 Minute Partition System Models . . . 118

List of Tables

4.1 The schema of the metadata dataset 34
42 The schema of the traffic sensor measurement dataset . . 35
4.3 Number of LSTM hiddenunits 53
5.1 Number of LSTM units selected for hyperparameter tun-

INg 63
6.1 The schema of the vertex dataset 65
6.2 The schema of the edge dataset 66
6.3 Graphstatistics 70
6.4 Partitioning statistics 75
6.5 Opverlapping partitioning statistics 76
6.6 Overview of the experiments conducted 77
6.7 Overview of the experimental results 78
6.8 The number of LSTM hidden units producing the most

accurate traffic predictions 84
6.9 Root mean squared error difference between models for

traffic sensor E2650-4215-1 87
6.10 Average RMSE of predictions for all traffic sensors 95
6.11 Median of the average traffic prediction RMSE for each

trafficsensorgroup 102

xiii

Chapter 1

Introduction

In the past century, increased urbanization and motorization has re-
sulted in an improved standard of living for the world population.
However, significant traffic-related challenges have occurred such as
traffic accidents, air quality deterioration, increased transportation cost
and traffic congestion [1].

The United States Bureau of Transportation Statistics estimated in
its annual report from 2017 [2] that the nation’s transportation assets
is valued to be approximately $7.7 trillion in 2016 and the road system
contains 6,7 million kilometers of road. Since the year 2000, the roads
increase by 351 thousand kilometers. The bureau found that people
using cars traveled around 6.1 trillion kilometers in 2015, an increase
of 5.4 percent from 2010. Registered vehicles increased by 38 million
from 2000 to 2015 reaching 264 million registered vehicles. From 2014
to 2015, the transportation demand grew by 3.8 percent and for the
past 30 years the traffic congestion level has increased in all urban ar-
eas costing the economy in 2014 approximately $160 billion. The av-
erage annual delay per commuter rose from 37 hours in 2000 to 42
hours in 2014, an increase of 13.5 percent, i.e. a total delay of 6.9 bil-
lion hours, about a third higher than in 2000. The number of highway
deaths has increased from 33 thousand in 2010 to 37 thousand in 2016.
In the period 2014 to 2015, pedestrian deaths has risen to six thousand,
an increase of 21.9 percent. The bureau estimates that people injured
in vehicle crashes on highways reached 2.44 million in 2015. Further-
more, the bureau reports that transportation is the second largest pro-
ducer of greenhouse gas emissions and it accounts for 27 percent of
the total U.S. emissions.

2 CHAPTER 1. INTRODUCTION

These problems have pushed cities into becoming smarter and pro-
mpted the development of intelligent transportation systems (ITS) [3]
were advanced technologies, such as traffic data collection, traffic data
analysis, traffic control and artificial intelligence are applied to im-
prove the overall efficiency of the transportation system.

ITS consists of three essential components, data collection, data anal-
ysis and information distribution. This system gathers observable infor-
mation from the transportation system using various sensors that can
measure traffic data such as traffic flow, travel time and road density.
They then analyze the collected data to evaluate the traffic conditions
and produce traffic control responses. ITSs need to be able to send traf-
fic sensor data to operation centers for evaluation, and thereafter dis-
tribute traffic control data from operation centers to commuters and
transportation infrastructure [3].

In the past decade, deployment of intelligent transportation sys-
tems with features such as real-time traffic monitoring, big data anal-
ysis and smart traffic infrastructure has offered unique opportunities
for dynamic management of the transportation system and led to im-
provements in safety and pollution levels.

An important advantage of ITS is its ability to accurately forecast
future traffic conditions in a transportation system using enormous
amount of traffic sensor data including travel time, traffic density and
traffic speed. Traffic predictions allow the system to become proac-
tive in solving problems mitigating them rather than reacting to them.
The need for this kind of information is not only crucial for individ-
ual commuters and companies for route planning but also for govern-
ments when managing the transportation system according to future
traffic conditions. This kind of information allows traffic controllers to
improve the management of the transportation system by decreasing
congestion through rerouting traffic which in turns improves traffic
efficiency and safety.

1.1 Problem Definition

Accurately predicting future traffic conditions in real-time is a chal-
lenge and not a straightforward task due to the stochastic and non-
linear features of traffic flow [4][5][6]. A widespread deployment of
traffic sensors has increased the coverage, quality and availability of

CHAPTER 1. INTRODUCTION 3

data, prompting a large number of studies of traffic predictions.

In recent years, an increased number of sources for real-time traffic
data has emerged from different kinds of infrastructure sensors and
mobile data. The success and performance of ITSs have relied on the
quality of traffic data. A highly desired feature of ITS is real-time ac-
curate and reliable traffic information. Recently, greater volume and
better quality of traffic data has increased the importance of fast, ef-
ficient and reliable methods for storing and processing the relatively
massive datasets in a scalable manner.

In order to find such an efficient, reliable, and scalable method, traf-
fic data from Trafikverket (the Swedish Transportation Administration)
covering the cities of Stockholm and Gothenburg will be used in this
thesis. Figure 1.1a illustrates how the deployment of traffic sensors has
increased from the year 2000 to 2016 in these two cities, while figure
1.1b shows the increase of traffic data measurements from 2005 to 2016
as more of the sensors have come online.

(a) Number of sensors per year () Number of measurements per year

Figure 1.1: Sensor statistics from Stockholm and Gothenburg

1.2 Purpose, Goals and Research Questions

The main goal of the thesis is to explore the feasibility of different ways
of producing traffic density predictions by constructing a graph of the
transportation system in Stockholm and Gothenburg and partitioning
it into subsets of sensors. The graph captures the spatial dependen-
cies between sensors while the sensor measurements are of temporal

4 CHAPTER 1. INTRODUCTION

nature. This allows for the modeling of both spatial and temporal de-
pendencies.

This approach may provide a more scalable solution to traffic pre-
dictions as the number of sensors in the transportation system increases
and their traffic measurements become more fine grained, e.g. mea-
surements per minute rather than per hour. However, the approach
increases the number of prediction models. The advantage is that
these models can be located closer to the physical location of the traf-
fic sensors. Hence, this approach has the potential of producing more
frequent and accurate predictions as the latency of transferring traffic
measurements to the models from sensors is reduced and the amount
of data needed for each prediction is lower.

Figure 1.2 illustrates this hierarchy of data processing to enable a
more scalable solution compared to a centralized solution. Data from
sensors are sent to a local data processor that produces predictions that
can then be sent to either commuters or a central data processor to
construct an overview of the predictions for the transportation system
as a whole.

Central data * :
processor :

Local data :
processor = ; e

Sensor Sensor Sensor Sensor

Figure 1.2: Hierarchy of data processing

CHAPTER 1. INTRODUCTION 5

The thesis will explore and evaluate the prediction error, the train-
ing time, and the prediction time of four types of traffic density pre-
diction models:

e Single sensor models where each sensor has its own neural net-
work to predict future density measurements for the sensor.

e A system-wide transportation system model where all sensors
in the transportation system are used to train a model to predict
future density measurements for all of the sensors.

e Partitioned transportation system models where data from sen-
sors within a partition are used to train models that predict for
those sensors.

e Overlapping partition models, where data from a large number
of surrounding sensors is used in addition to data from a small
number of traffic sensors that the model predicts for.

The research questions of the thesis are:

e Is it possible to construct a graph based structure for traffic sen-
sors in Stockholm and Gothenburg?

e Is it possible to design a graph partitioning algorithm that di-
vides up a graph of sensors based on travel time between sen-
sors?

e Are models created from a partitioned transportation network
as accurate in terms of traffic density predictions as single sensor
models or a model using all of the transportation network?

e Can the accuracy be improved by generating overlapping parti-
tion models that predict for a group of sensors using their traffic
flow measurements and measurements from surrounding traffic
sensors?

1.3 Methodology

In this thesis, Triangulation research method is used as it includes both
Quantitative and Qualitative methods. To understand why these meth-
ods are relevant for the study of the thesis, one has to have a clear
definition of them and their application in the study.

6 CHAPTER 1. INTRODUCTION

Qualitative research uses interpretative investigation or development
on a sufficiently small dataset to reach reliable theories and conclu-
sions or to develop computer systems, inventions and artifacts [7]. A
relatively small dataset of traffic sensors from Trafikverket will be used
in this thesis to construct a graph of sensors in Stockholm and Gothen-
burg. The produced graph will then be used to develop and imple-
ment a graph partitioning algorithm that divides the sensor graph
based on a user defined criteria for the total travel time between sen-
sors. These partitions will then be used to construct traffic density
prediction models.

Quantitative research uses experiments and a large amount of data
to reach a conclusion about the validity of a hypothesis or to test a
computer systems’ functionalities. The precondition for predictability
of experiments is that the hypotheses are measurable and quantifiable
[7]. The dataset used in this thesis includes one month of traffic mea-
surements from the year 2016 provided by Trafikverket. This data will
be applied in the traffic density prediction model experiments and the
validity will be verified with a statistical method, i.e. root mean square
error.

1.4 Delimitation

The thesis can be divided into three parts. The first part involves anal-
ysis of the dataset provided by Trafikverket and the construction of a
traffic sensor graph that spans Stockholm and Gothenburg city areas.
The graph structure is used to better understand the relationships be-
tween the traffic sensors and it is used as the input to the second part
of this thesis.

The second part of the thesis is the development and implementa-
tion of a graph partitioning algorithm that cuts edges between vertices
based on the time it takes to travel between sensor locations. The goal
is to form subsets of vertices that are spatially related and conform to
travel time requirement specified by the user of the algorithm.

The final part of the thesis is to develop four separate recurrent
neural network models that are able to predict future traffic densities.
These models are used to evaluate and compare if partitioning a road
network of traffic sensors can give comparable results to that of single
sensor models and whole transportation system model.

CHAPTER 1. INTRODUCTION 7

1.5 Contributions

The thesis contributes to the traffic flow prediction research area by
investigating and producing the following;:

e Graph based structure of all traffic sensors currently deployed by
Trafikverket in Sweden, limited to Stockholm and Gothenburg.

e A design and implementation of a sequential weight based graph
partitioning algorithm.

e Implementation of four types of neural networks for traffic den-
sity predictions, i.e. single sensor, partitioned transportation sys-
tem, transportation system, and overlapping partition neural net-
works.

e Evaluation of the prediction error, training time, and prediction
time for single sensor models, partitioned transportation system
models, transportation system model, and overlapping partition
models.

1.6 Ethics

As with any new project developed or applied within the European
Union, a fundamental requirement is how the project confirms to the
General Data Protection Regulation that came into affect on the 25th
of May 2018 Union [8].

The dataset provided by Trafikverket does not contain any per-
sonal data or data that can be used to identify individual persons.
It only consists of sensor information and aggregate traffic flow mea-
surements from individual sensors. In other words, the measurements
from the traffic sensors do not collect information about individual
cars but measurements about the traffic conditions per minute at each
sensor. This means that individual commuters cannot be tracked or
monitored using this dataset as there is no identifiable information.

This thesis does not process the dataset to produce information that
can be used to identify commuters. Instead, it seeks to create 1 minute
aggregated traffic density predictions.

8 CHAPTER 1. INTRODUCTION

1.7 Sustainability

The goal of the thesis is to produce traffic density prediction models
that are able to make the transportation system more efficient and sus-
tainable. The traffic density predictions may lead to improvements in
performance and efficiency of traffic flow as it allows traffic controllers
to respond to traffic congestion. Reduction in traffic congestion results
in better traffic conditions, fuel savings, and less injuries and fatalities
relating to traffic.

By 2030, the Swedish authorities aim to reduce Greenhouse Gas
(GHG) emissions from domestic transport by 70 percent compared to
2010 levels. In addition, the Climate Act passed in 2017 requires that
Sweden reaches net-zero GHG emissions by 2045 [9]. Traffic is a sub-
stantial source of air pollution, statuary noise, and vibrations which
causes great deal of health related problems. The Swedish Transport
Administration estimates that noise from road and rail traffic causes
around 6,700 Disability Adjusted Life Years (DALY) in health losses
during one year. In addition, traffic emissions causes health losses on
a scale of 27,000 DALY [9]. This thesis may help elevate some of these
problems and contribute to the achievement of lower greenhouse gas
emission in Sweden.

In 2016, the United Nations Sustainable Development Goals came
into effect. This thesis may contribute to solving several of these goals
[10]:

Goal 3: Good health and well-being for people. By improving the trans-
portation infrastructure with traffic density predictions, traffic conges-
tion, pollution and accidents can be reduced that in turn promote bet-
ter health for the general public.

Goal 9: Industry, Innovation, and Infrastructure. The research into
scalable and efficient system for traffic density predictions is a step to-
wards improvements and innovation in transportation infrastructure.

11: Sustainable cities and communities. An important part of making
cities and communities more sustainable is to improve the transporta-
tion infrastructure.

Goal 13: Climate action. The thesis has the potential of contributing
to any climate action related to the transportation system of a country.

The most innovative part of the thesis is the effort to create a more
scalable and efficient system for traffic predictions which will allow
countries to reduce costs on infrastructure, computational resources,

CHAPTER 1. INTRODUCTION 9

and to increase the speed of predictions to users of the system. Pre-
diction processing units can be located closer to sensors and users of
the predictions. This will reduce the need for data to be sent long dis-
tances to a central processing unit and allows the use for compression
tactics if data is sent to a central location.

1.8 Outline

The thesis is organized into seven chapters. The first chapter addresses
the social, economic, and environmental context of the problem defini-
tion. The second chapter discusses the theories and concepts necessary
to understand the research problem. In the third chapter the focus is on
related work. The fourth chapter presents the implementation of the
solution developed as a part of this thesis. Experiments are described
in detail in chapter five. Results from evaluation of the experiments
and implementation are presented in chapter six. Chapter seven dis-
cusses the conclusion of the thesis and proposes future work.

Chapter 2

Background

This chapter presents an overview of the main technologies and theo-
ries of the thesis. The aim of the chapter is to provide the reader with
necessary background knowledge of the thesis research area. This al-
lows future researchers to elaborate further on the findings and contri-
butions of the research presented in this thesis.

The chapter is divided into four sections, i.e. traffic sensors, traffic
flow theory, graph theory and machine learning.

2.1 Traffic Sensors

This section describes the most common vehicle detection and surveil-
lance technologies that are used to measure and monitor roads and
highways by giving traffic management systems traffic parameters such
as vehicle presence, vehicle count and vehicle speed. These technolo-
gies are divided into two categorize, i.e. intrusive and non-intrusive
Sensors.

Intrusive sensors are placed directly into the road pavement and
cause significant disruption to the traffic flow during repairs and in-
stallations. The operation of these sensors are well understood and
the technology is regarded as both mature and accurate.

Non-intrusive sensors are cost-effective, reliable vehicle detection al-
ternatives that cause minimal disruption of traffic flow during instal-
lation and repairs. They are mounted above or to the side of roadways
and aim to give at least as accurate measurements as intrusive sensors
[11].

11

12 CHAPTER 2. BACKGROUND

2.1.1 Inductive Loop Detectors

Inductive Loop Detectors fall under the intrusive sensor technology
group. Since the early 1960s, these sensors have been used in traffic
management systems and are still the most common sensors.

Figure 2.1 depicts the key components of an inductive loop detec-
tor. The key components are:

e Insulated wire loop - an insulated wire that is wound in a shallow
channel in the road pavement.

e Lead-in cable - cable that runs from the curbside pull box to in-
tersection controller cabinet.

e Electronics unit - housed in the intersection controller cabinet.

Electronics unit
Roadway

Controller cabinet

Lead-in conduit

Wire
Loop
Pull box

L)

Figure 2.1: Key components of an inductive loop detector

The electronics unit applies electricity to the wire loop and when
vehicles drive over or stop within a loop, they cause eddy currents in
the wires that decreases the wire inductance. The electronics unit de-
tects the decrease of inductance of the loop and alerts traffic operator
of a vehicle presence or passage. Individual loops are not capable of
directly measuring vehicle speed. However, the speed can be deter-
mined by using either two wire loops spaced apart or an algorithm
that calculates the speed by using the loop length, average vehicle
length, vehicle detector passage time and number of detected vehicles
[12][13].

CHAPTER 2. BACKGROUND 13

The advantages of using an inductive loop detector are the matu-
rity of the technology, measurement accuracy and being unaffected
by adverse weather conditions. However, installation and repairs are
costly both in terms of traffic flow disruptions and pavement cutting
[14].

2.1.2 Microwave Radar

Microwave Radars detectors fall under the non-intrusive sensor tech-
nology group as they can be mounted above or on the side of the road.
Modern radar technology was originally developed during the sec-
ond world war to detect objects such as enemy airplanes. Radar is
an abbreviation of the functions it performs, RAdio Detection And
Ranging. These sensors can be mounted over the middle of a road
lane to measure vehicle data such as volume, speed, occupancy by
emitting a beam of energy from its antenna to a limited area of the
road and measure the reflected energy as vehicles pass through it.

Figure 2.2 depicts the two types of microwave radar waveforms
used by sensors in traffic-related applications.

A A
Received Signal
R R gy g g =
5] 9)
5 c
[Doppler fr_equency g
& | Transmitted Signal shift g
w i
Time : Time
Constant frequency waveform Frequency modulated continuous waveform

Figure 2.2: The two types of waveforms used in traffic detection

These sensors can emit a continuous wave (CW) or a frequency
modulated continuous wave (FMCW). The traffic data received by
these sensors is dependent on the shape of the transmitted waveform.
CW sensors transmit a signal with a constant frequency in relation to
time. By using the Doppler principle, the sensor is able to detect the
motion of vehicles. Vehicles moving towards the sensor cause the re-
flected frequency to shift to a higher frequency. FMCW sensors trans-
mit a signal with a constantly changing frequency with respect to time

14 CHAPTER 2. BACKGROUND

and they are therefore able to detect the motion of vehicles and the
presence of motionless vehicles [15][16].

Radar sensors are widely used in transportation management sys-
tems as they are easy to install, maintain and are unaffected by unfa-
vorable weather conditions [14].

2.1.3 Video Image Processor

Video image processors are in the non-intrusive sensor group as they
can be mounted outside the road itself. Since the middle of the 1970s,
countries including the United States, United Kingdom, Japan, Ger-
many, France and Sweden have been putting parallel effort into inves-
tigating video and image processing technologies to be able to replace
inductive-loop detectors [17].

The introduction of video cameras in traffic management was ini-
tially intended to allow a human operator to interpret a feed of closed
circuit television imagery for roadway surveillance. Currently, a more
automatic approach is applied, where traffic managers rely on video
image processing equipment to analyze and extract important infor-
mation from the video feed.

Video image processor (VIP) systems usually contain one or more
video cameras, a computer and software that processes and analyzes
the video feed and converts it into traffic flow data. Fundamentally, a
VIP system detects vehicles by analyzing successive frames of a cam-
era video feed that records a traffic scene and calculates traffic flow
data based on the analysis of the frames.

The VIP systems that have been developed are categorized into
three classes, i.e. Tripline, Closed-loop tracking, and Data Associate track-
ing.

Tripline allows operators to specify a limited number of detection
zones in the video cameras field of view. The system detects vehicles
by comparing the changes of the pixels within a detection zone when
a vehicle enters the zone compared to the pixels when no vehicle is in
the zone. The speed of vehicles is estimated by measuring the time it
takes a vehicle to travel a detection zone of a known length.

Closed-loop tracking extends Tripline systems by being able to con-
tinuously detect and track vehicles along a larger roadway section.
The detection and tracking area is limited by the resolution, mount-
ing height and distance of the camera from the roadway. Multiple

CHAPTER 2. BACKGROUND 15

vehicle detections are used to validate the vehicle tracking and to im-
prove speed estimates. These systems can provide additional traffic
flow information, e.g. vehicle lane-to-lane changes.

Data Associate tracking systems detect and track individual vehicles
or groups of vehicles by identifying unique connected areas of pixels.
The tracking data for individual vehicle or vehicle group is produced
from tracking these connected areas from frame to frame [18][17].

Traffic monitoring with VIP systems gives transportation manage-
ment systems increased flexibility and lower maintenance cost com-
pared to other systems. However, these systems have been shown to
be vulnerable to viewing obstructions, shadows, adverse weather and
lighting conditions [14].

2.2 Traffic Flow Theory

Traffic flow theory focuses on understanding and developing an ideal
transportation network with negligible congestion and efficient oper-
ation by analyzing the interactions between the transportation infras-
tructure and its users.

Traffic flow theory is primarily used by transportation engineers
during the operations stage of a transportation network. The theory
is also used during design, construction and maintenance stages. The
operational stage deals primarily with analysis and optimization of
the operational quality of the transportation network using principles
from traffic flow theory.

2.2.1 Performance Measures

Performance measures such as travel time, speed, flow and density define
the operational quality of the transportation network. Measurements
are collected by monitoring the traffic stream that consists of drivers
and vehicles as well as their performance and behavioural character-
istics.

Flow

Traffic flow theory defines flow as the rate at which vehicles travel
through a particular point in the transportation network. Flow is typi-

16 CHAPTER 2. BACKGROUND

cally denoted as vehicles per hour (vph) or vehicles per hour per traffic
lane (vphpl).

Capacity and demand are two key traffic measures that use the same
unit of measurement as flow but they cannot be used interchangeably.
Capacity represents the maximum amount of traffic a road section can
handle and demand represents the traffic that wants to use a particular
road section.

Figure 2.3 illustrates the relationship between flow, demand and
capacity. For optimal conditions, the demand of a road section is equal
to the flow. For congested conditions, flow becomes equal to the capacity
of the road section while demand is greater than the flow [19].

]

|]

1
____________________ 1

[]

_____________ !
L= imrs s /) I
1

Figure 2.3: Relationship between flow, demand and capacity during
non-congested and congested conditions

Speed

Speed can describe both as the movement of one vehicle or the move-
ment of vehicles in a traffic stream. It is measured as distance per unit
of time, generally as kilometers per hour (kmph). Speed is one of the
most useful performance measures as it gives a direct indication if a
road section is congested or not. As a direct results of this importance,
several speed related terms have been defined for traffic operational
analysis and the most frequently used terms are:

Free-flow speed - describes the speed of a traffic stream when flow is low.

CHAPTER 2. BACKGROUND 17

Operating speed - describes the speed of a traffic stream during common
operating conditions.

Design speed - describes the speed for which a road section was de-
signed [20].

Density

Density is a very useful measure for performance as it is defined in
terms of units of traffic per unit of distance, generally denoted as vehi-
cles per kilometer (vpkm) or vehicles per kilometer per lane (vpkmpl).
With current technology, measuring density directly is very difficult.
However, mathematically, density, flow and speed are related as shown
in equation 2.1. Knowing two of these parameters of the equation al-
lows us to estimate the third parameter [21].

F
D=— (2.1)
v
D = density F = Flow v = speed

2.3 Graph Theory

Graph theory is a field within Discrete Mathematics and Computer Sci-
ence that studies pairwise relationships between entities using a math-
ematical structure called graph.

2.3.1 Graph Concepts

A Graph is a data structure that consists of a set of elements V =
{v1, 09,03, ..., v, } called vertices (nodes, points) and a set of edges (lines)
E = {e1,e9,¢€3,...,en}. Each edge e, is an unordered pair of vertices
(UZ', ’Uj).

According to convention, graphs are generally represented with di-
agrams, where vertices are depicted as dots and each edge is depicted
as a line between two dots. Figure 2.4 illustrates four different types of
graphs using the vertex set {a,b, ¢, d, e}.

Vertices that have an edge between them are called neighbors and
are therefore adjacent to each other in a graph.

18 CHAPTER 2. BACKGROUND

a b a b
QE OVC
C d e C d e

(a) Simple Graph (b) General Graph
a b a b
C d e C d e
(c) Connected Graph (d) Directed Graph

Figure 2.4: Graph Examples

A graph may contain loops, parallel edges and directed edges. A loop
is an edge that has the same vertex for both its endpoints. Figure 2.4b
shows a loop for vertex a. Parallel edges are edges that are associated with
the same pair of vertices. Figure 2.4b depicts two parallel edges between
vertices band d. A directed edge is a special type of edge where a direction
is associated with the edge and the vertex pair ordering matters as the
directed edge (v;,v;) represents a direction from the initial vertex v; to
terminal vertex v;. Figure 2.4d illustrates directed edges between vertices.

Vertex degree (Deg(v;)) is the number of edges incident to a vertex,
where loops are counted twice. In figure 2.4b, vertex a has a degree of
three. Out degree of a vertex is the number of directed edges that have
the vertex as its initial vertex while in degree of a vertex is the number of
directed edges that have the vertex as its terminal vertex. In figure 2.4d,
vertex d has an out degree of three and an in degree of one.

A walk is a traversal of a graph, where each edge of a graph is only
visited once while vertices are visited at least once. Terminal vertices are
the start and the end vertices of a walk. A walk that visits vertices only
once is called a path and the length of the path is the number of edges

CHAPTER 2. BACKGROUND 19

it contains.

A simple graph, as illustrated in figure 2.4a, is a graph that contains
vertices and edges where loops and parallel edges are not allowed.

A general graph, as illustrated in figure 2.4b, is not limited by the
same constraints. Graphs are allowed to have both loops and parallel
edges. This means that every simple graph is a general graph but not vice
versa.

A connected graph, as illustrated in figure 2.4¢c, is a graph that has
at least one path between every pair of vertices. Otherwise, the graph is
disconnected as can be seen in figure 2.4b. Connected subgraphs within
a disconnected graph are called components of the disconnected graph.

A directed graph (Digraph), as illustrated in figure 2.4d, is a graph
that contains only directed edges and are drawn as arrows that depict
the directions a walk can traverse the edge. A directed graph is said to
be connected if the underlying undirected graph has at least one path be-
tween every pair of vertices and strongly connected if for any two vertices
there exists a directed path between them [22][23][24].

2.3.2 Graph Separation

A classic computer science problem is how to divide up vertices of
a graph into non overlapping groups, clusters or communities. There
are two types of algorithms that have been proposed to solve this prob-
lem, graph partitioning and community detection algorithms. The differ-
ence between the two algorithms is that in graph partitioning the size
and number of the groups is fixed while in community detection they
are unspecified.This difference lies in the goals these algorithms are
trying to achieve.

The goal of graph partitioning algorithms is to find the best divi-
sion of a graph based on predefined criteria so that each division is
small and manageable. These algorithms divide up graphs regardless
of whether any good division exists in the graph.

Contrary, the goal of community detection is to discover the structure
of a graph and the underlying connection patterns that may lie within
the graph. These types of algorithms do not divide up a graph if its
structure does not indicate a good division [25].

20 CHAPTER 2. BACKGROUND

’ N\ 7 S

P
~

Figure 2.5: Graph divided into two groups of equal sizes

Graph Partitioning

Graph partitioning algorithms aim to divide vertices of a graph into
non overlapping groups of fixed size based on specific criteria from
the user. This is done to minimize edge cut, i.e. the number of edges
between the groups.

Dividing up a graph into two parts, graph bisection, is the simplest
graph partitioning problem. The most common approach to arbitrary
divisions of a graph is to execute a graph bisection algorithm repeat-
edly.

Focusing on graph bisection, the simplest solution would be to per-
form an exhaustive search, try all possible divisions of a graph, and
then choose the one with the smallest cut size. The problem with this
solution is the excessive computer resource cost of dividing up large
graphs.

2.4 Machine Learning

Machine learning is a research field within artificial intelligence and has
been researched since the early 1980s but has been constrained by the
lack of raw training data and computational resources. In the past
decade, this has changed with the increased amount of available col-
lected data from various sources and computational resources. Ma-
chine learning is a set of tools and methods that allow a machine or a
program to extract and identify patterns from the observable world. It
gives computers the ability to learn as apposed to being programmed.

CHAPTER 2. BACKGROUND 21

Machine learning can be divided into two families, supervised and un-
supervised learning. Supervised learning is when input and desired out-
put information is fed into an algorithm that then finds a way to repro-
duce the desired output from the input data. Unsupervised learning
describes machine learning methods where the output is unknown.
Here, the algorithm is fed input data to extract unknown knowledge
contained within the data.

In essence, machine learning algorithms extract structural informa-
tion from raw data and represent it in a structural description called a
model. The process of creating a model from data is called training and
the goal of the process is to create an accurate model able to produce
accurate output most of the time. These models can then be used to in-
fer things about similar data that has not yet been modeled. They can
take many forms such as decision trees representing the data structure
as a set of rules or as a parameter vector consisting of neural network
weights that represent the connection weights between the neurons.

Datasets used for training models consist of samples or data points
containing properties called features that describe a sample. An exam-
ple is a grocery store customer dataset consisting of customer samples
that have features such as customer name, gender, age and the name
of the item purchased. If a model is created to predict what item a
customer is going to buy based on age and gender, the machine learn-
ing algorithm can be fed with the input features age and gender and
the desired output feature of item purchased. Data preparation is an
important task of machine learning. An extensive dataset needs to
be collected that isn’t biased towards any of the desired outputs such
that the model becomes as accurate as possible when fed new unseen
data. For training of a machine learning model, the dataset needs to
be split into two parts. Most of the data, usually around 75%, should
be in the training dataset while the rest of the data should be in the
test dataset. The training data is used during the training process of
the model while the test dataset is used to evaluated the performance
of the model on new data, i.e. data it has not seen before. The per-
formance indicates whether the model is able to generalize well, i.e.
produce accurate output based on new data.

For the training process, the machine learning algorithm is fed train-
ing data to learn from. In the beginning, the model structure is set
to some initial values. During the training process, the values are
changed iteratively as samples are fed into the model. A loss func-

22 CHAPTER 2. BACKGROUND

tion is used to calculate how far the produced output is from the de-
sired output. The goal of the training process is to minimize the loss
calculated by the loss function for each training step by altering the
values in the model structure. Once the training process is complete,
the produced model is evaluated using the test dataset. This demon-
strates how the model may perform on new data and if the training
process has produced a good and generalized model. Overfitting hap-
pens when a model is trained too closely on the training dataset such
that it produces accurate output on the training set but not on the test
dataset. Underfitting happens when the model is too simple and un-
able to capture the features of the training data producing inaccurate
output. Early stopping is a condition used to stop the training process
before the model overfits the training dataset, i.e. a minimum loss
change each training step.

Hyperparameters are parameters used while training models. An
example is how often the training process runs through the training
dataset (number of epochs) or how large the model structure is. Hy-
perparameter tuning is a process for determining the optimal set of hy-
perparameters to be used while training a model to improve on the
accuracy of the model.

Neural networks are one of the types of machine learning models.

A principal unit of a neural
network is a neuron (cell, unit)
which is based on the biological
neuron of the brain. Neurons
are connected to allow informa-
tion to flow between them sim-
ilarly to biological neurons with
synapses. These neurons can
transform the information they
receive or limit the amount of in-
formation they pass along. The
inputs of each neuron are of-
ten fed into an activation func-
tion that computes the output of
Figure 2.6: Simple neural network ~the neuron, e.g. Sigmoid, Tanh or
ReLU. The connections between
the neurons are called edges. These edges usually have a weight as-
sociated with them that influences the strength of the information sent

CHAPTER 2. BACKGROUND 23

on the edge. The weight is adjusted during the training process. Fig-
ure 2.6 illustrates how neurons are organized into layers within a neu-
ral network where information flows from the input layer through the
network to the output layer, called feed-forward neural network. Each
layer may perform a specific kind of transformation on their input
based on the activation function they have.

Recurrent neural networks extends feed-forward neural networks by
including a feedback connection that feeds the output of a hidden
layer back into itself. Neurons of the network have feedback loops, al-
lowing information to persist. Figure 2.7 illustrates how a neuron in a
recurrent neural network feeds its output with the input value X; and
outputs a value Y; which is then fed back into itself with the next input
value. Recurrent neural net-
works are exceptionally good for
operations over sequences of in-
put vectors where retaining the
state of past input vectors is cru-
cial. Tasks where previous data
influences the current data, e.g.
speech recognition or time-series
data. A limitation of recurrent
neural networks is that they are
unable to learn to connect past
information to outputs that are
located far into the past. This is
a result of the vanishing gradient problem where the edge weights do
not update during the training process of a model.

To overcome this long-term dependency limitation, long short-term
memory (LSTM) neuron was developed with gates that allow the neu-
ron to decide which data to keep or forget. Figure 2.8 illustrates the
structure of a LSTM neuron.

The green horizontal line is the cell state and contains information
that the neuron has decided to keep. Gates carefully regulate which
information is added to the cell state or removed from it. Gates are
constructed out of Sigmoid activation functions. They generate a value
from zero to one indicating how much information should be let through.
Incoming information passes first though a Sigmoid activation func-
tion called a forget gate. It takes the previous output Y;_; and input
value X; and decides how much of cell state C;_; it should keep. The

Figure 2.7: Recurrent neural net-
work neuron

24 CHAPTER 2. BACKGROUND

Figure 2.8: Long short-term memory neuron

second gate is a Sigmoid activation function called a input gate. It de-
cides which cell state values should be updated from Y;_; and X;. This
gate is combined with a Tanh activation function that produces a vec-
tor of candidate values for the new cell state C;. The last gate is a Sig-
moid activation function called a output gate. This gate decides from
Y,—1, X; which parts of C; should be in output V;.

For further reading see [26][27][28].

2.5 Traffic Predictions

Approaches for predicting future traffic conditions have been stud-
ied extensively for the past decades. They are a critical and impor-
tant component of intelligent transportation systems and traffic con-
trol. Short-term traffic predictions are dependent on complicated mul-
tivariate traffic variables and their non-linear interactions.

This section describes three different traffic prediction methods based
on the classification proposed by van Hinsbergen, et al. [29] and van
Lint, et al. [30]. Figure 2.9 depicts the three overlapping traffic predic-
tion approaches.

Traffic prediction approaches diverge largely from one another in
terms of the chosen prediction method, the scale of the predicted trans-
portation system (e.g. single sensor, road or a whole transportation
system), and the type of the transportation system (e.g. urban, rural or
freeway).

Generally, short-term predictions refer to predictions of up to an
hour into the future but vary depending on the traffic prediction ap-
proaches. Most studies predict the traffic variables flow, density, travel

CHAPTER 2. BACKGROUND 25

Figure 2.9: Taxonomy of traffic prediction methods

time and mean speed. The accuracy of these predictions have either been
measured by root mean square error (RMSE) expressing the expected
value of the error or by mean absolute percentage error (MAPE) ex-
pressing the error as a percentage.

2.5.1 Naive Methods

Neither model parameters nor model structure are determined from
traffic data in naive methods. Traffic data and its exact physical re-
lationships are used directly such as the relationship between density,
flow and speed described in section 2.2 or the usage of the last measured
traffic variable as the next future variable.

Because of the low computational requirement and simple imple-
mentation, naive methods are widespread and frequent. However, the

26 CHAPTER 2. BACKGROUND

accuracy is typically much lower compared to parametric and non-
parametric methods.

Instantaneous Travel Time

Instantaneous travel time assumes that traffic conditions remain con-
stant indefinitely. Previous measured travel time is used as a predictor
for the future value. This means that there are no calculations required
for this method. Thus, it is extremely fast and easily understandable.
High prediction accuracy depends on stationary and homogeneous
traffic conditions over long time periods. However, this method tends
to have low prediction accuracy as traffic conditions are usually highly
dynamic and far from constant [29].

Historical Averages

This method calculates the historical average of a traffic variable from
its past values and it uses the results as the predicted future value.
These averages are often divided up into periods, e.g. hour of a day or
day of the week. This naive method gives high prediction accuracy for
short-term predictions where historical values are distributed around
some mean value and have a similar shape throughout the day. How-
ever, historical averages are in reality a poor predictor as historical
traffic data for most roads are both skewed and have a wide distri-
bution. For long-term predictions, historical averages have shown to
give the best predictions accuracy in many circumstances [31].

Clustering

Clustering methods compute groups of historical averages based on
discovered traffic patterns present in the traffic data. Algorithms such
as small large ratio and ward’s clustering are based on these clustering
methods. In some cases, clustering methods are used to preprocess
traffic data for non-parametric methods. These clustering methods
have been able to outperform methods based on historical averages.
They are in some cases more accurate than linear regression models

[30].

CHAPTER 2. BACKGROUND 27

2.5.2 Parametric Methods

The term parametric signifies that only the model parameters are fit-
ted using traffic data and the model structure is predetermined from
concepts in traffic flow theory. These model structures are either ana-
lytical, e.g. queuing models or travel time functions, or traffic simula-
tions, e.g. macroscopic or microscopic models.

The advantages of parametric methods are that they are able to
model undiscovered incidents, usually need less data than non-parametric
methods and have demonstrated high accuracy and good computa-
tional performance [29].

Analytical Models

Among the easiest models used by traffic engineers to predict travel
time are analytical formulas such as the bureau of public roads formula
(BPR). The formula describes, on the one hand, the relationship be-
tween travel time and traffic flow and, on the other hand queuing
functions for travel time predictions in relation to vehicles queuing
at a bottleneck.

The main disadvantages of these models are that they require ac-
curate measurements of the input variables, which is rarely the case
in reality. Additionally, the parameters and variables have a highly
stochastic nature [29].

Simulation Models

Simulation models can be divided into macroscopic and microscopic
models.

Macroscopic simulation models consider only global variables such
as density, mean speeds and flows of a transportation system. Micro-
scopic simulation models consider only individual vehicles and their
interactions within a transportation system [30].

2.5.3 Non-Parametric Methods

Non-parametric methods signifies that both the model parameters and
the model structure are not determined in advance but rather from
the traffic data itself. For this reason, most traffic prediction models

28 CHAPTER 2. BACKGROUND

are categorized as non-parametric, e.g. seasonal ARIMA approaches,
recurrent neural networks and nonlinear time-series.

More data is needed for models implemented using non-parametric
methods rather than parametric methods as both model parameters
and structure are derived from the data. However, the advantage of
using these non-parametric methods is that complex, nonlinear and
dynamic interactions in traffic can be modeled without the need of do-
main specific knowledge on underlying traffic processes [29].

Chapter 3
Related Work

This chapter explores previous work in the research field of the thesis.
It discusses the advantages of using long short-term memory neural
networks as compared to statistical and linear models to predict the
stochastic and nonlinear characteristics of traffic flow. The thesis fo-
cuses on the scalability and accuracy issues of traffic flow predictions
when intelligent transportation systems grow. The goal is to minimize
model complexity of traffic prediction models and to allow for fast
real-time predictions by means of distributing the prediction models
to the edge of transportation system, i.e. close to the physical location
of the traffic sensors. This enables a move from a centralized traffic
prediction solution to a decentralized one.

Ma, et al. [4] propose a neural network consisting of long short-
term memory (LSTM) units to capture the nonlinear features of traffic
flow. The authors exploit the memory units capabilities to better cap-
ture long temporal dependencies for time series predictions. The study
uses 2 minute aggregate travel speed and vehicle volume dataset from
two microwave detectors in Beijing to train and test traffic speed pre-
diction models. Their LSTM neural network is composed of an input
layer, one recurrent hidden layer and one output layer. Ma, et al. eval-
uate the proposed LSTM neural network to other recurrent neural net-
works (Time-delayed NN, Elman NN, and Nonlinear Autoregressive
NN), Support Vector Machine regression, Autoregressive Integrated
moving Average model, and Kalman Filter approaches. The traffic
speed predictions accuracy is measured for each model using differ-
ent time lags, i.e. 2, 4, 6 and 8 minutes. The study shows that a LSTM
neural network is able to outperform the other models with at least 28

29

30 CHAPTER 3. RELATED WORK

percent greater accuracy in all cases except for one.

Polson, et al. [32] developed a deep learning model for traffic flow
predictions. They demonstrate that a deep learning architecture is able
to capture the nonlinear and spatio-temporal dependencies. The ar-
chitecture combines a linear model with a sequence of tanh layers.
The first layer identifies spatio-temporal relations while the other lay-
ers model nonlinear relations. The model trains on a dataset from
2013 with 21 traffic senors located on Chicago’s interstate highway
I-55. These traffic sensors produce traffic flow measurements every
five minutes and the models produce predictions for a traffic sensor
located in the middle of the highway. Polson, et al. evaluate the per-
formance of the deep learning architecture with a sparse linear vec-
tor auto-regressive model. The study concludes that the deep learn-
ing model provides a significant improvement in accuracy over linear
models. The authors empirically observe that recent measurements
of traffic conditions give stronger indication of future measurements
compared to historical data, i.e. last 40 minutes as opposed to last 24
hours of traffic data.

Fu, et al. [6] propose using recurrent neural networks (RNN) with
long short term memory (LSTM) and gated recurrent units (GRU) for
short-term traffic flow predictions. Models are trained using 50 ran-
dom traffic sensor from the Caltrans Performance Management Sys-
tem dataset to predict 5 minutes into the future with 30 minutes of his-
torical data. Their experiments show that recurrent neural networks
with LSTM and GRU perform better than existing linear models such
as the auto regressive integrated moving average (ARIMA) model.
The paper concludes that the mean absolute percentage error of GRU
RNN is 10 percent lower than ARIMA and 5 percent lower than a
LSTM RNN. Additionally, the GRU RNN is able to converge faster
than the others.

Dai, et al. [5] propose a deep hierarchical neural network for traffic
flow predictions using traffic flow time series data. The neural net-
work is designed to transform traffic flow series into trends describing
fixed temporal patterns and residual series for predictions. The neu-
ral network consists of two stacked layers, i.e. extraction layer that
feeds into a prediction layer. The extraction layer is fully connected
and extracts time-variant trends by being feed both traffic flow data

CHAPTER 3. RELATED WORK 31

and average trend series. The prediction layer is composed of a long
short-term memory units that predict traffic flow using the output of
the previous layer and residual series. The study uses a traffic flow
dataset collected from 3941 stations that produce measurements every
5 minutes and span California’s freeway systems. For training and
prediction of the models, the first 16 weeks of 2016 were selected for
50 stations. The architecture is compared in terms of accuracy from
5 minute predictions to traditional models, i.e. ARIMA, MVLR, SVR,
RF, and deep network LSTM. The study shows that this architecture
significantly improves the prediction accuracy.

Cui, et al. [33] propose a deep stacked bidirectional and unidirec-
tional long short-term memory neural network for traffic flow pre-
dictions. Forward and backward dependencies in time series data
and the spacial features in the data are considered to predict network-
wide traffic speeds. Recurring traffic patterns are better predicted us-
ing both forward and backward temporal perspectives as upstream
and downstream conditions can influence the future traffic conditions.
Their architecture increases the depth of the neural network by includ-
ing a bidirectional layer consisting of two LSTM layers, one for the
forward spatial-temporal dependencies and another for the backward
spatial-temporal dependencies, that feed into a regular LSTM layer
producing the final prediction. To train their models, Cui, et al. use
data from 323 traffic detection stations that are a part of the Digital
Roadway Interactive Visualization and Evaluation Network (DRIVE
Net) system. The models are evaluated by predicting speed 5 minutes
into the future using 50 minutes of past data. Cui, et al. compare their
model to traditional and state of the art models, i.e. SVM, Random for-
est, feed forward neural network and a single layer GRU neural network.
The paper concludes that their deep stacked bidirectional and unidi-
rectional LSTM neural network achieve superior prediction accuracy
for the whole transportation system compared to the other models.

Abbas, et al. [34] investigate three long short-term memory neural
networks for short term road density prediction. They propose di-
viding a road network into road stretches and junctions to deal with
scalability and accuracy challenges. The paper compares a single sen-
sor (1-1) model using only information from one traffic sensors to pre-
dict for the same traffic sensor. A multi sensor (n-n) model utilizing

32 CHAPTER 3. RELATED WORK

traffic sensors from a selected area of a highway are considered and
predicted for. Finally, a multi sensor (m-n) model is considered using
information from few traffic sensors in a selected area to predict for all
of the traffic sensors in that area. The study uses fine grained 1 minute
traffic flow aggregates from traffic sensors in Stockholm city to pre-
dict 10, 20 and 30 minutes into the future. Their experimental results
show that using information from neighbouring traffic sensors pro-
duces higher accuracy prediction models compared to a single sensor
model. It also reveals that traffic sensors located at highway exits give
higher prediction accuracy compared to sensors located in middle and
at the entrances. Predictions for traffic sensors located at the entrances
of the highway have the lowest accuracy. This suggest that the models
are able to learn how the traffic propagates through the highways. Ab-
bas, et al. observe that training and prediction times improves when
model complexity is reduced by decreasing the input data and mem-
ory units. Moreover, the (m-n) multi-sensor model is comparable to
the (n-n) multi-sensor model in terms of accuracy. The authors con-
clude that it is possible to reduce the number of input traffic sensors
by 35 percent without compromising the prediction accuracy. This
decrease in number of deployed traffic sensors reduces infrastructure
costs. Abbas, et al. plan to investigate to what extent prediction ac-
curacy depends on the size of a predicted road segment and whether
course-grained aggregation traffic flow measurements are able to in-
crease the prediction accuracy. Finally, they want to examine how to
optimally partition a road network in order to minimize the number
of deployed traffic sensors within a partition and predict for omitted
traffic sensors of the partition.

This thesis builds on insights and results of the research work dis-
cussed above. The contribution of the thesis involves experimenting
on a larger scale by using traffic flow measurements from all of the
traffic sensors in a transportation system in order to achieve a more
holistic evaluation of traffic flow predictions. A further contribution
of the thesis is automatic partitioning of a transportation system to al-
low for a scalable and decentralized traffic flow prediction solution.

Chapter 4

Implementation

In this chapter, a detailed overview of the technical design and im-
plementation of the thesis work is presented. The chapter is divided
into four sections discussing the data set provided by Trafikverket, the
construction of a graph from the datasets, three graph partitioning al-
gorithms, and the design of four different recurrent neural networks
for traffic density predictions.

4.1 Datasets

Trafikverket has provided two datasets related to traffic data in Stock-
holm and Gothenburg. The first dataset contains metadata about traf-
fic sensors that are grouped into traffic sensors’ sites located on select
highways in these two cities (see figure 4.2). These traffic sensors’ sites
consist of a group of traffic sensors, which span the lanes of a road at
a particular location. Table 4.1 shows the information provided by the
dataset. This includes a McsDsRefer property containing a road name
and number of kilometers from a reference point, which is defined to
be at the start of the road in question, X and Y properties consisting of
the GPS coordinates of a traffic sensors’ site, and more properties.

Property Description Example
Y Latitude coordinate 57.6897905867036
X Longitude coordinate 11.9998409708589

Detectorld Global traffic sensor identifier 5524
McsDetecto Traffic sensor identifier at a site 2

33

34 CHAPTER 4. IMPLEMENTATION

McsDsRefer Road name and kilometer E6Z 16,060
reference of a traffic sensors’ site

Laneld Lane identifier 1

Bearing Sensor bearing 0

Location Location description Kallebdacksmotet

E6S 16,060

Regionld Region identifier 5

Stationld Station identifier 3324

Siteld Traffic sensors’ site identifier 1369

SiteValidF Date and time traffic sensors’ 2000/01/01
site became valid 00:00:00.000

SiteValidT Date and time traffic sensors’ 9999/12/31
site is valid to 00:00:00.000

DetectorVa Date and time traffic sensor 2016/05/09
became valid 00:00:00.000

Detector_1 Date and time traffic sensor 9999/12/31
is valid to 00:00:00.000

Table 4.1: The schema of the metadata dataset

The Second dataset is composed of traffic sensor measurements
from radar sensors placed on stationary structures along highways in
Stockholm and Gothenburg. These measurements contain traffic data
aggregates per minute between the year 2005 and 2016. Table 4.2 de-

scribes the measurement schema stored in the dataset.

Property Description Example

Timestamp Date and time of traffic 2016-11-01
measurement 00:01:00.000

Ds_Reference Road name and kilometer E75_U 0,905
reference of traffic a
sensors’ site

Detector_Number Traffic sensor identifier 50 (2)
stored in ASCII

Traffic_Direction Traffic direction stored in 78 (N)
ASCII

Flow_In Number of vehicles per 2

minute

CHAPTER 4. IMPLEMENTATION 35

Average_Speed Average speed of vehicles 78
per minute

Sign_Aid_Det_ Comms AID, Detector, MSI and 0
Communication raw data

Status Sensor status 3 (OK)
Legend_Group Sign setup group code 255
Legend_Sign Sign type 1
Legend_SubSign Frame type of sign 1
Protocol_Version Version of MCS 4
Simone/TOP protocol

Table 4.2: The schema of the traffic sensor measurement dataset

For this thesis, the measurement dataset needs to be preprocessed
to contain density values and filter out noise such as error codes. Data
from the month of November 2016 was selected as it had the most
complete measurements and reflects best the current transportation
system.

The Average_Speed property needs to be filtered as values over 251
km/h represents an error code. The value 251 km/h means that the av-
erage vehicle speed was less than 2 km/h and is, therefore, converted
into 1 km/h. The Flow_In property needs to be filtered to only include
valid flow measurements, i.e. between 0 and 120 v/h. An unique de-
scriptive traffic sensor identifier needs to be constructed to easily iden-
tify traffic sensors using the Ds_Reference and Detector_Number prop-
erties. Density estimates need to be calculated for each sensor per
minute using equation 2.1 and the properties Average_Speed and Flow_In.
Any measurements represented with a NULL value are replaced with
zero (0) as the traffic sensors give an error when there are no vehi-
cles on the road. The 1** and 30" of November need to be removed
from the data as these days contain fewer than 1440 measurements
per minute or a full day of measurements.

Figure 4.1 illustrates the resulting density measurements from four
different traffic sensors in November 2016. This figure shows clearly
a recurring pattern as the density rises during the day and declines
during the night.

36 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Density data from four sensors in November 2016

Figures 4.2a, 4.2b and 4.3 illustrate the traffic sensors’ site locations
plotted on a geographical map of Stockholm and Gothenburg using
the X and Y properties provided with the metadata dataset.

(a) Sensor sites in Stockholm (b) Sensor sites in Gothenburg

Figure 4.2: Traffic sensors’ sites in Sweden

CHAPTER 4. IMPLEMENTATION 37

Figure 4.3: Sensor sites in Stockholm center

4.2 Graph

This section describes the construction of a directed weighted graph of
traffic sensors’ sites representing Trafikverket’s intelligent transporta-
tion system. As described in section 4.1, the traffic sensor metadata
dataset provided by Trafikverket spans both the Gothenburg and Stock-
holm city areas.

The traffic sensors’ site graph consists of vertices which represent
physical traffic sensors’ site locations for a group of sensors spanning
the lanes of the road in question. To describe a vertex of the graph,
the McsDsRefer, X and Y properties from the traffic sensor metadata
dataset are used. On the basis of the McsDsRefer property, it is possi-
ble to extract the name of the road and the kilometers from a reference
point for a traffic sensors’ site. A Vertex property is created from the
McsDsRefer property by replacing white spaces with a hyphen symbol
and by removing commas. This new property acts as a unique iden-

38 CHAPTER 4. IMPLEMENTATION

tifier for the traffic sensors’ site since it is both human readable and
helps with manual evaluation of the graph. The Y and X properties
representing latitude and longitude coordinates of a traffic sensor are
included in order to plot each site on top of a geographical map. As the
aim is to create a traffic sensors’ site graph of the current transporta-
tion system, the traffic sensors are filtered out based on the Detector_1
property, which describes the date and time for which the traffic sen-
sor is valid. Hence, only traffic sensors’ sites that have traffic sensors
currently in use are present in the graph. Two new properties are in-
troduced, Valid_From representing the date from which a site is valid
and Valid_To representing a date to which a site is valid. The values
of these new properties are extracted from the properties DetectorVa
and Detector_1 of the metadata dataset. Finally, a Sensors property is
created to represent the number of traffic sensors at a site by counting
the number of traffic sensor instances with the same McsDsRefer value
in the filtered metadata dataset.

Edges in this graph represent physical roads that connect vertices
of traffic sensors’ sites and the weight of each edge describes the av-
erage travel time of a vehicle driving along the road. Extracting the
edges from the metadata dataset is simple for traffic sensors’ sites lo-
cated on the same road and can be done in an automatic way. The
Vertex property can be used to order the traffic sensors’ sites based on
the road name, the road direction, and the kilometers from a refer-
ence point, i.e. a reference point at the start of the road. Edges span-
ning distances greater or equal to 1 kilometer are removed from the
graph, since some roads have traffic sensors’ sites that are separated
too far apart to be considered as a sequence. These roads are drasti-
cally longer than the average road and are therefore not comparable to
the others. The reason for this is the possibility of drastic changes in
traffic taking place between the two traffic sensors’ sites as there may
be many entrances and exits on the road. It becomes more complicated
to create edges when traffic sensors’ sites are connected via a road but
have different road names. This means that one cannot rely on the
road name and kilometers from a reference point to connect the sites
as described above. In this case, edges need to be manually added to
the graph. This can be done by displaying the vertices on a map and
observing where there are missing edges in relation to the roads.

The next step is to find the weight of each edge. This is done by
calculating the average speed of vehicles at each sensor site during

CHAPTER 4. IMPLEMENTATION 39

rush hour when most vehicles are on the roads using the Average_Speed
property, see table 4.2. According to the traffic data measurements
from Trafikverket, this occurs between 7:00 to 8:00 and 14:00 to 17:00
o’clock when people typically commute to and from work. Speed dur-
ing rush hour reflects best traffic behaviour when the density predic-
tion models are most needed. In addition, the time to travel through
the Trafikverket’s transportation system during free flow is too short
for the sequential weight based partitioning algorithm to create many
small partitions rather than one big partition. In order to calculate the
distance between traffic sensors’ sites, one can either use the difference
in distance from a reference point if the sites are using the same refer-
ence point or the GPS coordinates applying the Haversine formula, see
equation 4.1.

A2 — A

d=2r aurcsin(\/sin(w)2 + cos (1) cos(ps) sin()2) (4.1)

2

w1 = start latitude in radians Ay = start longitude in radians
po = end latitude in radians Ay = end longitude in radians

r = Earth radius (6371 km) d = distance between sensor sites

The edge weight is equal to the time it takes a vehicle to travel
the road it represents. It is calculated by using the average speed at a
traffic sensors’ site located at the end of the edge in the direction of the
traffic and by using the distance between traffic sensors’ sites applying
equation 4.2.

Distance between sensors(km)

Travel time = (4.2)

Average speed(km/h)

Edges are represented by three new properties, Source, Destination
and Weight. Source is equal to the Vertex property of the traffic sen-
sors’ site located at the beginning of the road section in the direction
of the traffic. Destination is equal to the Vertex property of a traffic sen-
sors’ site located at the end of the road section. Weight is calculated as
described above.

40 CHAPTER 4. IMPLEMENTATION

4.3 Sequential Weight Based Graph Partition-
ing

This section presents a comprehensive overview of the design of the
three sequential graph partitioning algorithms that have been devel-
oped and implemented in this master thesis project.

The reason for designing and implementing a graph partitioning
algorithm that is able to partition based on edge weight is to allow
for automation of a process that may become overwhelming as the
intelligent transportation systems grow. This allows for a quick way
to explore how partitioning a transportation system affects prediction
accuracy when fed into the design of traffic prediction models. It ap-
pears that no one has, so far, designed a graph partitioning algorithm
that partitions based on edge weights to produce partitions with a sim-
ple longest path of maximum length (sum of edge weights) in relation
to a user requirement.

The design of each algorithm is built and based on the fundamen-
tal reasoning that vehicles traveling a straight road with one starting
point and one end point will pass all the traffic sensors on the road se-
quentially and in order of the direction of traffic. Following this train
of thought, one can presume that the traffic flow values produced from
traffic sensors will influence the future traffic flow values produced
from the consecutive traffic sensors when vehicles travel the road and
pass each traffic sensor. When a vehicle travels at a constant speed on
a road with traffic sensors spaced 20 minutes apart, the same traffic
flow value will be produced for each of the traffic sensor as the vehicle
passes by it.

Figure 4.4 illustrates a simple scenario, where a sensor s at a center
of a straight road section with one entrance and one exit dependence
on the past traffic flow values of the sensors in front and behind it.
Vehicles traveling the road section at sensor s-3 will eventually reach
sensor s at a future time. Hence, sensor s-3 influences the future state
of sensor s. A growing queue or traffic congestion forming at sensor
s+3 will eventually reach sensor s given that the congestion will not
resolve itself before reaching sensor s.

Using the assumption above, three graph partitioning algorithms
were developed to divide up Trafikverket’s transportation system graph
to predict the future traffic flow values for each traffic sensor.

CHAPTER 4. IMPLEMENTATION 41

Sensors

Q- Q- QQ O O O |
etetototototoNoNelE
etetototototot ool
01000000 O
O s+1

O O 542

-0 0 0 O |~

t-4 t-3 -2 1 t t+1 t+2 43 t4d

—
-

Road Direction
w

Figure 4.4: A traffic sensor’s spatial dependencies

These algorithms depend on a weighted directional graph, where
the weights are defined as the time it takes to travel an edge. They also
depend on a weight criteria (in minutes) given by the user of the algo-
rithm. The weight criteria defines the upper limit of the total travel
time of a vehicle traversing the longest path of a partition. The weight
criteria acts as a boundary for each partition while the algorithms par-
titions a graph. The hypothesis is that the weight criteria represents
a prediction time for which a traffic flow prediction model should be
the most accurate. Hence, the model contains enough information for
a future prediction from traffic sensors such that the sensors at the exits
of the partition give an accurate prediction.

The section is split into three subsections that cover the design of
each algorithm:

4.3.1 Forward Sequential Weight Based Graph Partitioning

4.3.2 Backward Sequential Weight Based Graph Partitioning

4.3.3 Overlapping Sequential Weight Based Graph Partitioning

42 CHAPTER 4. IMPLEMENTATION

4.3.1 Forward Sequential Weight Based Graph Parti-
tioning

The algorithm takes as an input a user specified weight criteria (in
minutes) that is used as an upper limit for the total travel time of the
longest path a partition has while the algorithm divides up a graph.

The first step performed by the algorithm is to identify a collection
of starting vertices that will be used as a starting point from which the
algorithm partitions the graph. These starting vertices are character-
ized by being on the boundaries or edge of the graph or the graph’s
disconnected components. This means that the vertices do not have
any incoming edges from other vertices.

The second step performed by the algorithm is to assign vertices
to distinct partitions. This is done by selecting a starting vertex and
traversing the graph on the outgoing edges of each vertex it encoun-
ters and simultaneously counting the edge weights until the weight
criteria is reached. Upon reaching this limit, all the vertices that the
algorithm has encountered, so far, will be assigned to a partition. The
vertices with incoming edges from vertices within this new partition
are assigned to the starting vertices collection and will be used to con-
tinue partitioning the graph. This step is repeated until there are no
starting vertices left and thereby all vertices have been assigned into a
partition.

A special edge case is when the algorithm hits a previously created
partition while traversing the graph for a new partition. When the
current total weight of the new partition is less than the maximum
weight at the connecting vertex in the old partition, they are merged
together. If the current weight is greater than the maximum weight of
the connecting vertex in the old partition and the weight criteria limit
for the partition has not been reached, then the algorithm resets the old
partition and adds the vertices at the beginning of the old partition to
the starting vertices collection.

Algorithm 1 is a pseudocode of the algorithm described above.

CHAPTER 4. IMPLEMENTATION 43

Algorithm 1 Forward Sequential Graph Partitioning Algorithm

1

2:

10:

: function PARTITION(G,w) > Where G - graph, c - weight criteria
G .partitions = queue()
G.get_starting_vertices()
while G.starting_vertices not empty do
vertex = G.starting_vertices.dequeue()
G .partition = set()
partition_helper(G, vertez, ¢, 0)
G .partitions.add(G.partition)
end while
end function

11:

12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37

: function PARTITION_HELPER(G, v, ¢, w) > Where G - graph, v -
vertex, ¢ - weight criteria, w - weight sum
if v in G.partition then
return
end if
if ¢ < w then
G.add_starting_node(v)
return
end if
G.set_vertex_max_weight(v, w)
G .partition.add(v)
for next_vertex in G.forward_vertices(v) do
wetght = G.edge_weight(v, next_vertex)
if next_verter not in G.partitions then
partition_helper(G, next_vertex, ¢, w + weight)
else if w + weight <= G.get_max_weight(next_vertex) then
p = G.get_partition_by_vertex(next_vertex)
G.partition = merge(G.partition, p)
G.remove_partition(p)
else if w + weight <= c then
p = G.get_partition_by_vertex(next_vertex)
G.add_starting_vertices_from_partition(p)
G.remove_partition(p)
partition_helper(G, next_vertex, ¢, w + weight)
end if
end for
: end function

44 CHAPTER 4. IMPLEMENTATION

4.3.2 Backward Sequential Weight Based Graph Par-
titioning

This algorithm has the same input parameter (a weight criteria) as
the previous algorithm described in subsection 4.3.1. The difference
between these two algorithms is the way they select the starting ver-
tices and traverse the graph. Instead of using the vertices in the graph
with no incoming edges from other vertices, vertices with no outgoing
edges are selected into the starting vertices collection. This algorithm
traverses the graph in the opposite direction of the traffic, i.e. travers-
ing the incoming edges of vertices.

The reason for having an algorithm that moves backwards through
the graph compared to the direction of traffic is that those vertices lo-
cated on the exits of the graph become more accurate. These vertices
contain more information for a prediction than when using forward
partitioning since connecting vertices might be cut off. Figure 4.5 (a)
and (b) illustrate how a simple graph might be partitioned differently
based on these two approaches. The dotted lines separate each par-
tition. The green sensors should have the best prediction accuracy
compared to the other sensors. This is because partitions contain more
spatial information for these sensors while the red sensors should have
the worst prediction accuracy.

i I I
i 1 I
i I I
i I I
il ol Gl 1
i I I
I 1 I
i I I
i 1 I
- 1
- I
- 1
- I
: 1

(a) Forward Partitioning (b) Backward Partitioning

Figure 4.5: Difference between forward and backward partitioning

Algorithm 2 contains a pseudocode of the backward sequential
weight based graph partitioning algorithm.

CHAPTER 4. IMPLEMENTATION 45

Algorithm 2 Backward Sequential Graph Partitioning Algorithm

1

2:

10:

: function PARTITION(G,w) > Where G - graph, c - weight criteria
G .partitions = queue()
G.get_starting_vertices()
while G.starting_vertices not empty do
vertex = G.starting_vertices.dequeue()
G .partition = set()
partition_helper(G, vertez, ¢, 0)
G .partitions.add(G.partition)
end while
end function

11:

12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37

: function PARTITION_HELPER(G, v, ¢, w) > Where G - graph, v -
vertex, ¢ - weight criteria, w - weight sum
if v in G.partition then
return
end if
if ¢ < w then
G.add_starting_node(v)
return
end if
G.set_vertex_max_weight(v, w)
G .partition.add(v)
for next_vertex in G.backward_vertices(v) do
weight = G.edge_weight(v, next_vertex)
if next_verter not in G.partitions then
partition_helper(G, next_vertex, ¢, w + weight)
else if w + weight <= G.get_max_weight(next_vertex) then
p = G.get_partition_by_vertex(next_vertex)
G.partition = merge(G.partition, p)
G.remove_partition(p)
else if w + weight <= c then
p = G.get_partition_by_vertex(next_vertex)
G.add_starting_vertices_from_partition(p)
G.remove_partition(p)
partition_helper(G, next_vertex, ¢, w + weight)
end if
end for
: end function

46 CHAPTER 4. IMPLEMENTATION

4.3.3 Overlapping Sequential Weight Based Graph Par-
titioning

To maximize the prediction accuracy of all traffic sensors within a
graph, an overlapping graph partitioning algorithm is designed. This
is done by creating partitions that overlap and predict for a subset of
the traffic sensors within the partition. The overlap ensures that the
subset of traffic sensors within the partition have enough information
from traffic sensors located in front of and behind the traffic sensor
subset. The information from all of the sensors in a partition is used to
predict the future traffic flow values of a sensor subset located at the
center of the partition. Figure 4.6 shows a simple example of an over-
lapping partition. Here vertices are grouped into three types: critical,
backward and forward. The traffic sensors of type critical are the ones
that the traffic flow prediction model will predict for. The traffic sen-
sors under the backward type provide information about vehicles that
might influence the future state of the critical sensors as vehicles travel
away from them. The traffic sensors in the forward type provide infor-
mation about vehicles in front of the critical traffic sensors. An example
of information provided are whether vehicle queues are forming due
to traffic congestion.

Backward

-0 -

Figure 4.6: Simple example of an overlapping partition

As with the other two algorithms, this one requires a weighted
directional graph that will be used to partition. In addition, the al-
gorithm requires the user to specify a base partition weight, a forward
overlap and a backward overlap. The base partition weight is used as the
weight criteria of either the forward or backward partitioning algo-
rithm described above. The resulting partitions define the base parti-
tions from which the overlapping partitions are created. The forward
overlap indicates how many base partitions located ahead of a critical

CHAPTER 4. IMPLEMENTATION 47

sensor subset, i.e. in the direction of traffic, should be included in the
overlapping partition. It is selected based on how much information
ahead of a critical traffic sensor subset the traffic flow prediction model
needs for a future prediction of the critical subset. The backward overlap
indicates how many base partitions located behind the critical sensor
subset, i.e. in the direction of traffic, should be included. It is selected
based on how much information from traffic sensors located behind
a critical traffic sensor subset is needed for a future prediction of the
critical subset. Overlapping partitions are produced by extending each
base partition with neighbouring base partitions that form the back-
ward and forward overlap. Within an overlapping partition, the base
partition forms the critical subset of the traffic sensors that a traffic
flow prediction model will predict for.

The algorithm works in two phases. The first phase uses either of
the two partitioning algorithms described in previous subsections us-
ing the base partition weight as the input weight criteria on a weighted
directed graph to create the base partitions. Using the generated parti-
tions, a graph of partitions is created where the edges between vertices
in different partitions construct a directed edge between the two parti-
tions. The base partitions in this new partition graph form the vertices
of the graph and the edges of the vertices in the partition that con-
nect to other partitions from the edges of the new partition graph. The
second phase of the algorithm generates overlapping partitions from
the new partition graph, where each base partition is extended to in-
clude partitions ahead of it, based on the specified forward overlap and
partitions behind it, based on the specified backward overlap.

48 CHAPTER 4. IMPLEMENTATION

Algorithm 3 Overlapping Sequential Weight Based Graph Partitioning

1: function PARTITION_WITH_OVERLAP(G, w, f, b) >
Where G - graph, w - base partition weight, f - forward overlap, b
- backward overlap
partition_graph(G, w)
PG = generate_partition_graph(G)
for p in PG .partitions do
for next_p in G.forward_partitions(p) do
overlap_helper(PG, p, next_p, 0, f, True)
end for
for next, in G.backward_partitions(p) do
overlap_helper(PG, p, next_p, 0, b, False)
10: end for
11: end for
12: end function
13:
14: function GENERATE_PARTITION_GRAPH(G) > Where G - graph
that has been partitioned
15: PG =new PartitionGraph()

16: for partition in G.partitions do

17: f_partitions = G.get_forward_partitions(partition)
18: b_partitions = G.get_backward_partitions(partition)
19: PG.add(partition, f_partitions, b_partitions)

20: end for

21: return PG

22: end function

23:

24: function OVERLAP_HELPER(PG, p, next_p, c, m, f) >
Where PG - partition graph, p - partition, next_p - next partition, c
- current overlap, m - max overlap, f - is it forward overlap

25: if ¢ > m then

26: return

27: end if

28: PG.add_overlap_vertices(p, next_p)

29: for n_p in G.next_partitions(next_p, f) do

30: overlap_helper(PG, p,n_p,c+ 1, m, f)

31: end for

32: end function

CHAPTER 4. IMPLEMENTATION 49

4.4 Neural Networks for Traffic Density Pre-
dictions

As has been discussed in chapter 1, real-time traffic predictions in in-
telligent transportation systems are of great importance as it allows
the system to become proactive rather than reactive to adverse traffic
conditions. Proactive intelligent transportation system increases the
overall efficiency of the system and is thereby of immense value to
modern society.

Traffic flow data is captured in the form of time series where each
traffic sensor produces traffic flow measurements in time order. The
data exhibit distinct spatial and temporal dependencies as vehicles
drive along highways from sensor to sensor and traffic flow fluctuates
depending on the time of the day. These patterns of spatial and tempo-
ral dependencies can be separated from other traffic fluctuations and
can be modeled to make predictions. For many decades, the stochastic
and nonlinear nature of traffic flow has remained a challenging prob-
lem for achieving accurate predictions. The coverage, amount and
granularity of data has increased enormously and catapulted research
in the field due to the wide deployment of traffic sensors [4].

Traditional methods for traffic flow predictions has mainly focused
on statistical and linear models such as autoregressive integrated mov-
ing average (ARIMA) that are unable to express the nonlinear and
stochastic characteristics of traffic flow. Traffic flow predictions using
neural networks (NNs) have proven to be able to outperform these
statistical models when predicting time series data. They are able to
better deal with the high dimensional data and modeling the nonlin-
ear relationships [4].

Recurrent neural networks (RNNs) are especially suitable to cap-
ture the dynamic, temporal and spatial nature of the transportation
system as they utilize memory units that allow them to evaluate in-
coming time series data using what they have learned about past con-
ditions of the transportation system. Even though traditional RNNs
show greater ability to model nonlinear time series data, a major draw-
back is the vanishing gradient problem causing RNN:Ss to fail to capture
long dependencies. To solve the vanishing gradient problem, special
memory units, long short-term memory (LSTM), have been designed
containing memory blocks that are able to selectively store or forget in-

50 CHAPTER 4. IMPLEMENTATION

formation. Achieving accurate long-term dependencies is particularly
important for traffic flow predictions and LSTM has been designed for
time series data [4].

A deep multilayer LSTM architecture has been found to be more
accurate than simple RNNs to predict complex nonlinear relations in
traffic flow data. These simple neural networks are too shallow to ad-
equately capture the spatial and temporal dependencies compared to
deeper networks. This architecture stacks multiple neural networks
such as LSTM on top of each other, where each preceding LSTM hid-
den layer feeds its output to the next LSTM layer as its input [34].

Models produced from deeper neural networks are progressively
better at representing the data, but at the cost of increased complex-
ity. Additionally, the growing amount of data produced by deploying
more traffic sensors increases the model complexity as the number of
model parameters grow. This may lead to unfeasible increase in com-
putational resource requirements, training time and prediction time.
Especially, when prediction models need to wait for a traffic measure-
ment from the slowest traffic sensor. A relatively small city like Stock-
holm is no exception as the number of traffic sensors deployment in-
creases when the Intelligent Transportation System grows.

The thesis proposes and compares four types of LSTM recurrent
neural networks for traffic density predictions based on the partition-
ing algorithms introduced in section 4.3. The aim is to solve the issues
of scalability as the number of traffic sensors, model complexity, and
prediction time grows, while taking into account spatial and tempo-
ral dependencies. Each type of neural network represents a different
level of partitioning granularity, i.e. from a transportation system as a
whole to a single traffic sensor.

All of the proposed neural networks are based on the same archi-
tecture consisting of a multi-layer recurrent neural network that en-
ables them to effectively learn the stochastic and nonlinear character-
istic of traffic flow within a transportation system. This architecture is
based on the findings in the research paper [34].

Each neural network consists of six layers stacked on top of each
other. Each layer feeds its output into the next layer as its input. The
tirst layer is an input layer of n traffic sensors with p past traffic density
values for each traffic sensor. The last layer is an output layer of m
traffic sensors with f future traffic density values for each traffic sensor.
The first layer is followed by two LSTM layers that contain L LSTM

CHAPTER 4. IMPLEMENTATION 51

hidden units each. These layers feed into a densely connected layer
with 500 hidden units that feeds into another densely connected layer
with m x f hidden units that feeds into the output layer.

If the transportation system consists of S = {s1,ss,...,s,} traffic
sensors, the neural network consumes time-series data of past val-
ues p = {t_o,t_g,...,t_1,t} for each traffic sensors in S where one ¢
contains one minute average of traffic density values measured by a
traffic sensor. The neural network predicts the future time-series den-
sity values of f = {ti1,t42,....,t130} for each of the traffic sensors in
Z = {s1, 82, ..., Sm} where Z C S. The number of traffic sensors in the
input and output layers follow the rule: n > m > 1. The past den-
sity values p contain nine past density values and one current density
value, i.e. 10 minutes of past density values. The future density values
f contain thirty future density values, i.e. 30 minutes of future density
values. All of the neural networks presented in this thesis have an in-
put of 10 minutes of past traffic density values and predict 30 minutes
of future traffic density values. The results of performing a hyperpa-
rameter tuning procedure on each of the neural networks determines
the number of LSTM hidden units selected, L.

4.4.1 Transportation System Neural Network

The simplest form of partitioning is to treat the whole transportation
system as one big partition. Figure 4.7 illustrates the structure of this
n to n neural network. Here, traffic density values from the whole
transportation system are used to predict for the whole transportation
system. This means that the neural network can learn spatial depen-
dencies between all of the sensors and it has greater overview of the
whole transportation system. The produced traffic density prediction
model is the most complex one, as n is equal to the number of traffic
sensors in the whole transportation system, i.e. 2034 traffic sensors.
This requires that the neural network has the largest number of LSTM
hidden units to able to learn traffic flow for the whole system. Of the
four proposed neural networks, this one produces the most complex
model. 1000 LSTM hidden units proved to give the most accurate pre-
dictions after hyperparameter tuning the neural network, as will be
discussed further in section 6.3.1. Furthermore, the speed of produc-
ing real time predictions is dependent on the slowest sending traffic
sensor since the model produced depends on the traffic density values

52 CHAPTER 4. IMPLEMENTATION

from all traffic sensors.

Figure 4.7: Transportation System Neural Network

4.4.2 Partitioned Transportation System Neural Net-
work

The next level of partitioning is to partition the transportation system
into smaller sections that are spatially related. This method exploits
the spatial dependencies between traffic sensors by taking neighbour-
ing sensors and reducing the number of needed LSTM hidden units.
This provides a more scalable approach to traffic flow predictions while
giving accurate predictions. The partitioning algorithms discussed in
section 4.3 are used with the partitioning weights 3, 5, 10 and 20 to
produce the partitioned transportation system neural networks.

Figure 4.8 illustrates the structure of these neural networks, where
n is equal to the number of traffic sensors in each partition. The L
number of LSTM hidden units is selected based on hyperparameter
tuning one random partitioned transportation system neural network
for each of the partitions produced by each of the partitioning weights,
see section 6.3.1.

CHAPTER 4. IMPLEMENTATION 53

Figure 4.8: Partitioned Transportation System Neural Network

Table 4.3 shows the different number of LSTM hidden units used
in each version of the partitioned transportation system neural net-
work. It also contains the result of hyperparameter tuning the neural
networks as discussed in section 6.3.1.

Partitioning minutes Number of LSTM hidden units

20 minutes 1000
10 minutes 800
5 minutes 600
3 minutes 200

Table 4.3: Number of LSTM hidden units

4.4.3 Single Sensor Neural Network

A single sensor neural network is an extreme form of partitioning,
where each sensor is its own partition. Similar to the above neural
networks, this neural network takes the past time series traffic density
values from one traffic sensor and predicts its future values.

Figure 4.9 illustrates the structure of the 1 fo 1 neural network,
where the neural network only considers information from one traffic
sensor without information from the neighbouring traffic sensors. As
less time-series data is needed for each traffic density prediction only
50 LSTM hidden units are used. This has proven to give the most ac-
curate results when performing hyperparameter tuning as discussed
in section 6.3.1. The produced traffic density prediction model is less
complex compared to the models produced from the above neural net-
works.

54 CHAPTER 4. IMPLEMENTATION

Figure 4.9: Single Sensor Neural Network

4.4.4 Overlapping Partition Neural Network

The final proposed neural network is an overlapping partition neural
network that was designed in order to increase the prediction accu-
racy for all of the traffic sensors in Trafikverket’s transportation sys-
tem. The neural network predicts for a small section of the transporta-
tion system by using the traffic flow data from a larger encapsulating
section. This allows the produced model to use the spatial dependen-
cies of many neighbouring traffic sensors to predict the future state of
the system for a few traffic sensors.

Figure 4.10 illustrates this m to n neural network structure. Using
the results from performing hyperparameter tuning on the partitioned
transportation system neural networks with partitioning weights 10
and 20 minutes, the number of LSTM hidden units selected is 1000.
The results are applicable because the overlapping neural network is
using 2 minute forward partitions and 10 minute backward partitions
to predict a 3 minute partition such that in total 15 minutes of data is
used for each overlapping partition. Here m > n depending on the
overlapping partitions produced.

Figure 4.10: Overlapping Partition Neural Network

Chapter 5

Experiments

This chapter describes the experiments and evaluation of the constructed
graph, graph partitioning algorithms and traffic density prediction mod-
els described in chapter 4.

5.1 Graph

Traffic sensor metadata dataset provided by Trafikverket is presumed
to be accurate in terms of the physical location of the traffic sensors in
relation to the provided GPS coordinates and acts as a ground truth for
the construction of the graph. This is due to the fact that Trafikverket is
responsible for the installation and maintenance of the traffic sensors
described in the dataset they provide. The constructed graph should
be accurate in terms of the location of the traffic sensors’ sites in rela-
tion to the location of the other sites in the graph. Edges in the graph
should correspond to a physical road connecting two traffic sensors’
sites and the edge weight is the time it takes to drive the road.

As a means to verify the correctness of the graph, all vertices and
edges are plotted on top of a geographical map and the Google Maps
Street View technology ! is used to navigate visually the roads. Both of
these methods allow verification of the vertex location in relation to its
corresponding traffic sensors’ site and connecting edges to the roads
between the traffic sensors’ sites. When drawing the graph on top of a
geographical map, the vertices located at road exists are colored in or-
ange, and vertices located at road entrances are colored in green, while

1https: / /www.google.com/streetview /

55

56 CHAPTER 5. EXPERIMENTS

other vertices are in blue color. Edges are depicted as red lines with the
end of the edge drawn thicker than its start to depict the direction of
traffic. Each edge is then manually verified by observing the roads
connecting the traffic sensors’ sites and their edge counterpart using
both methods described above.

Figure 5.1 illustrates how most edges and vertices look on top of
a map, where we have edges running straight along highways with
entrances and exists. The correctness of this type of road section is
relatively easy to verify in this way.

Figure 5.1: An example of a straight road section in Stockholm

Figure 5.2 shows a complicated road interchange in central Stock-
holm, where the manual verification approach is more difficult. In this
case, edges seem to intersect due to the fact that the corresponding
roads are located in tunnels on top of each other. Most of the graph
is constructed automatically using the road name and kilometers from
a reference point for a traffic sensors’” site. Sites with the same road
name indicate that the sites are located on the same road. This allows

CHAPTER 5. EXPERIMENTS 57

the focus to be on verification of a few edges that represents roads con-
necting traffic sensors’ sites located on roads with different names as
they cannot be automatically created.

Figure 5.2: An example of a complicated road interchange in Stock-
holm

Instead of verifying the weight of each edge indicating the travel
time distance measure of a road, the equations described in section 4.2
are used.

5.2 Sequential Weight Based Graph Partition-
ing

The criteria for partitioning correctly a weighted directional graph is
that the partitions produced from the algorithm correspond to a weight
criteria specified by the user of the algorithm. This weight criteria acts

58 CHAPTER 5. EXPERIMENTS

as the upper limit for the total travel time of the longest path a par-
tition has, i.e. the maximum length of the simple longest path (sum
of edge weights). Most importantly, the partition must be a connected
component when the partition is converted to an undirected graph, i.e.
there is a path between any two vertices.

Twelve partitioning scenarios were designed in order to verify the
correctness of the proposed partitioning algorithms from section 4.3.
Each scenario contains vertices that represent sensors in a theoretical
transportation system, where each arrow refers to a road and each as-
sociate arrow number indicates the time it takes to travel the road.
Each color represents a partition that the algorithm is anticipated to
create from the transportation system graph. The numbers placed out-
side of a vertex depicts the current weight that the algorithm has accu-
mulated while traversing the graph.

Figure 5.3 illustrates one of the simpler scenarios designed, where
the graph has only one starting vertex s1 as it is the only vertex that
does not have any incoming edges. The scenario requires the algo-
rithm to split the partitions based on a weight criteria of value 3 re-
sulting in two partitions, i.e. vertices marked with green and vertices
marked with red.

Weight criteria: 3

0 1 2 3 0 1
51— 1— » 52— 1 % 53 1w 54 _1_}{;55\}_1_}{/55\}
| l l
\:/ - \: 1 :,, -8 \}
1 =1

Figure 5.3: Simple evaluation scenario

Figure 5.4 demonstrates a more complex scenario, where the end
result depends on the starting vertex. This scenario requires the algo-
rithm to partition a graph with a weight criteria of value 3. There are
two possible starting vertices with no incoming edges. In both cases,
two partitions are created but they are quite different from each other.

CHAPTER 5. EXPERIMENTS 59

The above graph uses the starting vertex sI while the below graph uses
the starting vertex s9. These two results are, however, equally correct.

Weight criteria: 3
. / \ 1

51 —1— % 52— 1 %/ 583 — 11— 54 — 1w 55 — 1% =6

\ |
\ 57 —1— 58 4«—1—1{ 59

1 0
1
0 3 /\ 2 3
[(81 —1— 9 52 —1— 3 53 —1—» 54 —1— % 55 —1— @ 56
1
\ 57 l#g—1—— 58 g&e—1— 59
1 0

Figure 5.4: Complex evaluation scenario

Figure 5.5 illustrates a scenario to verify the correctness of produc-
ing overlapping partitions using the proposed algorithm in subsection
4.3.3. In this scenario, the algorithm partitions the theoretical trans-
portation system graph using a base partition weight of value 1, a for-
ward overlap of value 1, and a backward overlap of value 1.

Three partitions are created by backward partitioning the graph.
Each partition is then extended by combining one partition ahead and
one partition behind resulting in three overlapping partitions.

60 CHAPTER 5. EXPERIMENTS

Figure 5.5: Overlapping evaluation scenario

5.3 Traffic Density Predictions

The traffic density prediction experiments conducted as a part of this
thesis aim to evaluate the feasibility of partitioning a transportation
system for traffic density predictions. The experiments explore the
difference in prediction accuracy and execution time to determine if
partitioning is a viable way to scale traffic flow predictions as trans-
portation systems grow.

Real traffic data collected from traffic sensors installed and main-
tained by Trafikverket covering both Stockholm and Gothenburg city
areas are used in the experiments. This data is applied when evaluat-
ing the four proposed neural networks, see further description of the
traffic flow data in section 4.1. The traffic flow data is from November
2016 consisting of traffic flow measurements collected every minute
from 2034 traffic sensors located in the cities of Stockholm and Gothen-
burg. Density values from each traffic sensor have been calculated for
each of the traffic sensor during November 2016. They are then nor-

CHAPTER 5. EXPERIMENTS 61

malized and scaled to be in the range 0 to 1 using equation 5.1.

d—d_mi
d_scaled = T — X (scale_max — scale_min) + scale_min
d_max — d_min
(5.1)
d = input density d_scaled = normalized density
scale_max =1 d_max = Maximum density
scale_min =0 d_min = Minimum density

The resulting dataset is split into 30% testing data and 70% train-
ing data. The training data is further split into 20% validation data
and 80% training data. The entire transportation system was trained
and tested with the four proposed neural networks using the last 10
minutes of density values from each traffic sensor to predict the next
30 minutes of traffic density values.

All experiments are performed using a computing cluster provided
by the HopsWorks platform?. Each experiment was configured to use
4 executers with 4 virtual cores and 16GB of RAM running Spark 2.3.0
and TensorFlow 1.8.0 using the Keras API implementation. The traffic
density prediction models are trained using the Adam optimization,
which is an extension of stochastic gradient descent. It maintains a
per-parameter learning rate that is adapted using the first and second
average moments of the gradients to improve performance. The eval-
uation metric mean squared error (MSE) is used as the loss function
and is minimized by the model, see equation 5.2. Models are trained
using data batches of size 100 to calculate the loss. A maximum of 100
epochs is used, which is the maximum number of times the model is
trained on the whole training dataset. An early stopping function is
implemented that monitors the validation loss and stops the training
procedure when the minimum change in MSE is less than 0.0001.

n

1 -
MSE ==Y (Y;—Y;)? 2
SE =12 (=T (52)

A

Y; = actual density Y; = predicted density

n = number of traf ficsensors

Zhttps:/ /www.hops.io/

62 CHAPTER 5. EXPERIMENTS

To evaluate the accuracy of the trained models, each of them was
used to predict the future density values of the traffic sensors based
on the test dataset. The root mean squared error (RMSE) was calcu-
late to find the difference between the actual density values and the
predicted density values. The training time of each proposed neural
network was measured while being trained for all of the traffic sen-
sors in the transportation system as well as the prediction time of the
trained models.

1 — .
MSE = —§ Y, — Y;)2 .
RMS niZl(z) (5.3)

Y; = actual density Y, = predicted density

n = number of traf ficsensors

Further evaluation of the models is made by grouping traffic sen-
sors into three groups based on the their location within a partition
and then comparing the results with the other models. First group
represent traffic sensors located at the entrances of a partition. The
second group represents traffic sensors located at the exits of a parti-
tion. The third group of traffic sensors is located between the other
two groups. The RMSE value for all these three groups is calculated
and compared to the same traffic sensors in the other traffic density
prediction models.

5.3.1 Hyperparameter Tuning

Hyperparameter tuning is performed on each proposed neural net-
work to establish the best number of LSTM hidden units to be used by
each. This is done with Grid Search where a set of parameters are spec-
ified and tested, see table 5.1. For the single sensor neural network a
random traffic sensor was selected and a model trained with each of
the hyperparameters. The validation loss of each is then evaluated to
select the best performing hyperparameter.

CHAPTER 5. EXPERIMENTS 63

Neural Network LSTM units

Whole Transportation System 50, 100, 500, 1000, 1500, 2000
20 minute Partitions 100, 200, 400, 600, 800, 1000
10 minute Partitions 100, 200, 400, 600, 800, 1000
5 minute Partitions 100, 200, 400, 600, 800, 1000
3 minute Partitions 100, 200, 400, 600, 800, 1000
Single Sensor 50, 100, 500, 1000

Table 5.1: Number of LSTM units selected for hyperparameter tuning

Chapter 6

Resulis

This chapter presents the results from the implementation introduced
in chapter 4 and the experiments conducted in chapter 5. There are
three sections in this chapter describing the graph, sequential weight
based graph partitioning and traffic density predictions.

6.1 Graph

Two datasets have been created on the basis of the traffic sensors’ site
graph construction. The first dataset describes vertices of the graph
representing traffic sensors’ sites. A site contains a group of traffic
sensors spanning the lanes of the road, see table 6.1.

Property Description Example
Vertex Traffic sensors’ site identifier E18_E-29765
McsDsRefer Road name and kilometer E18_E 29,765
reference of a traffic sensors’ site
Y Latitude coordinate 59.3882214026729
X Longitude coordinate 17.9392604786576
Sensors Number of sensors at a site 2
Valid_From Date and time traffic sensors’ 2001/01/01
site became valid 00:00:00.000
Valid_To Date and time traffic sensors’ 9999/12/31
site is valid to 00:00:00.000

Table 6.1: The schema of the vertex dataset

65

66 CHAPTER 6. RESULTS

The second dataset contains information about the edges of the
graph. Table 6.2 demonstrates the schema describing the edges rep-
resenting roads that connect two traffic sensors’ sites. Source indicates
the traffic sensors’ site at the beginning of a road connecting two sites.
Destination represents the traffic sensors’” site at the end of a road.
Weight contains the travel time of a vehicle driving the road.

Property Description Example

Source Identifier of a traffic sensors” site E20_A-59100
at the beginning of a road section
Destination Identifier of a traffic sensors’ site E20_A-59225
at the end of a road section
Weight Travel time distance in minutes ~ 0.20493029927405

Table 6.2: The schema of the edge dataset

Figure 6.1 shows Trafikverket’s intelligent transportation system
that is stored in the two datasets discussed above. The diagram is
drawn using the Kamada-Kawai path-length cost-function provided
in the NetworkX Python library.

Figure 6.1: The directed graph of Trafikverket’s traffic sensors’ sites

These datasets can also be used to plot the whole traffic sensor sys-
tem on top of a geographical map. This is demonstrated in figures 6.2

CHAPTER 6. RESULTS 67

for Stockholm and in 6.3 for Gothenburg as well as in figure 6.4 for
Stockholm center.

Figure 6.2: Trafikverket'’s traffic sensors’ site graph of Stockholm over-
laid on top of a map

68 CHAPTER 6. RESULTS

Figure 6.3: Trafikverket’s traffic sensors’ site graph of Gothenburg
overlaid on top of a map

CHAPTER 6. RESULTS 69

Figure 6.4: Trafikverket’s traffic sensor site graph overlaid of Stock-
holm center on top of a map

Table 6.3 shows statistical information about the constructed traffic
sensors’ site graph. There are seven disconnected components within
the graph. The disconnected components can be identified in the fig-
ures above by the long stretches of road where there are no vertices
or edges separating sections of the highways. As the table 6.3 shows,
there are 857 traffic sensors’ sites, 2034 traffic sensors and 2.37 traffic
sensors on average at each site in the graph. The average travel time
of an edge is 13.45 seconds. This is because each traffic sensors’ site is
only separated by a few hundred meters.

70 CHAPTER 6. RESULTS

Number of vertices 857
Number of edges 868
Number of traffic sensors 2034
Number of disconnected components 7
Number of entrance sites 33
Number of exit sites 59
Average weight of an edge 13.45 seconds
Maximum weight of an edge 1 minute 36.75 seconds
Minimum weight of an edge 2.02 seconds
Average number of sensors at a site 2.37
Maximum number of sensors at a site 6
Minimum number of sensors at a site 1

Table 6.3: Graph statistics

6.2 Sequential Weight Based Graph Partition-
ing

The transportation system graph created in section 6.1 is partitioned
with the backward sequential weight based graph partitioning algo-
rithm. Figures 6.5 to 6.8 illustrate how the graph was partitioned with
the weight criteria of 3, 5, 10, 20 and 30 minutes travel time. As can
be seen from the difference between the figures, the traffic sensors lo-
cated in Stockholm city are partitioned differently based on the weight
criteria provided. It is possible to observe in the figures that the traffic
sensors within a partition are continuous and the partitions are sep-
arate from each other. Some traffic sensors within a partition seem
to form groups detached far apart from each other. This is due to
limited amount of available colors to represent all the different sep-
arate partitions. Hence, the identified groups are in fact separate par-
titions. Some colors appear to be intermingled with each other when
two roads with traffic in opposite direction are located side by side and
are in separate partitions.

CHAPTER 6. RESULTS 71

Figure 6.5: Results for Stockholm when partitioning the transportation
system with a weight criteria of 3 minutes

72 CHAPTER 6. RESULTS

Figure 6.6: Results for Stockholm when partitioning the transportation
system with a weight criteria of 5 minutes

CHAPTER 6. RESULTS 73

Figure 6.7: Results for Stockholm when partitioning the transportation
system with a weight criteria of 10 minutes

74 CHAPTER 6. RESULTS

Figure 6.8: Results for Stockholm when partitioning the transportation
system with a weight criteria of 20 and 30 minutes

CHAPTER 6. RESULTS 75

Table 6.4 contains general statistics about the generated partitions.
As can be seen from the information in the table, the number of par-
titions decreases as the weight criteria is increased. In addition, the
number of vertices within each partition can vary significantly. Finally,
the minimum number of vertices in a partition is one vertex which
suggests either that a traffic sensor site is located far away from the
rest or that there is a special case not accounted for by the algorithm
present in the graph. The table clearly shows that partitioning with a
weight criteria of 20 minutes and 30 minutes produces the same par-
titions. Hence, the transportation system only needs to be partitioned
up to the weight criteria of 20 minutes. This results in traffic prediction
models based on 3, 5, 10 and 20 minutes partitions.

Weight Criteria 3min 5S5min 10min 20min 30 min
Number of partitions 36 19 13 7 7
Maximum number of 194 245 408 678 678
vertices in a partition

Minimum number of 1 1 1 11 11
vertices in a partition

Average number of 23.8 451 65.9 1224 1224
vertices in a partition

Table 6.4: Partitioning statistics

Figure 6.9 illustrates a partition from the overlapping graph parti-
tioning algorithm with a base partition weight criteria of 2 minutes and
3 forward partitions as well as 10 backward partitions. The blue sensors’
sites are a part of the forward type. The green are a part of the backward
type and the red are a part of the critical sensors’ site type.

76 CHAPTER 6. RESULTS

Figure 6.9: Example of a overlapping partition in Stockholm

Table 6.5 shows the statistics from generating overlapping parti-
tions using a weight criteria of 2 minutes, adding 3 forward partitions
and 10 backward partitions.

Base weight (Weight criteria) 2 min
Forward overlap 3 partitions
Backward overlap 10 partitions
Number of partitions 62

Maximum number of vertices in a partition 609
Minimum number of vertices in a partition 11
Average number of vertices in a partition 268.9

Table 6.5: Overlapping partitioning statistics

6.3 Traffic Density Predictions

This section discusses the results from the traffic density prediction
model experiments. The experiments evaluate the feasibility of par-
titioning a transportation system to increase the scalability of traffic
flow predictions for a growing transportation system.

Table 6.6 shows the number of experiments conducted as a part
of this thesis. In total, 2224 experiments were carried out using the
produced traffic density prediction models from the proposed neural

CHAPTER 6. RESULTS 77

networks. The number of experiments for each model is determined
by the number of partitions produced from the graph partitioning al-
gorithms when using the constructed transportation system graph.

Experiment Number of executions
Single Sensor Model 1938

3 Minute Partition Models 72

5 Minute Partition Models 38

10 Minute Partition Models 26

20 Minute Partition Models 14
Transportation System Model 2
Overlapping Partition Models 124
Hyperparameter Tuning 8

Total 2224

Table 6.6: Overview of the experiments conducted

Table 6.7 contains the results of the experiments conducted. It shows
how the training time, prediction time and LSTM units grow as more
traffic sensors are predicted for. Partitioning produces smaller mod-
els that are faster both in training and prediction time. The prediction
accuracy of the models measured by the average RMSE of all traffic
sensor predictions has a standard deviation that ranges only from 0.06
to 0.2.

The results of the experiments show that partitioning a transporta-
tion system is an effective method to scale traffic predictions of a grow-
ing transportation system. The proposed neural networks produce
traffic prediction models that are able to give comparable or in some
cases better prediction accuracy than a whole transportation system
model and single sensor models.

This is because the neural networks are designed around spatially
related traffic sensors such that the models produced are only fed with
information directly impacting the traffic sensors being predicted for.
Less complex models are produced since less data is fed into these
models allowing for fewer LSTM hidden units resulting in faster pre-
dictions. This allows the distribution of the models to be closer to the
physical location of the traffic sensors that reduces the amount of time
each prediction requires as predictions depend on the slowest produc-
ing traffic sensor.

CHAPTER 6. RESULTS

78

S3Nsa1 TeyuswLIddXa 93 JO MIIAIDAQ /9 J[qeL.

1627900 T0ETSO'0 106091°0 €/4/991°0 6S8S0T°0 uoneIA3(d piepuels
S[9POIA uonIIeJ

879908F E€OTISST 7S9/TCF 96£066'C FISSS8E €06C19°9809 062199'809 0001 886/%6°901 ¥26SST LI0F SurddefaaQ
[PPOIA wd3sAg

G98198F IFVILILT F¥6L0LF ¥6086EF €0SSPEF 08€6T 8¢61 0001 128796°C€1 866¥%.9°'8/¥9 uonpeyrodsuerr,
S[OPOIN UonI}IRJ

TrE606F 08€0SLF LLSTOST 9PS6EET ST6Z9TF 6THLLS89/T EP1LE8°9/T 0001 874£59°C6 ETLEVL E6VE NUIA 0T
S[POIAN UonII}IRJ

1Z0€68% 9Z0STL¥ TO9Z0V ¥ ¥SIECTH S66SETF TETHIL 0671 £76940°671 008 GTSVET'8S C16454°86TC U 0T
S[OPOIN Uon IR

104£26% 080%99F% 19/¥0S¥ 16S060% €69T46'€ 000000°020T 000000201 009 0S2005°1C 09/8€6°790T SuI G
S[OPOIN UOnIIIRJ

£66686F 009FIZF 99/£0€F LLITGOY T6WLI6E £EEEEE'8ES £0£EE8°€s 002 80¥¥8¥'S 120LE9°ET1T U €
S[PPOIN

89¥G00'S 988049F SEWLITT TEI6L6'S THB6ELE 0T 1 0S ££8908°8¢C 9¢GG /T SHT I0suag 9[3uIg
0+ 0T+ 0T+ G+ €+ azig indug 8ay siosuag jo 4 8ay sjuUN ALST Wil uondIpaid SAy dur Sururei] Say [PPOIN

CHAPTER 6. RESULTS 79

Figure 6.10 uses the training time and average traffic sensor num-
bers from table 6.7. It illustrate how the training time grows as more
traffic sensors are introduced into the system while the prediction ac-
curacy remains the same. In addition, the figure shows how partition-
ing is able to reduce the training time while retaining the same level of
accuracy.

Figure 6.10: Relationship between training time and average number
of traffic sensors

Similar to figure 6.10, figure 6.11 uses the prediction time and aver-
age traffic sensor numbers from table 6.7. It also shows that prediction
time increases with greater average number of traffic sensors while re-
taining the same level of accuracy. The higher prediction time of a sin-
gle traffic sensor is due to the environment in which the experiments
were carried out. HopsWorks provides a compute cluster for many re-
searchers and companies. Hence, time measurements may be affected
by load from other ongoing projects. The single sensor models were
trained sequentially and their training took longer than the other types
of models. They are, therefore, more susceptible to adverse load on the
cluster. However, the results give a clear estimate of the training time
and prediction time for each model type.

80 CHAPTER 6. RESULTS

Figure 6.11: Relationship between prediction time and average num-
ber of traffic sensors

The rest of this section is divided into the following five subsec-
tions. The first subsection discusses the results from hyperparameter
tuning the neural networks. The second subsection compares the mea-
sured and predicted traffic densities from the models. The third sub-
section evaluates the execution time for training and prediction of each
neural network. The forth subsection illustrates difference in Root
Mean Square Error between the models. The last subsection discusses
the difference in accuracy when grouping traffic sensors by their loca-
tion in a partition.

6.3.1 Hyperparameter Tuning

The figures 6.12 - 6.17 illustrate the results from performing hyperpa-
rameter tuning on the proposed traffic density prediction neural net-
works to determine the optimal number of hidden units used in the
LSTM layers. The lines show the validation loss calculated as mean
squared error (MSE) for each number of LSTM hidden units when
training the traffic prediction models. The lower the MSE value, the
better is the prediction accuracy of the model.

CHAPTER 6. RESULTS 81

Figure 6.12: Validation loss for transportation system model

Figure 6.13: Validation loss for a 20 Minute partition model

82 CHAPTER 6. RESULTS

Figure 6.14: Validation loss for a 10 Minute partition model

Figure 6.15: Validation loss for a 5 Minute partition model

CHAPTER 6. RESULTS 83

Figure 6.16: Validation loss for a 3 Minute partition model

Figure 6.17: Validation loss for a single sensor model

84 CHAPTER 6. RESULTS

Table 6.8 shows the number of LSTM hidden units that give the
best accuracy after hyperparameter tuning the neural networks.

Neural Network LSTM units
Whole Transportation System 1000

20 Minute Partitions 1000

10 Minute Partitions 800

5 Minute Partitions 600

3 Minute Partition 200
Single Sensor 50

Table 6.8: The number of LSTM hidden units producing the most ac-
curate traffic predictions

Training Time And Model Complexity Comparison

Figures 6.18 - 6.23 show how the training time for each of the mod-
els proposed in section 4.4 increases as more LSTM hidden units are
added to the neural networks.

Figure 6.18: Relationship between model complexity and training time
for the transportation system model

CHAPTER 6. RESULTS 85

Figure 6.19: Relationship between model complexity and training time
for the 20 minute partitioned transportation system model

Figure 6.20: Relationship between model complexity and training time
for the 10 minute partitioned transportation system model

86 CHAPTER 6. RESULTS

Figure 6.21: Relationship between model complexity and training time
for the 5 minute partitioned transportation system model

Figure 6.22: Relationship between model complexity and training time
for the 3 minute partitioned transportation system model

CHAPTER 6. RESULTS 87

Figure 6.23: Relationship between model complexity and training time
for the single sensor model

6.3.2 Measured and Predicted Data Evaluation

Table 6.9 shows the root mean squared error for 3, 5, 10, 20, 30 minute
predictions for a random traffic sensor for each traffic density predic-
tion model produced in section 5.3. Traffic sensor 1 at sensors’ site
E2650 4,215 in Trafikverket’s transportation system was selected.

Models t+3 t+5 t+10 t+20 t+30

Single Sensor Models 1.35775 1.33077 1.36967 1.50176 1.65267
3 Minute Partition Models 1.33251 1.33428 1.3727 1.49484 1.58875
5 Minute Partition Models 129687 1.3158 1.32532 1.37804 1.4567

10 Minute Partition Models 1.30856 1.30035 1.31148 1.33656 1.38965
20 Minute Partition Models 1.35192 1.36733 1.3189 1.37145 1.37283
Transportation System Model 1.36274 1.3204 1.35993 1.37812 1.4066

Overlapping Partition Models 1.28561 1.31683 1.32171 1.37494 1.46496

Table 6.9: Root mean squared error difference between models for traf-
fic sensor E2650-4215-1

Figures 6.24 - 6.30 draw the measured and predicted density values
30 minutes into the future for each of the traffic prediction models. As
can be seen in the figures, the predicted value follows the measured

88 CHAPTER 6. RESULTS

value indicating that all of the models are able to learn to varying de-
gree of accuracy the temporal dependencies for the traffic sensor.

Figure 6.24: Comparison of measured and predicted density for the
Transportation System Model

CHAPTER 6. RESULTS 89

Figure 6.25: Comparison of measured and predicted density for the 20
Minute Partitioned Transportation System Models

Figure 6.26: Comparison of measured and predicted density for the 10
Minute Partitioned Transportation System Models

90 CHAPTER 6. RESULTS

Figure 6.27: Comparison of measured and predicted density for the 5
Minute Partitioned Transportation System Models

Figure 6.28: Comparison of measured and predicted density for the 3
Minute Partitioned Transportation System Models

CHAPTER 6. RESULTS 91

Figure 6.29: Comparison of measured and predicted density for Single
Sensor Models

Figure 6.30: Comparison of measured and predicted density for Over-
lapping Partition Models

92 CHAPTER 6. RESULTS

6.3.3 Time Evaluation

Important aspect of producing traffic prediction models is the amount
of time it takes to train them and to make predictions. The resulting
training and prediction times are dependent on the usage of the com-
puting cluster as it is a shared resource and may be overloaded.

Figure 6.31 shows the average training time of each of the traffic
density prediction models. The training time grows as the model com-
plexity and input data increases. The Transportation System Model
predicts for the largest number of traffic sensors and needs therefore
the most LSTM hidden units and input data resulting in the longest
training time. The Single Sensor Models need the shortest time for
training as there is less information to be learned and the model con-
tains the least number of LSTM hidden units and input data.

Figure 6.31: Average training time for each model

Figure 6.32 shows the total training time for all of the models when
trained sequentially. Here the Single Sensor model towers over the
others as each traffic sensor needs to be trained individually. The Over-
lapping Partition Models require as well a long training time as they
are fed with large amount of information from surrounding traffic sen-

CHAPTER 6. RESULTS 93

sors to predict for few traffic sensors. However, the training time can
be reduced by training the models in parallel.

Figure 6.32: Total sequential training time for each model

Figure 6.33 demonstrates the average prediction time for each of
the trained prediction models. The time varies from few seconds up
to two minutes. Similarly to the training time, the prediction time for
the transportation system model is the longest compared to the other
models. The prediction time decreases as models use less input data
and become less complex.

94 CHAPTER 6. RESULTS

Figure 6.33: Average prediction time for each model

6.3.4 Root Mean Squared Error Evaluation

This subsection explores the average root mean squared error for each
of the traffic density prediction models using the unseen test dataset.
Calculating the root mean squared error indicates the accuracy of a
prediction model. The lower the value, the better the prediction.

Table 6.10 and figure 6.34 illustrate how the root mean squared er-
ror grows as the models predict further into the future. On average,
the Single Sensor Models give better prediction accuracy for short term
predictions but produce the worst long term predictions, i.e. t+3 and
t+30. The Transportation System Model produces the highest error for
predictions lower than 20 minutes. Overall, the Overlapping Partition
Models give on average the best results for all of the prediction times.
A combination of these types of models can be used to achieve the
most accurate predictions for the different predictions times.

The difference in error produced by the traffic prediction models
is low demonstrating that partitioning a transportation system is a vi-
able solution to allow for a scalable approach to traffic flow predictions

CHAPTER 6. RESULTS

in an Intelligent Transportation System. The partitioned models have
a reduced complexity as less input data and LSTM hidden units are
needed, which improves prediction time. Additionally, these models
can be moved to the edge of the transportation system located closer
to the traffic sensors. This further reduces the prediction time as traffic
measurements being sent travel shorter distances to the models.

Model t+3 t+5 t+10 t+20 t+30
Single Sensor 3.73994 3.91913 4.22744 4.67089 5.00547
Models

3 Minute 391749 4.05118 4.30377 4.7146 4.98999
Partition Models

5 Minute 3.97269 4.09059 4.30476 4.66408 4.9237
Partition Models

10 Minute 413599 4.22315 4.4076 4.71508 4.89307
Partition Models

20 Minute 426791 4.33955 4.50258 4.75038 4.90934
Partition Models

Transportation 43455 4.39809 4.70794 4.72714 4.86186
System Model

Overlapping 3.85881 3.9904 4.22765 4.5811 4.80663
Partition Models

Table 6.10: Average RMSE of predictions for all traffic sensors

96 CHAPTER 6. RESULTS

Figure 6.34: Comparison of average RMSE between all models for all
traffic sensors

CHAPTER 6. RESULTS 97

Figure 6.35 highlights further the benefits of using a partitioned
transportation system for traffic predictions as a scalable solution. This
can been seen from the box plots where the median is about the same
as well as the interquartile range for all of the models.

Figure 6.35: Comparison of average RMSE between all models for all
traffic sensors

98 CHAPTER 6. RESULTS

Figures 6.36 - 6.42 demonstrate the gradual increase in error as each
of the models predict further into the future. The Single Sensor Models
gives the best prediction accuracy for one minute predictions.

Figure 6.36: Average RMSE of all traffic sensors for the Transportation
System Model

Figure 6.37: Average RMSE of all traffic sensors for the 20 Minute Par-
tition System Models

CHAPTER 6. RESULTS 99

Figure 6.38: Average RMSE of all traffic sensors for the 10 Minute Par-
tition System Models

Figure 6.39: Average RMSE of all traffic sensors for the 5 Minute Parti-
tion System Models

100 CHAPTER 6. RESULTS

Figure 6.40: Average RMSE of all traffic sensors for the 3 Minute Parti-
tion System Models

Figure 6.41: Average RMSE of all traffic sensors for the Single Sensor
Models

CHAPTER 6. RESULTS 101

Figure 6.42: Average RMSE of all traffic sensors for the Overlapping
Partition Models

6.3.5 Sensor Group Evaluation within a Partition

Traffic sensors at entrances of a partition should demonstrate higher
prediction error compared to traffic sensors located in the middle and
at the exits of a partition. This is because the models have more spatial
dependency information for the traffic sensors located closer to the
exits of the partition.

Table 6.11 shows in principal that the predictions for the traffic sen-
sors located at the start of the partitions (start group) have a higher
root mean squared error while the prediction error for the traffic sen-
sors located at the end of the partition (end group) are the lowest. The
root mean squared error of the predictions for the rest of the traffic
sensors (center group) is between the other two groups. However, the
root mean squared error for the center group is in some cases higher
than for the start group. This may be due to the large size of the center
group compared to the other groups. The center group encompasses
the majority of all traffic sensors, except for the traffic sensors located
directly at entrances and exits of a partition.

102 CHAPTER 6. RESULTS

Model Groups t+10 t+20 t+30

Start 3.473036 3.747368 4.013529
3 Minute Partition Models Center 3.515262 3.796037 4.027587
End 3.408933 3.475926 3.526219
Start 3.721472 3.980659 4.261294
5 Minute Partition Models Center 3.559528 3.780412 3.947681
End 3.431928 3.582781 3.720938
Start 3.711675 3.799795 3.932735
10 Minute Partition Models Center 3.645098 3.828238 3.926750
End 3.195844 3.359010 3.364163
Start 3.392057 3.538455 3.660241
20 Minute Partition Models Center 3.693661 3.891483 3.988295
End 3.092131 3.207516 3.211633

Table 6.11: Median of the average traffic prediction RMSE for each
traffic sensor group

Figures 6.43 - 6.46 illustrate the results of grouping traffic sensors
into three groups. A start group consists of traffic sensors located at
the entrances of a partition. A center group includes traffic sensors
located in the middle of a partition. A end group consists of traffic
sensors located at exits of a partition. The figures show the difference
in average root mean squared error for each of the three groups with
the prediction time 10, 20 and 30 minutes. The results demonstrate that
the accuracy is highest for traffic sensors in the end group, while traffic
sensors in the center and start group produce lower prediction accu-
racy. This becomes more noticeable as the prediction time increases
from 10 to 30 minutes. The results suggest that the models are able to
learn that the traffic conditions at entrances of the partition propagate
to the exists of the partition.

CHAPTER 6. RESULTS 103

Figure 6.43: Average RMSE comparison between sensor groups in the
20 Minute Partition System Models

104 CHAPTER 6. RESULTS

Figure 6.44: Average RMSE comparison between sensor groups in the
10 Minute Partition System Models

CHAPTER 6. RESULTS 105

Figure 6.45: Average RMSE comparison between sensor groups in the
5 Minute Partition System Models

106 CHAPTER 6. RESULTS

Figure 6.46: Average RMSE comparison between sensor groups in the
3 Minute Partition System Models

The figures in the rest of the subsection compare the root mean
squared error produced by each of the traffic sensor groups in the 3,
5, 10 and 20 Minute Partition Models with the same traffic sensors in
the Single Sensor Models, the Transportation System Model and the
Overlapping Partition Models.

CHAPTER 6. RESULTS 107

20 Minute Partition Group Comparison

The figures 6.47 - 6.49 indicate that the 20 minute partition models
give the best average prediction accuracy compared to the other three
models for all of traffic sensor groups, except for the start group where
the single sensor model has the lowest root mean squared error. This
may be due to the fact that the 20 Minute model does not have any
traffic measurements from the traffic sensors located before the start

group.

Figure 6.47: Comparison of average RMSE of traffic sensors in the start
group in the 20 Minute Partition System Models

108 CHAPTER 6. RESULTS

Figure 6.48: Comparison of average RMSE of traffic sensors in the cen-
ter group in the 20 Minute Partition System Models

CHAPTER 6. RESULTS 109

Figure 6.49: Comparison of average RMSE of traffic sensors in the end
group in the 20 Minute Partition System Models

110 CHAPTER 6. RESULTS

10 Minute Partition Group Comparison

The figures 6.50 - 6.52 indicate that the 10 minute partition models
give the best average prediction accuracy compared to the other three
models for all of traffic sensor groups, except for the start group where
the single sensor model has the lowest root mean squared error.

Figure 6.50: Comparison of average RMSE of traffic sensors in the start
group in the 10 Minute Partition System Models

CHAPTER 6. RESULTS 111

Figure 6.51: Comparison of average RMSE of traffic sensors in the cen-
ter group in the 10 Minute Partition System Models

112 CHAPTER 6. RESULTS

Figure 6.52: Comparison of average RMSE of traffic sensors in the end
group in the 10 Minute Partition System Models

CHAPTER 6. RESULTS 113

5 Minute Partition Group Comparison

The figures 6.53 - 6.55 indicate that the 5 minute partition models give
the best average prediction accuracy compared to the other three mod-
els for all of traffic sensor groups, i.e. start, center and end group.

Figure 6.53: Comparison of average RMSE of traffic sensors in the start
group in the 5 Minute Partition System Models

114 CHAPTER 6. RESULTS

Figure 6.54: Comparison of average RMSE of traffic sensors in the cen-
ter group in the 5 Minute Partition System Models

CHAPTER 6. RESULTS 115

Figure 6.55: Comparison of average RMSE of traffic sensors in the end
group in the 5 Minute Partition System Models

116 CHAPTER 6. RESULTS

3 Minute Partition Group Comparison

The figures 6.56 - 6.58 indicate that the 3 minute partition models give
the best average prediction accuracy compared to the other three mod-
els for all of traffic sensor groups, except for the start group where the
single sensor model has the lowest root mean squared error.

Figure 6.56: Comparison of average RMSE of traffic sensors in the start
group in the 3 Minute Partition System Models

CHAPTER 6. RESULTS 117

Figure 6.57: Comparison of average RMSE of traffic sensors in the cen-
ter group in the 3 Minute Partition System Models

118 CHAPTER 6. RESULTS

Figure 6.58: Comparison of average RMSE of traffic sensors in the end
group in the 3 Minute Partition System Models

Chapter 7

Conclusion and Future Work

The purpose of the thesis was to design and implement a graph con-
sisting of traffic sensors located in Stockholm and Gothenburg, a se-
quential weight based graph partitioning algorithm, and four types of
traffic density prediction models.

Past traffic prediction research projects have not explored how to
address scalability and performance issues related to growing trans-
portation infrastructure without compromising the number of traffic
sensors. Examples of these issues are related to traffic sensor datasets
becoming increasingly larger and more complex as the transportation
system grows. This forces data scientists to create larger and more
complex neural networks to model the non-linear and stochastic char-
acteristics of traffic flow. These complications may affect accuracy,
training, and prediction time. Another issue that arises from an ex-
panding transportation infrastructure is the growing volume of data
sent over a computer network to a central data processing center that
requires expansion of the computer network to deal with escalating
bandwidth and latency problems.

Table 6.7 shows that it is possible to reduce the complexity of the
model, the amount of input data to the model, the time used to train
the model, and the time it takes to produce model predictions. At
the same time, the standard deviation of the root mean squared error
between the models ranges only between 0.06 to 0.2 for each of the
future predictions.

In this thesis, a solution to address these scalability and perfor-
mance issues has been developed, implemented and tested by means
of experimentation. This solution enables division of the transporta-

119

120 CHAPTER 7. CONCLUSION AND FUTURE WORK

tion system into smaller and more manageable partitions based on
travel time distance for traffic predictions. These partitions can then
be distributed closer to the physical location of the traffic sensors or in
other words to the edge of the transportation system instead of using
a central data processing system. Traffic predictions produced from
these smaller partitions located close to the sensors can then be sent
to commuters, who are traveling within the location of the partition.
This reduces both the time of producing predictions and sending them
since the models are smaller and require less data for each prediction.
Local data processing systems responsible for a partition can compress
and send predictions to a central data processing system to accumulate
a system-wide prediction for the whole transportation system.

The contribution of the thesis are in line with the problem defini-
tion in section 1.1 and the four research questions stated in section 1.2.
The thesis gave a detailed description of the design and implementa-
tion of a weighted directional graph based on the traffic sensor infor-
mation provided by Trafikverket. The resulting graph structure was
evaluated by means of plotting each traffic sensors’ site vertex and
each edge representing a road connecting two sites on a geographical
map. The graph structure represented adequately the physical world
as all of the vertices matched with its corresponding traffic sensors’
site and all roads connecting sites were represented by an edge.

Three types of sequential weight based graph partitioning algo-
rithms were designed and implemented as a part of this thesis. The
evaluation of the algorithms showed that it is possible to partition a
transportation system represented with a graph based on a vehicle
travel time. This was done by creating simple evaluation scenarios,
where a graph representing a small transportation system was parti-
tioned using one of the algorithms and the results verified to be iden-
tical to manually partitioning the graph. Lastly, the constructed graph
was partitioned using the proposed algorithms to produce partitions
that can be used for the construction of traffic prediction models.

Three types of models for traffic predictions were designed, imple-
mented and compared, i.e. a transportation system model partitioned
transportation system models, and single sensor models. These mod-
els were trained using data from all of the traffic sensors in Trafikver-
ket’s transportation system to produce traffic density prediction mod-
els that predict up to 30 minutes into the future. The evaluation of the
produced traffic density prediction models showed that traffic den-

CHAPTER 7. CONCLUSION AND FUTURE WORK 121

sity predictions produced from the partitioned transportation system
models are comparable in terms of accuracy to the single sensors mod-
els and to the whole transportation system model. Accuracy was de-
termined by calculating the average root mean squared error between
predicted values and actual density values for all of the traffic sensors
in the transportation system. The root means squared error was in the
range 4 to 5 indicating that overall prediction accuracy between the
models are similar.

This leads to the conclusion that partitioning a transportation sys-
tem into smaller units is a viable solution to problems of scalability in
a growing transportation system.

A forth type of traffic prediction model was designed and imple-
mented to use overlapping partitions of a transportation system to
increase the average traffic prediction accuracy. Overlapping parti-
tions involve predicting for a group of traffic sensors using spatial and
temporal traffic information from surrounding traffic sensors. Feeding
the models with enough information about the surrounding partitions
should produce predictions with higher accuracy. This was supported
by the results of the experiments in the thesis. The average root mean
squared error for this type of model is lower for traffic predictions over
10 minutes as compared to the first three models.

To conclude, the results of the thesis demonstrate that partitioning
a transportation system is a viable solution to produce traffic predic-
tion models as the average prediction accuracy for each traffic sen-
sor across the different types of models are comparable. This solution
tackles scalability issues produced by increased deployment of traffic
sensors in a transportation system by reducing the model complexity
and the number of traffic sensors each prediction model is responsible
for. A more decentralized and effective solution can be achieved since
the models can be distributed to the edge of the transportation system,
i.e. near the physical location of the traffic sensors, reducing prediction
and response time of the models.

7.1 Limitations

Even though research is carefully planned and prepared, limitations
and shortcomings can always be found. Researchers who intend to
make use of the results of the work in this thesis need to be aware of

122 CHAPTER 7. CONCLUSION AND FUTURE WORK

the following.

As with many projects, the quality of the results depends on the
quality of the dataset and its usage in various steps of the research
process. The three parts of the thesis involving the construction of a
weighted traffic sensor graph, sequential weight based partitioning al-
gorithms, and traffic density prediction models are built on top of each
other and thereby interdependent. Hence, the results of each research
part depends on the preceding part that in turn will affect the final
results of thesis.

As for the quality of the weighted graph produced in the first part
of the thesis, it depends on the quality of the sensor information dataset
provided by Trafikverket and the edge weight calculations for travel
time between sensors.

In addition, the sequential weight based partitioning algorithm de-
pends directly on the correctness of the provided weighted graph and
how thoroughly the algorithm was tested and verified.

Finally, the traffic density prediction models depend on the qual-
ity of the partitions produced by the partitioning algorithm, the cor-
rectness of the algorithm, and the accuracy of the graph that is being
partitioned.

7.2 Future Work

The work in this thesis can be extended in several ways as discussed
in the following sections.

7.2.1 Sensor Graph Refinement

Firstly, the weighted graph was constructed with sensor information
from Trafikverket and edge weight calculations using the average ve-
hicle speed during rush hour and the recorded length between sensors
or GPS coordinates. This may be improved by using other hours of
the day to find the average vehicle speed that is more representative
of the traffic flow and travel time between sensors or by measuring the
travel time between sensors while commuting through the transporta-
tion system. Another possible improvement is to verify and correct
sensor locations, where the GPS coordinates are positioned off-roads.
More correct GPS coordinates for sensor locations will improve the ac-
curacy of travel time distance for edges in the sensor graph.

CHAPTER 7. CONCLUSION AND FUTURE WORK 123

7.2.2 Graph Partitioning Improvements

It is possible to improve the sequential weight based graph partition-
ing algorithm by parallelizing the algorithm to partition parts of the
graph concurrently and allowing it to run on a distributed computa-
tion cluster. This improvement could be done by detecting discon-
nected components of the graph and executing the partitioning algo-
rithm on each component in parallel. Changes of this kind can enhance
the speed and scalability of the algorithm such that it can handle larger
sensor graphs. Yet another improvement would be to evaluate the cor-
rectness of the current algorithm using more extensive tests and edge
cases. The findings can then be used to refine the algorithm.

7.2.3 Deep Learning Exploration

The traffic density prediction models can be developed further to im-
prove the overall accuracy of predictions and lower the prediction er-
ror. This can be done through a more extensive hyperparameter tun-
ing procedure. Experiments using GRU hidden units instead of LSTM
have resulted in increased prediction accuracy as was shown in [6]. In
addition, a deeper neural network that has more hidden layers may
be able to better generalize the nature of traffic flow and increase the
prediction accuracy. Exploration of the usage of fully connected layers
may improve the models capability of learning the spacial and tempo-
ral patterns in traffic flow data as [5] suggests. Investigation of stacked
bidirectional and unidirectional long short-term memory layer may
improve further on the prediction accurate, as was shown in [33]. It
should be explored how a longer prediction horizon effects the accu-
racy of the models, e.g. 40, 50, 60 minutes into the future.

7.2.4 Model Training

The experiments in the thesis were affected by computational load
on the HopsWorks cluster originating from various non-controllable
sources. Consequently, measurements of the training and prediction
time of each model varied considerably. It is, therefore, advisable to
run the experiments in an clean environment or without influences
from outside factors in order to produce more accurate measurements
of the training and prediction time.

124 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2.5 Parallel Training

During the thesis work, sequential training of the models was carried
out. To achieve faster training, one could use the tools provided by
HopsWorks to execute the training on multiple GPUs in parallel.

7.2.6 Distributed Traffic Prediction System

The proposed distributed traffic prediction system in this research can
by implemented into practice to evaluate the benefits in communica-
tion costs and prediction speed as compared to using a centralized
traffic prediction system.

7.2.7 Federated Learning

A traffic prediction system constructed from a partitioned transporta-
tion system can be augmented by using a federated learning approach
proposed in Google’s Al blog. Instead of using different traffic pre-
diction models for each partition, a federated learning approach could
be applied where the partitions of the transportation system share a
prediction model that is used collaboratively to train and improve the
model.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Bibliography

[1]

Shaojun Zhang et al. “Fine-grained vehicle emission manage-
ment using intelligent transportation system data”. eng. In: En-
vironmental Pollution 241 (2018), pp. 1027-1037. 1SSN: 0269-7491.

Transportation Statistics Annual Report 2017. U.S. Department of
Transportation, Bureau of Transportation Statistics, 2017, pp. v,
vi, 1-1, 14, 1-8, 2-1, 4-1, 5-1, 6-1, 7-1.

Agachai Sumalee and Hung Wai Ho. “Smarter and more con-
nected: Future intelligent transportation system”. eng. In: IATSS
Research 42.2 (2018), pp. 67-71. 1SSN: 0386-1112.

Xiaolei Ma et al. “Long short-term memory neural network for
traffic speed prediction using remote microwave sensor data”.
eng. In: Transportation Research Part C 54.C (2015), pp. 187-197.
ISSN: 0968-090X.

Xingyuan Dai et al. “DeepTrend: A Deep Hierarchical Neural
Network for Traffic Flow Prediction”. In: (2017).

Rui Fu, Zuo Zhang, and Li Li. “Using LSTM and GRU neural
network methods for traffic flow prediction”. eng. In: IEEE, 2016,
pp. 324-328. ISBN: 9781509044238.

Anne Hakansson. “Portal of Research Methods and Methodolo-
gies for Research Projects and Degree Projects”. In: 2013, pp. 67—
73. ISBN: 1-60132-243-7.

European Union. Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the protection of natu-
ral persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC (Gen-
eral Data Protection Regulation). Apr. 2016. URL: https://eur-
lex.europa.eu/legal-content /EN/ALL/?uri=CELEX:
32016R0679 (visited on 07/05/2018).

125

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32016R0679

126

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

Annual Report 2017. Trafikverket - The Swedish Transport Ad-
ministration, 2017, pp. 21, 22, 23.

United Nations. Sustainable Development Goals | UNDP. Jan. 2016.
URL: http://www.undp.org/content /undp/en/home/
sustainable-development—goals (visited on 07/05/2018).

Luz Elena Y Mimbela et al. “Summary of Vehicle Detection and
Surveillance Technologies used in Intelligent Transportation Sys-
tems”. In: Federal Highway Administration’s Intelligent Transporta-
tion Systems Program Office (Nov. 2000), pp. 3-1 -3-2.

Luz Elena Y Mimbela et al. “Summary of Vehicle Detection and
Surveillance Technologies used in Intelligent Transportation Sys-
tems”. In: Federal Highway Administration’s Intelligent Transporta-
tion Systems Program Office (Nov. 2000), pp. 4-4 —4-6.

Lawrence A Klein et al. Traffic Detector Handbook. Third Edition —
Volume 1. Tech. rep. FHWA-HRT-06-108. United States. Federal
Highway Administration, 2006, pp. 2-1.

Lily Elefteriadou. Springer Optimization and Its Applications. An
Introduction to Traffic Flow Theory. Vol. 84. Springer-Verlag New
York, 2014, pp. 68-69. ISBN: 9781461484349.

Luz Elena Y Mimbela et al. “Summary of Vehicle Detection and
Surveillance Technologies used in Intelligent Transportation Sys-
tems”. In: Federal Highway Administration’s Intelligent Transporta-
tion Systems Program Office (Nov. 2000), pp. 5-9 -5-15.

Lawrence A Klein et al. Traffic Detector Handbook. Third Edition —
Volume I. Tech. rep. FHWA-HRT-06-108. United States. Federal
Highway Administration, 2006, pp. 1-15 - 1-17 & 2-79 -2-83.

Lawrence A Klein et al. Traffic Detector Handbook. Third Edition —
Volume 1. Tech. rep. FHWA-HRT-06-108. United States. Federal
Highway Administration, 2006, pp. 1-14 — 1-15 & 2-68 —2-70.

Luz Elena Y Mimbela et al. “Summary of Vehicle Detection and
Surveillance Technologies used in Intelligent Transportation Sys-
tems”. In: Federal Highway Administration’s Intelligent Transporta-
tion Systems Program Office (Nov. 2000), pp. 5-1 -5-8.

Lily Elefteriadou. Springer Optimization and Its Applications. An
Introduction to Traffic Flow Theory. Vol. 84. Springer-Verlag New
York, 2014, pp. 61-65. ISBN: 9781461484349.

http://www.undp.org/content/undp/en/home/sustainable-development-goals
http://www.undp.org/content/undp/en/home/sustainable-development-goals

BIBLIOGRAPHY 127

Lily Elefteriadou. Springer Optimization and Its Applications. An
Introduction to Traffic Flow Theory. Vol. 84. Springer-Verlag New
York, 2014, pp. 69-72. 1SBN: 9781461484349.

Lily Elefteriadou. Springer Optimization and Its Applications. An
Introduction to Traffic Flow Theory. Vol. 84. Springer-Verlag New
York, 2014, pp. 76-78. ISBN: 9781461484349.

Robin] Wilson. Introduction to graph theory. Fourth Edition. Addi-
son Wesley Longman Limited, 1996, pp. 1-6, 8-14, 26-30. ISBN:
0582249937.

Narsingh Deo. Graph theory with applications to engineering and
computer science. First Edition. Dover Publications, 2016, pp. 1-2,
7,11-13, 229-233. 1SBN: 9780486807935.

Richard] Trudeau. Introduction to graph theory. Second Edition.
Dover Publications, INC, 1994, pp. 18, 19, 24, 41, 105. 1SBN: 97804
86678702.

M.E.]. Newman. Networks: An Introduction. First Edition. Oxford
University Press Inc., 2010. Chap. 11, pp. 337-341. ISBN: 97801992
06650.

Andreas C Miller, Sarah Guido, et al. Introduction to machine
learning with Python: a guide for data scientists. " O'Reilly Media,
Inc.", 2016.

Josh Patterson and Adam Gibson. Deep Learning: A Practitioner’s
Approach. " O’Reilly Media, Inc.", 2017.

Christopher Olah. Understanding LSTM Networks. Aug. 2015. URL:

http://colah.github.io/posts/2015-08-Understanding-

LSTMs (visited on 07/05/2018).

C.PJJ. Van Hinsbergen,].W.C. Van Lint, and FM. Sanders. “Short
Term Traffic Prediction Models”. In: 14th World Congress on In-
telligent Transport Systems: ITS for a Better Life, Beijing: Research
Institute of Highway, Chinese Ministry of Communications. Depart-
ment of Transport & Planning, Delft University of Technology.
Oct. 2007.

JJW.C. Van Lint and C.PIJ. Van Hinsbergen. “Short-term traffic
and travel time prediction models”. In: Artificial Intelligence Ap-
plications to Critical Transportation Issues 22.1 (2012), pp. 22-41.

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs

128

[31]

[32]

[33]

[34]

BIBLIOGRAPHY

JJW.C. Van Lint, Henk J. Van Zuylen, and H. Tu. “Travel time
unreliability on freeways: Why measures based on variance tell

only half the story”. In: Transportation Research Part A: Policy and
Practice 42.1 (2008), pp. 258-277.

Nicholas G. Polson and Vadim O. Sokolov. “Deep learning for
short-term traffic flow prediction”. eng. In: Transportation Research
Part C79.C (2017), pp. 1-17. 1SSN: 0968-090X.

Zhiyong Cui, Ruimin Ke, and Yinhai Wang. “Deep Bidirectional
and Unidirectional LSTM Recurrent Neural Network for Network-
wide Traffic Speed Prediction”. In: (2018).

Zainab Abbas et al. “Short-Term Traffic Prediction Using Long
Short-Term Memory Neural Networks”. In: 2018 IEEE Interna-
tional Congress on Big Data (BigData Congress). IEEE Computer
Society Digital Library. 2018, pp. 57-65.

Appendix A

Source Code and Software

The source code for the thesis can be found using the following URL:
https:/ /github.com/reginbald / kth-master-thesis-project

The following software was used in this thesis:

Python 2.7 an interpreted high-level programming language.

https:/ /www.tensorflow.org/

NetworkX a Python library for studying graphs and networks.
https:/ /networkx.github.io/

PyCharm an integrated development environment.

https:/ /www.jetbrains.com/pycharm/

Jupyter a web-based interactive computational environment for the
creation of Jupyter notebooks.

https:/ /jupyter.org/

Apache Spark a cluster-computing framework for large-scale data pro-
cessing.

https:/ /spark.apache.org/

TensorFlow a library for high performance numerical computation
with strong support for machine learning and deep learning.

https:/ /www.tensorflow.org/

Keras a high-level neural network library that is able to run on top of
Tensorflow.

https:/ /keras.io/

HopsWorks a platform that integrates some of the most popular ser-
vices for Data Science and Data Engineering.

https:/ /www.hops.io/

129

https://github.com/reginbald/kth-master-thesis-project
https://www.tensorflow.org/
https://networkx.github.io/
https://www.jetbrains.com/pycharm/
https://jupyter.org/
https://spark.apache.org/
https://www.tensorflow.org/
https://keras.io/
https://www.hops.io/

TRITA TRITA-EECS-EX-2018:765

	Introduction
	Problem Definition
	Purpose, Goals and Research Questions
	Methodology
	Delimitation
	Contributions
	Ethics
	Sustainability
	Outline

	Background
	Traffic Sensors
	Inductive Loop Detectors
	Microwave Radar
	Video Image Processor

	Traffic Flow Theory
	Performance Measures

	Graph Theory
	Graph Concepts
	Graph Separation

	Machine Learning
	Traffic Predictions
	Naïve Methods
	Parametric Methods
	Non-Parametric Methods

	Related Work
	Implementation
	Datasets
	Graph
	Sequential Weight Based Graph Partitioning
	Forward Sequential Weight Based Graph Partitioning
	Backward Sequential Weight Based Graph Partitioning
	Overlapping Sequential Weight Based Graph Partitioning

	Neural Networks for Traffic Density Predictions
	Transportation System Neural Network
	Partitioned Transportation System Neural Network
	Single Sensor Neural Network
	Overlapping Partition Neural Network

	Experiments
	Graph
	Sequential Weight Based Graph Partitioning
	Traffic Density Predictions
	Hyperparameter Tuning

	Results
	Graph
	Sequential Weight Based Graph Partitioning
	Traffic Density Predictions
	Hyperparameter Tuning
	Measured and Predicted Data Evaluation
	Time Evaluation
	Root Mean Squared Error Evaluation
	Sensor Group Evaluation within a Partition

	Conclusion and Future Work
	Limitations
	Future Work
	Sensor Graph Refinement
	Graph Partitioning Improvements
	Deep Learning Exploration
	Model Training
	Parallel Training
	Distributed Traffic Prediction System
	Federated Learning

	Bibliography
	Source Code and Software

