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Abstract

Road traffic control has been around for a long time to guar-
antee the safety of vehicles and pedestrians. However, anoma-
lies such as accidents or natural disasters cannot be avoided.
Therefore, it is important to be prepared as soon as possible
to prevent a higher number of human losses. Nevertheless,
there is no system accurate enough that detects and classifies
anomalies from the road traffic in real time. To solve this
issue, the following study proposes the training of a machine
learning model for detection and classification of anomalies
on the highways of Stockholm. Due to the lack of a labeled
dataset, the first phase of the work is to detect the different
kind of outliers that can be found and manually label them
based on the results of a data exploration study. Datasets
containing information regarding accidents and weather are
also included to further expand the amount of anomalies. All
experiments use real world datasets coming from either the
sensors located on the highways of Stockholm or from official
accident and weather reports. Then, three models (Decision
Trees, Random Forest and Logistic Regression) are trained
to detect and classify the outliers. The design of an Apache
Spark streaming application that uses the model with the best
results is also provided. The outcomes indicate that Logistic
Regression is better than the rest but still suffers from the
imbalanced nature of the dataset. In the future, this project
can be used to not only contribute to future research on similar
topics but also to monitor the highways of Stockholm.

Keyboards: anomaly detection, traffic flow, accidents,
weather, decision tree, random forest, logistic regression,
streaming.



Abstrakt

Vägtrafikkontroll har funnits länge för att garantera säkerheten
hos fordon och fotgängare. Emellertid kan avvikelser som oly-
ckor eller naturkatastrofer inte undvikas. Därför är det viktigt
att förberedas så snart som möjligt för att förhindra ett större
antal mänskliga förluster. Ändå finns det inget system som är
noggrannt som upptäcker och klassificerar avvikelser från väg-
trafiken i realtid. För att lösa detta problem föreslår följande
studie utbildningen av en maskininlärningsmodell för detekter-
ing och klassificering av anomalier på Stockholms vägar. På
grund av bristen på en märkt dataset är den första fasen av
arbetet att upptäcka olika slags avvikare som kan hittas och
manuellt märka dem utifrån resultaten av en datautforskn-
ingsstudie. Dataset som innehåller information om olyckor
och väder ingår också för att ytterligare öka antalet anomalier.
Alla experiment använder realtidsdataset från antingen sen-
sorerna på Stockholms vägar eller från officiella olyckor och
väderrapporter. Därefter utbildas tre modeller (beslutsträd,
slumpmässig skog och logistisk regression) för att upptäcka
och klassificera outliersna. Utformningen av en Apache Spark
streaming-applikation som använder modellen med de bästa
resultaten ges också. Resultaten tyder på att logistisk regres-
sion är bättre än resten men fortfarande lider av datasetets
obalanserade natur. I framtiden kan detta projekt användas
för att inte bara bidra till framtida forskning kring liknande
ämnen utan även att övervaka Stockholms vägar.

Keyboards: anomalitetsdetektering, trafikflöde, olyckor,
väder, beslutsträd, slumpmässig skog, logistisk regression,
streaming.
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Chapter 1

Introduction

1.1 Anomaly Detection

The purpose of anomaly detection is defined as finding data that does not
conform to the notions of normal behavior. Other words that are widely used
to reference this type of data are outliers, exceptions, aberrations, surprises or
peculiarities. The relevance of this problem comes from the need to act upon
the discovery of the outliers since such occurrence usually requires a response
in many application domains. An example of this can come when examining
an anomalous MRI image that may indicate the presence of a malignant tumor,
something that requires an immediate action from the doctor in charge. [32]
[3] [1]

Such is the importance of anomaly detection that the technique has been
studied in the statistics community since at least the 19th century, prompting
the creation of many techniques in different research communities. To further
understand the challenges that come from detecting outliers, the following are
the issues related to this process [32]:

• Definition of normal behavior: the main difficulty for this task comes
when the boundary between normal and abnormal behavior is not precise,
something that usually leads to the misclassification of an observation as
abnormal when it’s actually normal and vice-versa.

• Malicious actions: there are cases in which malicious adversaries decide
to adapt themselves in order to appear as a normal observation, which is
something that ends up complicating the task of defining normal perfor-
mance. Examples of this can be found in credit card fraud, breakdown of
a system, terrorist activity or cyber-intrusion.

• Notion of anomaly differs for different domains: every domain has
its own needs and data behavior, making it impossible to use a model

1



1.2. TRAFFIC FLOW THEORY CHAPTER 1. INTRODUCTION

defined for one domain in another.

• Evolving behavior: multiple domains suffer from data that changes its
normal behavior over time and this is something that can turn a well
defined model obsolete.

• Availability of labeled data: the training of a model with the purpose
of classifying anomalies within a dataset can become quite difficult when
there is no information that verifies the classes to which different behaviors
belong to.

• Noise: it is often the case in which data contains noise that is quite
similar to the anomalies and therefore are difficult to distinguish and
delete.

When dealing with the detection of anomalies, the first thing one should
do is understand their nature, which is why there are 3 main categories that
outliers can be classified into [32]:

1. Point Anomalies: in this category, an outlier is defined as a data point
that lies outside the boundary of the normal region of the observations,
making them different from normal points.

2. Contextual Anomalies: it occurs when the anomalies can be classified
as such only within a specific context. Because of this, there are 2
attributes that each data point should have:

• Contextual attributes: indicates the context for a given instance.
For example, in time series, time itself is a contextual attribute that
determines where each observation belong in the sequence.

• Behavioral attributes: this refers to the characteristics of the
observation that are not bound by context. An example of this can
be found in a spatial dataset describing the average consumption
of a product in the entire world, where the amount at any specific
location represents a behavior.

3. Collective Anomalies: this kind of outliers arrive when a collection of
related observations is anomalous with respect to the entire dataset, but
each data point by itself might not be an outlier.

1.2 Traffic Flow Theory

As previously mentioned, each application domain constitutes different
behaviors for its dataset. Therefore, the next step is to understand how road
traffic data behaves, and for this, one needs to look at the Traffic Flow Theory.

2



1.2. TRAFFIC FLOW THEORY CHAPTER 1. INTRODUCTION

Its premise indicates that 3 variables are required to model the behavior of
vehicles on the road [12]:

1. Flow: refers to the number of vehicles passing per unit of time and it’s
express as q(x, t)(veh/min).

2. Density: indicates the number of vehicles passing per unit of distance
and it’s defined as ρ(x, t)(veh/km).

3. Velocity or Speed: describes the travelled distance per unit of time
and it’s defined as v(x, t)(km/min).

The relationship among the variables can be understood by looking at the
definition of flow in Equation 1.1:

q(x, t) = ρ(x, t)v(x, t) (1.1)

Figure 1.1: Fundamental diagram of Traffic Flow Theory. Adapted from [12]

Furthermore, Figure 1.1 illustrates the behavior of these variables. From
it, one can see that as the density increases so does the flow until it reaches
its maximum capacity (qmax), which is the maximum number of vehicles that
can transit per unit of time. This also happens to be the same point where
the former reaches its critical density (ρc), which is when the flow starts to
decrease and congestion starts to form.

In this figure, the region that defines normal behavior in this domain seems
to be quite clear and it refers to the data points that are inside the boundaries
form by the triangle under qmax and ρc. However, if one wishes to not only
detect but also understand the reason for the presence of the outliers, then the
type of exceptions that can come up in this domain fall into the category of
contextual anomalies. This occurs because traffic flow is usually quite different

3



1.3. REAL TIME STREAMING CHAPTER 1. INTRODUCTION

during peak hours, the weekend and time of the year, as well as whether the
weather is favorable or not (rain, snow, fog, etc..). These are some of the
contexts that need to be taken into account for the proper training of a model
capable of detecting anomalies, and their presence increases the difficulty of
such task.

1.3 Real Time Streaming

With the rise of Big Data happening a few years ago, a need for consuming
and processing large amounts of incoming data led to the development of many
stream processing (streaming) technologies, and such is the case of Apache
Storm [13], Apache Spark [35] and Apache Flink [5]. In particular, one of
the main characteristics of Apache Spark is its capability of processing data
in-memory, something that leads to an increase in performance. [34]

Putting together all the information gathered so far, an interesting idea
rises: set up a model capable of detecting anomalies in road traffic and use it
as part of a streaming application that receives incoming observations about
the traffic flow and detects an anomaly. The idea behind using a model instead
of a set of rules becomes more relevant due to the fact that the former makes
streaming processing faster.

1.4 Problem, Purpose and Goals

Road traffic control has been around for a long time to guarantee the
safety of vehicles and pedestrians. However, anomalies such as accidents or
natural disasters cannot be avoided and it is important to be prepared for this
kind of events as soon as possible to prevent a higher number of human losses.
Therefore, it is necessary to be able to detect, locate and correctly classify the
anomaly right when it happens to be able to send help, if needed, to the right
place at the right moment. This begs the question: is it possible to build an
application capable of detecting, in real time, anomalies and their nature in the
road traffic from the highways of Stockholm?

1.4.1 Contributions

• An analysis of the behavior of road traffic observations: This
study made it possible to understand which observations where anomalies
based on contexts of weather, time and place. Moreover, the inclusion
of accident data was used to detect the time frame in which a traffic
accident took place.

4



1.5. ETHICS AND SUSTAINABILITY CHAPTER 1. INTRODUCTION

• An analysis of different machine learning techniques for defining
a model capable of correctly classifying incoming data: The
results of the experiments indicate that Logistic Regression is better
than Decision Trees and Random Forest in terms of F1-score measure
[18]. However, detecting accidents is still not possible due to having an
imbalanced dataset.

• A comparison between over-sampling and under-sampling tech-
niques to deal with imbalanced dataset problems: The F1-score
measure obtained for the experiments were high. However, the under-
sampled model suffered from information loss and the over-sampled one
was overfitted for the accidents label.

• Design of streaming application: Powered by the technology of
Apache Spark and integrated with the model that obtained the best
performance.

1.5 Ethics and Sustainability

When it comes to the ethical aspect of the project, no human subject
was involved in the research and no personal data was collected since all the
observations that can be found on the dataset used for training the model
only reflect the state of the traffic flow on the highways of Stockholm. and
no information about the drivers has been gathered. Furthermore, the project
contributes to achieving several SDG (Sustainable Development Goals) [20],
such as:

• SDG 3 (Good Health and Wellbeing): an application that is not
only capable of consuming data in real time about the traffic flow on
highways but can also detect anomalies and indicate their nature is a
powerful tool that can save many lives if an accident is detected on time.
Furthermore, if it can also detect that the main cause of the anomaly
was related to the weather, professionals in charge of the situation can
be more prepared knowing what the conditions of the road are before
heading to the place of the incident.

• SDG 9 (Industry, Innovation and Infrastructure): the develop-
ment of a system capable of detecting anomalies in traffic road is another
step forward in innovation and in the advance of technology. Besides this,
the work is a step further in understanding how traffic flow behaves and
offers a comparison among different techniques that can do so.

• SDG 11 (Sustainable Cities and Communities): since the system
will be monitoring traffic to make sure that the corresponding professionals
can take action when an anomaly that harms an individual occurs, cities

5



1.6. METHODOLOGY CHAPTER 1. INTRODUCTION

will become much safer and citizens will be able to rely on help when
needed.

1.6 Methodology

The methodology used for the development of the thesis follows an ex-
ploratory approach as well as an empirical method based on literature since
the investigation was built on the exploration and study of related papers [4].
Besides this, a data-driven approach and an iterative model were also used
because subsequent experiments were performed for training different models
taking into account the results of previous experiments and analyzed data.
Furthermore, the research can be classified as quantitative since models will
be ranked based on their performance results using metrics such as accuracy,
precision, recall and F-measure.

Table 1.1: Software libraries that were applied during the project.

Library Description Version
pyspark Spark API for Python 1 2.2.0
pandas Data structure and analysis tools for Python 2 0.22.0
plotly Interactive data visualization 3 2.6.0
gmplot Renders data on top of Google Maps 4 1.2.0

The programming language selected for the development of the project
was Python 2.7 5 and the code was written using Jupyter Notebook 6 as the
IDE (Integrated Development Environment). For information about the tools
that were used, Table 1.1 offers a summary of the required libraries, a short
description and their corresponding versions.

1.6.1 Project Environment

The thesis was developed at RISE SICS, the Swedish Institute of Computer
Science, at the headquarters located in Kista, Sweden. Before starting the
development of the thesis at the research group that I worked with, a dataset
from Trafikverket 7 containing observations from the years 2005 to 2016 for the

1https://spark.apache.org/docs/2.3.0/api/python/pyspark.html
2https://pandas.pydata.org/
3https://plot.ly/
4https://github.com/vgm64/gmplot
5https://www.python.org/download/releases/2.7/
6http://jupyter.org/
7https://www.trafikverket.se/en/startpage/operations/Operations-road/
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traffic flow was already collected and it became the primary data used to carry
out the project. Regarding some of its characteristics, one of the most relevant
is its size, which is about 500 GB of data. This makes it virtually impossible
to train a good model on a single machine using all observations. Therefore, all
the experiments related to the training of a model were performed in a cluster
that was interacted with using HopsWorks 8 and that is prepared for running
Spark applications that use the full power of said cluster.

1.7 Delimitations

The project will first focus on an analysis of the dataset in order to
label the boundaries of what is normal and what is not in traffic flow found
on the highways of Stockholm. This will classify the behavior of the data
taking into account information from weather and accident datasets. The
next step, and with the use of the labels previously defined, will be to focus
on supervised anomaly detection techniques such as Decision Trees, Random
Forest and Logistic Regression. To apply such algorithms, the project will use
the Machine Learning libraries that come with Apache Spark since they are
fully compatible with the data structure used with this tool and the cluster in
which the experiments will be executed offers full support for this technology.
As for the dataset, the project will use the one that the research group had
already collected before the beginning of the work, as well as new datasets
containing accident, weather and geolocation information (see Chapter 3 for
more details).

1.8 Outline

The rest of thesis is organized as follows: Chapter 2 offers a detailed
explanation of the theory needed to understand how the project was done and
the decisions that were taken, as well as including a section that highlights some
of the most relevant works in the field. After this, Chapter 3 deals with the
methodology that was applied when training the models used in this project.
Then, Chapter 4 details the experiments performed and the results that were
obtained. Chapter 5 provides a discussion about the methods, experiments and
results. Finally, Chapter 6 outlines some ideas for a future improvement of the
work.

8https://github.com/hopshadoop/hopsworks
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Chapter 2

Relevant Theory

2.1 Decision Trees

Decision Trees is one of the most popular data mining and machine
learning techniques that covers both classification (identifying the label that
corresponds to an observation) and regression (predicting a continuous quantity
for an instance). The basic idea behind this algorithm relies on its ability to
visually represent decisions and decision making. [11] To further illustrate this
concept, let’s take a look at Figure 2.1:

Figure 2.1: From dataset to a Decision Tree. Adapted from [27]

In the table on the left, one can see a dataset with columns (blue header)
that contain information about weather and these are defined as predictors.
Besides this, there is another column (red header) denominated target which
values determine whether or not is possible to play golf based on the information
given by the predictors (weather). Of course, trying to understand if it is a
good idea to play golf just by looking at the table can be tiring. However, the
beauty of this technique allows us to represent the same information presented

8



2.1. DECISION TREES CHAPTER 2. RELEVANT THEORY

in the table on a much more clearer illustration: the decision tree on the right.
From it, 3 rules tell us all that is needed to know to make a decision:

• If sunny, it is possible to play golf only if is not windy.

• If overcast, it is possible to play golf.

• If rainy, it is possible to play golf only if humidity is normal.

2.1.1 How does Decision Tree work?

It follows a top to bottom approach for building the tree, meaning the it
first figures out which variable from the dataset is the most important and it
puts it as the root node. To do this, the algorithm calculates a cost function
that determines how much accuracy is lost by each split [11]. Here is where
the concepts of Entropy and Information Gain come into play [27]:

• Entropy: in the context of information theory, entropy determines the
average amount of information given by a stochastic source of data.
Decision Trees take advantage of this formula and they calculate 2 types
of values:

– Entropy of the frequency of the target column: this tells the
algorithm how homogeneous the dataset is when divided based on
the target column. When this value is close to 0, the dataset is
homogeneous, but if it is close to 1, the set can be equally divided.
Equation 2.1, where S is the target column and c is the total number
different values has, details how this operation is performed:

E(S) =
c∑

i=1
−pilog2pi (2.1)

– Entropy of the frequency of the target column and another
attribute: the next step is to check how each of the predictors affect
the entropy of the label. Equation 2.2 illustrates this process:

E(T,X) =
∑
c∈X

P (c)E(c) (2.2)

• Information Gain: after the entropy of each predictor with respect to
the entropy of the target is calculated, the following steps aim at finding
the most homogeneous branch (entropy close to 0), which are also the
ones with the highest information gain. The calculation of this value can
be seen in Equation 2.3:

9



2.1. DECISION TREES CHAPTER 2. RELEVANT THEORY

Gain(T,X) = Entropy(T )− Entropy(T,X) (2.3)

After this process the attribute with the highest information gain will be
chosen as the decision node, which is the same as the root node on the
first iteration of the algorithm. This successfully divides the dataset in as
many partitions as different values can the selected feature has and, for each
partition, the process is repeated until all data is classified. The result of the
first iteration of this process for the dataset illustrated in Figure 2.1 can be
seen in Figure 2.2:

Figure 2.2: Result after the first iteration of the algorithm. Adapted from [27]

2.1.2 Advantages and Disadvantages

The main characteristic of Decision Trees is how simple they are to under-
stand. They achieve this by given a clear visualization of the decision making
that leads to predicting the target value that can also be easily interpreted,
returning not only a model that can classify observations, but also a model
that can give information about the nature of the dataset. They are capable
of handling both classification, both binary and multiple, as well as regression

10



2.2. RANDOM FORESTS CHAPTER 2. RELEVANT THEORY

problems and its performance is not affected when features from the dataset
are not linearly related. [11]

However, not all datasets are as simple as the one shown in the previous
example. Decision Trees can also generate over-complex trees (overfitting) that
cannot generalize the data as well as the 3 rules obtained in this example.
Moreover, two dataset that differ from one another by only small variations can
generate 2 completely different trees. There can be a problem with imbalanced
datasets, which is a situation that occurs when a class represents most of the
data and the rest contain only a small portion of it, and this leads to a biased
tree towards this dominating label. Lastly, this algorithm is greedy and it
cannot return a globally optimal tree. [11]

2.2 Random Forests

Now that an explanation of what a Decision Tree is and how it works has
been given, understanding what Random Forests is much easier since they are
built on top of the former. As mentioned in the previous section, one of the
main disadvantages that comes when training a Decision Tree model is that
they are prompt to be overfilled. Because of this, Random Forest were made
to fix this issue applying the following approaches [8]:

Figure 2.3: Two Decision Trees as part of a Random Forest. Adapted from [8]

11



2.3. LOGISTIC REGRESSION CHAPTER 2. RELEVANT THEORY

• Random selection of a subset: Decision Tree main goal, and the
main reason that causes overfitting, is to search for the best feature when
splitting a node. Random Forest, on the hand, considers only a random
subset of the features at the moment of splitting a node.

• Bagging: after many decision trees have been created, the algorithm
has what can be defined as a forest of decision, where each of the trees
that belong to it have a vote when classifying an incoming observation.
The selected label for the new instance will be the one with the majority
of the votes. This approach comes from the idea that multiple models
put together get a more accurate result. Figure 2.3 is an example of the
voting process.

2.2.1 Advantages and Disadvantages

Because of their simplicity, Random Forest are a very popular choice when
applying supervised training since the number of hyperparameters it has is
not too high, they are easy to understand and their default parameters often
generate a good prediction and, just like Decision Trees, it supports both
classification and regression problems. If one desires to increase its predictive
power, the parameter max_features can be modified to limit the amount of
features selected by the algorithm at each split. Random Forests are also very
good at solving the overfitting problem that Decision Trees suffers as long as
there are enough classifiers in the forest.

In general, Random Forests is a very good technique, but there are still
some issues that arise when applying this algorithm and the main one is that a
large number of trees implies a higher computational cost both when training
and when predicting, which is something that might slow down real time
applications to the point where using a model trained by this technique may
not be adequate.

2.3 Logistic Regression

Logistic Regression is another supervised classification technique that works
well with Big data and is also quite different from the ones described in previous
sections. This algorithm is based on the linear regression model, which is a
technique that tries to determine the importance each of the predictors hold for
selecting an outcome, as well as determining how each of them impact it [29].
Because of this, Logistic Regressions applies linear regression at the early stages
of the algorithm to calculate the logits (Score) and it ultimately uses either
a Sigmoid (Binary classification) or a Softmax (Multinomial classification)
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function to predict the outcome for the observation [24]. Figure 2.4 illustrates
the stages followed by this algorithm.

Figure 2.4: Multinomial Logistic Classifier. Adapted from [24]

1. Inputs: just as it was the case for Decision Trees and Random Forests,
the inputs for the model are the features that are going to act as predictors
and the target attribute that will determine the possible outcomes.

2. Linear Model: this is the stage where the algorithm applies the linear
regression model. Given a matrix W = [w1, w2, ..., wi], this step takes as
input the matrix X = [x1, x2, ..., xi] that contains the values of all the
features and outputs their resulting product defined as Logits = X ∗W .
These weights will be updated during the training phase, using a loss
function, in order to improve the performance since they will be its final
output.

3. Logits: as mentioned earlier, the logits are the resulting product of
matrices X and W, and they will be used as the input for Softmax
function.

4. Softmax Function: the goal of this function is to produce a set of
probabilities for each of the labels in the target feature that indicate the
likelihood the new observation has to fall in any of the target’s classes.

5. Cross Entropy: given the set of probabilities returned by the softmax
function, this step’s goal is to calculate the distance between them and
the values of the target class. The predicted class will be the one with
the shortest distance.

• One-Hot-Encoding: it is important to mention that the values
for the target class must be represented as a one-hot-encoded vector.
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This kind of vectors take the list of values the target class can
have and create a new one where all values are 0 except for the
position that corresponds to the selected class. As an example, let’s
consider a target class with values X = [animal, plant, human]. In
this case, a one hot encoder for representing the label human will
be Y = [0, 0, 1].

2.3.1 Advantages and disadvantages

As it was the case with Decision Trees and Random Forests, this technique
offers an explanation of the effects the predictors have on the outcome since the
weights can be used to explain the importance each of the features represent.
[24]

On the other hand, logistic regression also has some limitations. Contrary
to the previous technique, this algorithm cannot predict a continuous outcome
(regression). If the selected predictors are not the most appropriate for the
correct classification of the dataset, the model will have less predictive value,
so this model can only be used once those features have been detected. Fur-
thermore, this technique requires that all data points should be independent or
otherwise the model will most likely be overfitted. [24]

2.4 Real Time Streaming

This technology became popular during the rise of Big Data thanks to the
ever increasing volume of real time information and the need to process it as
soon as possible. To further understand what this technology actually is, it is
necessary to learn about the 2 concepts that it puts together [30], since only
when both characteristics are present a system can actually offer Real Time
Streaming:

• Real time: a system capable of offering this feature should be able
to offer a response within a short amount of time, and said shortness
is mainly defined by the needs of the application and can range from
minutes to milliseconds.

• Streaming: this feature offers the capability of continuously processing
limitless incoming data by performing a series of transformations to obtain
a desired result and whether or not this data is consumed instantly or can
be stored for later use will depend on the requirements of the application.
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2.5 Related Work

2.5.1 Real-Time Road Traffic Anomaly Detection

This paper describes a model that detects traffic incidents by taking into
consideration the speed variation of the cars that are located before and after
(upstream and downstream) a certain point on the highway (Figure 2.5) [14].

Figure 2.5: Accident characteristics. Adapted from [14]

From the figure, σ is the standard deviation before (upstream), during
and after (downstream) the accident, tt(t, k) is the speed computed at time t
(moment of the accident) on section k, tt−(t− 1, k) is the one computed before
and tt+(t+ 1, k) is the one computed after. Furthermore, the paper introduces
an algorithm (see Equation 2.4) for real-time forecasting.

tt(t+ 1, k) = ttH(t+ 1, k) + γ1 ∗D + γ2 ∗ UP + γ3 ∗DS (2.4)

The formulas for D, UP and DS are expressed as follows:

D = desired = [ttM(t, k)− ttH(t, k)]
UP = upstream = [ttM(t, k − 1)− ttH(t, k − 1)]
DS = downstream = [ttM(t, k + 1)− ttH(t, k + 1)]

The algorithm tries to find different traffic modes based on the increase
of the upstream (UP) occupation and the decrease of the downstream (DS)
occupation where the incident may have happened in order to classify it.
Moreover, the algorithm uses a time sequence to describe a traffic state, which
is why it includes a moving average algorithm.

The paper also indicates that this implementation is not robust enough
to be reliable, but the information presented in the following studies can be
added to this model for improvement.
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2.5.2 A Real-Time Autonomous Highway Accident De-
tection Model Based on Big Data Processing and
Computational Intelligence

The study proposes a real-time autonomous accident-detection system and
compares the performance of 3 different techniques: nearest neighbor model,
regression tree, and feed-forward neural network. As for the data, all the
models receive as input the average speed, average occupancy and number of
cars passing every 2 minutes, as well as the time, taking special consideration
to rush hours and whether the event occurs in a weekend or not. [19]

The following table (Table 2.1) shows the performance for each of the
models that were trained in this study. The metrics used to evaluate them
are the following: TPR = TP/(TP +FN), TNR = TN/(TN +FP ), PPV =
TP/(TP +FN), NPV = TN/(TN+FN) and Accuracy = (TP +TN)/(TP +
TN +FP +FN), where TP is true positives, FN is false negatives, FP is false
positives and TN is true negatives, the R at the end of TPR and TNR means
Rate, PPV is Positive Predicted Value and NPV is Negative Predicted Value.

Table 2.1: Performance comparison of different models. [19]

Model

Recall
TPR
(%)

Recal
TNR
(%)

Precision
PPV
(%)

Precision
NPV
(%)

Accuracy
(%)

1 92.86 95.12 0.09 100 95.12
2 92.86 96.78 0.15 100 96.78
3 85.71 97.59 0.18 100 97.59
4 78.57 98.27 0.23 100 98.27
5 78.57 98.56 0.28 100 98.56
6 85.71 98.37 0.27 100 98.37
7 50.00 99.51 0.51 100 99.50
8 42.86 99.79 1.02 100 99.79

The results for all the models is very good, but they returned a high number
of false positives. This was improved by increasing a bias towards reducing
the false positives (models 3, 5, 7 and 8 in Table 2.1), but such action ended
up affecting the recall (see section 3.1.2 for definition). For more information
about each model, see Table 2.2.

Table 2.2: Models specifications. [19]

Model Name Loss Neurons
1 Nearest Neighbor 0 -
2 Regression Tree with Equal Bias 0 -
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Model Name Loss Neurons
3 Regression Tree with Less Alarms 0.5 -
4 Feed-forward Neural Network with Equal Bias 0 20
5 Feed-forward Neural Network with Less Alarms 0.5 5
6 Feed-forward Neural Network with Equal Bias 0 10
7 Feed-forward Neural Network with Less Alarms 0.5 20
8 Feed-forward Neural Network with Less Alarms 0.94 10

At the end of the paper it is suggested that a combination of different
models might improve the result, as well as the addition of meteorological
parameters, road topology and/or condition of the road.

2.5.3 Anomaly Detection by Combining Decision Trees
and Parametric Densities

This paper describes a model that consists of the combination of the
following two techniques [17]:

1. Outlier Detection: based on analysis for both discrete and continuous
uniform distributions, this technique tries to identify outliers presented
in the data so that they can be labeled as the anomalous.

2. Decision Tree: based on the output of the previous technique, a decision
tree model is trained to separate the normal from the anomalous data.
The building of the tree reaches a stopping criterion depending on an
error limit selected with respect to the prior probability P (CA), where
CA is the anomalous class. Figure 2.6 shows that a low P (CA) means less
leafs (represented by rectangles in the image) and the brightness show
how confident the algorithm is with classifying the points as anomalous.

The first technique is only useful for separating normal from anomalous
data, so it cannot be used for classifying traffic events using multiple classes.
However, using decision trees once a set of classes has been defined seems to
be a good approach for solving the classification problem.

2.5.4 Statistical Anomaly Detection

The paper combines two techniques: Principal Anomaly Detection (PAD)
and Bayesian Principal Anomaly [2].

• The former consists on describing a known distribution P (x|θ) over a
set of parameters θ and then defining A(z|θ), which is the probability of
generating a more common example than z. This can be seen in Figure
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Figure 2.6: Different decision boundaries on synthetic 2D example. Adapted
from [17]

2.7, where an anomaly limit is set and every observation z that has a
probability A(z|θ) above such line is considered anomalous.

• The latter is used when the distribution over the parameters of θ is
unknown and uses the set of training samples X to find it, which leaves
us with the following: A(z|X) =

∫
A(z|θ)P (θ|X)

Figure 2.7: Principal Anomaly A(z|θ). Adapted from [2]

Regarding the calculation of this probability, the example given on the
paper follows a Poisson distribution (rate of events per time unit). For traffic
anomaly classification, this distribution can be used to detect congestion, but
it would be necessary to take into consideration other data and most likely
consider the use of a different probability distribution.
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As for multiple classes, the paper suggests having different Bayesian Prin-
cipal Anomaly equations where each one calculates its own probability that an
event belongs to a certain class.

2.5.5 Anomaly Detection for Temporal Data using
LSTM

The paper proposes the use of a Long Short-Term Memory recurrent
neural network that is trained on normal data to predict normal time series
patterns and predict future values where the prediction errors are used to detect
anomalies. [28]

2.5.6 Naive Bayes and Decision Tree for Adaptive In-
trusion Detection

The technique described in this paper proposes to first use Naïve Bayes
for classifying the data and then classify the observations. If any example is
misclassified, then the technique uses the ID3 algorithm (Decision Tree) to
continue with the training until all examples are correctly classified. [7]
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Chapter 3

Methods and Datasets

3.1 The Strategy

The process followed during the development of the project can be divided
into two sections. The first one deals with an exploration of the dataset [6]
where not only a normal behavior region for the observations is defined, but
also many subregions within the boundaries of the anomalies are labeled as
well. As for the second section, once the labels have been set, the dataset will
be used to train model applying all of the techniques described in Chapter 2.

3.1.1 Data Exploration

One of the main contributions this project aims at offering is the under-
standing of how the traffic flow on the highways of Stockholm behaves. To get
an inside look at its conduct, plotting is a veritable tool [6] that can be used
to show the hidden knowledge within the dataset. Moreover, one can take a
look at multiple statistical measures, such as the mean and standard deviation
of a variable, see how it interacts with other features and separate the normal
from the abnormal, as well as offering a framework for explaining the reasons
behind its nature.

During this section of the work, the exploratory data analysis will focus on
understanding how each of the highway points where the sensors are located is
affected by the following features:

• Speed and Density across Time: the information the sensors provide
about the first two variables is key to understand not only the normal
behavior for each of the roads, but also the normal behavior at its different
sections. Moreover, these two variable offer data that has a context within
time, so the statistical measures that will be collected from the three
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features will be the mean and standard deviation of the speed and density
per hour of the day for all the sensors.

• Accidents: the dataset that will be used contains information about the
day and hour in which an incident took place, but it does not offer the
exact minute in which it started, meaning that an accident starting at
14:55 will be represented as occurring at 14:00. This is quite unfortunate
since the observations at the latter hour do not express the behavior of the
traffic flow during the occurrence of this type of event. Therefore, the data
exploration regarding this anomaly will take into account the observations
within the range of 2 hours before and after the hour indicated by the
accidents dataset in order to detect the time frame in which the event
actually took place by looking at the speed and density values extracted
from the two nearest sensors to the accident location.

3.1.2 Model Training

This section of the project will focus on applying the different supervised
classification techniques, described in the previous chapter, for training and
comparing multiple models. Furthermore, a method called k-fold cross valida-
tion [26] will be used during the training phase for each of the chosen techniques.
This approach works in the following manner:

1. Partition the dataset: the original dataset is randomly partitioned
into k sections of equal size.

2. Selection of the validation set: k-1 sections are selected for training
the model and the remaining fold is selected as the test set that will be
used to measure its performance.

3. Repetition: the previous step is performed k times and in each of those
iterations a different fold will be used as the validation test.

4. Average the results: the performance for all models is put together by
taking their average to produce a single estimation.

The main motivation behind applying this method is that all data points
will be used both for training and testing the performance of the model, and
all instances are part of the validation set exactly once.

The metrics that will be used for evaluating the performance of each of
the model [18] are Accuracy and F1 Score:

• Accuracy: it determines the percentage of data points that were classified
into the right category. Works well when the dataset is balanced, but
a high accuracy can be misleading when some categories represent a
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small portion of the dataset. Equation 3.1 illustrates how this value is
computed:

Accuracy = Number of correct detections

Total number of detections
(3.1)

• F1 Score, F1 Measure or F-score: by using the Harmonic Mean, it
balances the information given by the precision, which indicates how
precise the model is for correctly classifying the observations, and recall,
which measures how robust it is, a characteristic that is achieved when a
significant number of instances is not missed. Equation 3.2 indicates how
the metric is calculated:

F1 = 2 ∗ 1
1/precision+ 1/recall (3.2)

3.2 Datasets

As previously mentioned, the main dataset used to carry out the work
was provided by the research laboratory in which the work was carried out.
However, in order to detect as many different types of anomalies as possible,
more data was looked up for and merged to the one already available. The
following subsections detail information about these datasets and from where
they were extracted.

3.2.1 Sensor Data

The dataset containing the information about the traffic flow behavior
has been extracted from a total of 2000 sensors spread across the highways of
Stockholm. Figure 3.1 illustrates how the sensors, represented by purple circles,
are distributed across roads.

Table 3.1 presents a summary of the main variables extracted from the
main dataset, as well as indicating whether the variable was selected to carry
out the project. The descriptions shown in the table were given to the research
group by the organization responsible for collecting the data.

Table 3.1: Information recollected in the main dataset.

Variable Description Selected
Timestamp Time at which the event took place Yes
Road Name of the highway Yes
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Variable Description Selected
KM Kilometer reference Yes
Lane Single line of vehicles (left to right) Yes
Direction Forward or Counterflow No
Flow Number of vehicles per minute Yes
Average Speed Average speed per minute (km/h) Yes
Sign Aid Det Comms Binary representation of the status No
Status Code representation of the status No
Legend Group Code for the kind of sign displayed No
Legend Sign Values for the sign, if any No
Legend SubSign The kind of frame the sign should have No
Protocol Version Version of MCS Simone/TOP protocol No

Figure 3.1: Distribution of the sensors across highways.

Each of the variables selected were chosen for certain reasons. The following
details those reasons for each of them:

• Timestamp: this variable indicates the exact moment in which an
observation took place, something that is quite relevant since traffic
behaves differently based on the moment of the day, week and month.

• Road: since not all roads behave in the same way, it is necessary to take
into account and model each of their behaviors.

• KM and Lane: these two variables, alongside with the road, represent
a single sensor and also indicate in which order they are placed in the
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highway. This information is quite useful when detecting anomalies such
as accidents.

• Flow and Average Speed: they are two of the main variable used
in Traffic Flow Theory (described in section 1.2) and are required to
understand the behavior of the traffic.

Furthermore, new variables were derived from the selected group. A
summary about what these new variables are and how they were extracted
from the existent ones can be found in Table 3.2, followed by an explanation
for why they are necessary.

Table 3.2: Derived variables.

Variable Origin
Density Flow / Average Speed
Hour From the Timestamp
Weekday From the Timestamp
Day Moment Grouping of hours. See Table 3.3

• Density: this new feature is part of the variables that compose the traffic
flow theory and, therefore, is required to understand the behavior of the
traffic. Since the average speed (v(x,t)) is in km/h and the flow (q(x,t))
is in veh/min, the equation (3.3) for obtaining the density (ρ(x, t)) in
veh/km is as follows:

ρ(x, t)(veh/km) = q(x, t)(veh/min)
v(x, t)(km/60min) (3.3)

• Hour and Weekday: the anomalies that can be found in the traffic
flow can be labeled as contextual anomalies since it is affected by the
moment and type of the day, which is its contextual attribute.

• Average of the previous 20min for Speed and Density: the need
for these 2 variables comes from the fact that anomalies such as accidents
are represented by a group of observations instead of a single one. Besides,
this type of anomaly is characterized by a sudden drop in speed values
and a rise in the case of density, so having the average of the previous
20min will probably help the model in detecting the drop/raise for these
features and that they may be caused by an accident.

• Day Moment: traffic is constantly affected by the rush hour phe-
nomenon, which represents the moment of the day when traffic congestion
is at its highest. Because of this, the hours of the day can be grouped to
represent both normal behavior and an anomaly caused by the rush hour.
Table 3.3 details the selected grouping for the hours of the day.
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Table 3.3: Values for the variable Day Moment.

Value Range of Hours
Night [0,2]
Early Morning [3,8]
Morning [9,12]
Afternoon [13,19]
Evening [20,23]

3.2.2 Geolocation

One of the main goals of this project is to be able to detect anomalies
related to traffic accidents in real time. To do this, a historical dataset with
information about such events is necessary to understand how this specific type
of outliers behave. As it will be seen in the following section, the available
dataset for the accidents contains the GPS coordinates of the location for where
each of the events took place and, in order to match this information with the
main dataset, it is necessary to obtain the GPS coordinates for each road, km
and lane. A summary for the dataset with such information can be seen in
Table 3.4 and it was provided by the research group with whom the work was
carried out.

Table 3.4: Dataset with GPS information of the roads.

Variable Description
Latitude Specifies north-south position on Earth’s surface
Longitude Specifies east-west position on Earth’s surface
Road Name of the highway
KM Kilometer reference
Lane Single line of vehicles (left to right)

3.2.3 Accidents

A dataset containing 9507 accident observations on the traffic roads of
Stockholm from 2003 to 2015 was extracted from Trafikverket 1 and was used
to accurately define the behavior for this kind of anomaly. Figure 3.2 illustrates
where each of these accidents took place within the roads of Stockholm.

As it can been seen in the figure (3.2), the dataset also contains observations
that occurred outside the highways of Stockholm, so these needed to be filtered

1https://www.trafikverket.se/en/startpage/operations/Operations-road/
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out. Unfortunately, none of the observations included information about the
kind of road where such events took place. See Table 3.5 for a summary about
the variables presented in the dataset.

To overcome this issue, an Application Programming Interface (API) from
Open Stree Map 2 called Nominatin (Latin for ‘by name’) was used 3. This
API has the power to name the place that the latitude and longitude from a
set of GPS coordinates refer to, making it useful for finding the street and road
name of specific location.

Figure 3.2: Location of the accidents.

Table 3.5: Description of the accident dataset.

Variable Description
Date Time Date and hour of the event
Latitude Specifies north-south position on Earth’s surface
Longitude Specifies east-west position on Earth’s surface

Furthermore, the API also has the power to indicate the type of road for
any given GPS coordinate, and this feature that was used as the main tool for

2https://www.openstreetmap.org/about
3https://wiki.openstreetmap.org/wiki/Nominatim
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Figure 3.3: Accidents in highways.

filtering out the observations that were not related to a highway. The result
of this filtering can be seen in Figure 3.3, where out of the 9507 observations,
only 66 occurred in one of the highways of Stockholm.

After the filtering, the next step was to match the accident to the two
nearest group of sensors, which are determined by the features road and KM
from the main dataset. In order to do this, the first task that was necessary to
perform was the calculation of the distances between the place of the accidents
and the nearest sensors. Equation 3.4 illustrates the Haversine Formula, which
is used to obtain the great circle distance between 2 given points [22]. In it,
φ represents the latitudes and ψ the longitudes of the given GPS coordinates,
whereas r represents the radius of the earth, which is 6371km [33].

d = 2r sin−1

√
sin2(φ1 − φ2

2 ) + cos(φ1) cos(φ2) sin2(ψ1 − ψ2

2 ) (3.4)

The results for of this task can be seen in Figure 3.4, where the red circle
represents the accident, and the green and blue circles are the locations of the
1st and 2nd group of nearest sensors respectively.
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Figure 3.4: Nearest sensors to a located accident.

3.2.4 Weather

The next dataset needed to carry out the project is one that contains
weather information. The reason for this is that such dataset will help determine
if the anomaly detected by the system is caused by unfavorable atmospheric
conditions. Fortunately, the API from Dark Sky 4 offers historical information
about a certain location, which is defined by its GPS coordinates, and the
resulting data is offered by hour of the day.

Regarding the data about the atmospheric conditions returned by this API,
each observation contains information about the temperature, humidity, dew
point, wind speed, etc. . . However, the most prominent feature is a categorical
property that summarizes the atmospheric conditions in the following classes:
clear-day, clear-night, rain, snow, wind, fog, cloudy, partly-cloudy-day, and
partly-cloudy-night. From this, the system will be able to determine if the
congestion was due to unfavorable atmospheric conditions when the observation
is labeled as snow, fog or rain.

3.3 Streaming

The streaming application design can be seen in Figure 3.5. The flow of
the data starts by collecting the observations from the sensors located on the
highways of Stockholm. When the information enters the streaming application,
the data will be grouped by sensor using the variables road, lane and km. Time

4https://darksky.net/
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windows will be used to calculate the average speed and density values of
the past 20min. All this information will arrive at the model node where
the observation will be classified according to the best fitted model from this
research. Finally, the output will be the category predicted by the model.

Figure 3.5: Streaming application design.
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Chapter 4

Experiments and Results

4.1 Main Goal

This chapter recollects the results obtained by each of the experiments
performed, both in the Data Exploration and Model Training phases of the
development, as well as offering an analysis for the outcomes.

4.2 Data Pre-processing

For the values of the variables Speed and Flow to be considered valid,
they must fall within a threshold, as any observation outside these intervals
has another meaning. Table 4.1 indicates what these intervals are and the
meaning for each of them. For both variables, only the values that fall within
the category OK are taking into account for the data exploration phase but
are kept during model training.

Table 4.1: Value ranges for variables Speed and Flow.

Speed Category Flow Category
[2, 250] OK [0, 120] OK
251 Speed is lower than 2 km/h 251 Request failed
252 No vehicles have passed 252 Lanes are not used
253 Lanes are not used 253 Minute speed not possible
254 Minute speed not possible 254 Start Value
255 Start Value - -

Furthermore, a randomly selected subset of the observations or random
sampling [15] of the sensor dataset was taken in order to plot each observation
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in some of the experiments that took place during the data exploration phase.
This sampling took 5% for each month from the year 2016 in order to make
sure that the sample could represent the dataset.

4.3 Data Analysis

The main goal of this phase is to define the regions within which an
observation can be considered normal or not congested in the traffic flow
context. Moreover, the abonormal or congested regions will be further analysed
to understand the reasons behind the occurrence of these anomalies.

4.3.1 Traffic Flow Curve

The first experiment was made to determine the maximum flow (qmax) and
critical density (ρc) shown in Figure 1.1 for the highways of Stockholm. To
do this, the random sample was used to plot the observations and obtain the
traffic flow curve described in mentioned figure.

Figure 4.1: Traffic Flow curve for sensor data with sensor errors.

From this experiment, 2 conclusions about the dataset were reached. The
first is illustrated in Figure 4.1, where the observations pointed by the red
arrow indicate that their flow = 99 veh/min and their density = 66 veh/km,
which implies that their speed = 90 km/hr. These values are incorrect since
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they suggest that 99 vehicles are passing through the sensor at a speed of just
90 km/hr, while registering 66 vehicles per km, each minute. This is physically
impossible and the plot clearly shows this since these points are far away from
the traffic flow curve. Therefore, this type of observation will be classified as
a Sensor Error and will be filtered out from the dataset for the rest of the
experiments performed in this phase.

Figure 4.2: Traffic Flow curve for sensor data.

The latter conclusion comes from examining Figure 4.2. First, let’s take
a look at the discontinued brown lines: they represent the threshold marked
by the maximum flow (qmax) and the critical density (ρc), which implies that
the region symbolizes the not congested area. However, if one looks at the
observations below flow = 25, it can be seen that the critical density also
decreases, meaning that the threshold that defines a not congested observation
is not wide region defined by the discontinued lines, but a set of multiple
sections delimited by the red rectangles, and their definition can be seen in
Table 4.2. The aforementioned table indicates the upper limit density value an
observation must not surpass to be classified as not congested when the flow is
within the corresponding range.

Table 4.2: Boundaries that define a not congested observation.

Flow Density
[0, 5] 5
[6, 10] 10
[11, 15] 18
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Flow Density
[16, 20] 23
[21, 25] 28
[26, 34] 35
> 34 30

The selection of these boundaries comes with a prices since the set of
thresholds are not guaranteed to be the most optimal for the cases that are
close to the outside of the defined regions. Nevertheless, from this moment
on all experiments will consider this threshold as ground truth [23] for the
definition of not congested instances.

4.3.2 Day Moments

The next experiment’s goal was to be able to detect different moments
within the day where the behavior of the traffic flow would behave similarly, and
the result of this can be found Figure 4.3. This Figure shows the observations
found in the random sample of the main dataset across the day and classifies
them to the groups that were defined in Table 3.3.

Figure 4.3: Flow across hours of the day.

However, this new variable was ultimately not included as a feature in
any of the models since the behavior at any given point on the highway at
a certain time t might be completely different from another. For example,
road E4N might be congested at 8 o’clock in morning but not at 16 o’clock
in the afternoon, whereas the observations from road E4Z might behave in
the opposite manner. If one also takes into consideration the behavior of the
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weekend vs. the weekdays, the interaction of among these variable gets more
complex and the feature Day Moment cannot represent all this information.
Therefore, when it comes to the behavior of the traffic flow across time, the
new variables that were introduced are the mean speed and mean density for
each sensor per weekday and hour of the day, which makes these features the
contextual attributes for the traffic flow at both place and time.

4.3.3 Accidents

Since the dataset for accidents only contained information for the hour in
which the incident took place but not the minute, it became necessary to plot
the speed and density values for each of the accidents in order to determine
the actual time frame of the event. In total, there were 66 accidents, but
this subsection will only use one of them to illustrate the outcomes of such
experiments and the conclusions that were drawn from them.

Taking the information from the nearest sensors to the event, Figure 4.4
shows the values of the speed and density variables for an accident that occurred
on the 9th of March, 2012. In such figure, one can clearly see that the actual
time frame of the event took place between the 16:10 and 16:30 hours, since
this is the range in which the speed and density experience an abnormal drop
and raise respectively.

Figure 4.4: Speed and Density for the sensors where an accident took place.

Furthermore, by taking a look at each individual sensor, it is possible to
see how the effects of the incident affect each of the lanes in the section of
the road where the event took place. To illustrate this, Figures 4.5 and 4.6
show the data for the sensors located on road E75W and lane 1 for the KM
references 6880 and 7075. Their behavior is very similar, and this similitude
leads us to conclude that the accident occurred on lane 1 of road E75W.
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Figure 4.5: Behavior of the accident for lane 1 on road E75W at KM 7075

Figure 4.6: Behavior of the accident for lane 1 on road E75W at KM 6880.

Regarding the lanes 2 and 3 from the road E75W at KM reference 7075,
and by looking at Figures 4.7 and 4.8, it is clear that there is a congestion
within the time frame of the accident. However, the drop and raise that can be
seen for the speed and density it’s not as notorious as the one shown in the
previous figures. The reason behind this is that the vehicles are most likely
changing from lane 1 to lanes 2 and 3 in order pass through the accident point.

After analyzing the behavior for each incident, only the time frame from
which the accident took place is labeled as an anomaly caused by and accident,
and a rule was defined in order to label them correctly: if the speed of the
current observation is lower than the mean speed of that particular sensor and
hour of the day minus 3 times the standard deviation for that sensor at that
hour of the day, then it is an accident. This comes from looking at Figure 4.9,
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Figure 4.7: Behavior of the accident for lane 2 on road E75W at KM 7075

Figure 4.8: Behavior of the accident for lane 3 on road E75W at KM 7075

where it can be seen that at 16 o’clock the mean speed is 79km/hr and its
standard deviation is 9.94km/hr, and comparing it with the speed values seen
in the time frame of the accident of Figure 4.5, where the values are at least
lower than the mean speed minus 3 times the standard deviation of the speed
for that sensor and hour of the day.

4.3.4 Chosen Labels

The primary output for the data exploration phase can be found in Table
4.3. It contains a short description for each of the categories defined to separate
the dataset observations from abnormal and normal behavior, as well as offering
a reason, if available, for the appearance of the former. The observations are
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Figure 4.9: Mean and Standard Deviation of the Speed and Density for Road
E75W on lane 1 at KM 7075.

classified applying the following criteria:

• If speed and/or flow are not within the OK range values defined in Table
4.1, the observation is labeled as Error Code.

• If flow is higher than 50 veh/min, the observation is labeled as Sensor
Error.

• If flow and density values lie within the not congested region defined
by the red area in Figure 4.2, then the observation is labeled as Not
Congested.

• If the instance lies outside the Not Congested boundaries, the following
is verified:

– If the speed and density values are normal for that particular sensor
using the mean and standard deviation values by hour and day of
the week, the instance is labeled as Normal Congestion.

– If it is not a normal congestion, we check for abnormal behavior. If
the data point verifies the conditions for detecting an accident (See
section 4.3.3), it is label as Abnormal Congestion - Accident. If not
an accident and weather is either snow, fog or rain, the instance is
labeled as Abnormal Congestion - {weather condition}. If not, the
observation is labeled as Abnormal Congestion - Other.
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Table 4.3: Description of the labels used to classify the dataset. AC =
Abnormal Congestion.

Label Description
Error Code Speed or Flow are outside valid range. See Table 4.1
Sensor Error Any flow value higher than 50
Not Congested Observation lies in normal behavior range

Normal Congestion Normal behavior for a particular sensor and time
AC - Accident Abnormal behavior caused by an accident
AC - Rain Abnormal behavior caused by rain
AC - Fog Abnormal behavior caused by fog
AC - Snow Abnormal behavior caused by snow
AC - Other Abnormal behavior caused by reasons unknown

4.4 Model Training

Multiple datasets were used for the experiments of this phase. The main one
is the full dataset of observations recollected from the sensors plus information
about weather and accidents. Another one is a reduced version of the former
where the observations labeled as accidents represent 25% of the whole dataset.
Table 4.4 presents the percentage of data assign to each of the labels.

Table 4.4: Percentage of observations assign to each of the labels.

Label Full Dataset Reduced Dataset
Sensor Error 0.41431% 1.238%

Abnormal Congestion - Other 2.16629% 1.501%
Error Code 23.29142% 3.794%

Abnormal Congestion - Snow 0.07408% 0%
Not Congested 72.58853% 65.261%

Abnormal Congestion - Accident 0.00017% 24.69%
Normal Congestion 1.2504% 3.515%

Abnormal Congestion - Rain 0.15372% 0%
Abnormal Congestion - Fog 0.06106% 0%

The motivation behind the creation of the latter dataset is to fix the
imbalanced nature of the full one and help improve the performance of the
model regarding the detection of accidents. Abnormal behavior caused by the
weather is not included in this version since the main concern was to improve
the detection of accidents.

The remaining datasets were also created to solve the imbalanced distri-
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bution of the instances across the categories. However, instead of removing
observations, this time the accident instances were replicated until they could
match either the abnormal congestion - other label or the not congested one.
More details about these datasets can be found in section 4.4.3.

4.4.1 Full Dataset

In section 3.2.1, it was mentioned that an average of the previous 20min
for the Speed and Density features would be added to improve the results for
the accident label. The motivation behind this decision can be seen in Figure
4.10. This experiment shows that the F-score value for the abnormal congestion
- accident label is 0% when these two features are no present in the model. A
detailed description of the model, and an analysis of the results obtained for
the other classes, can be seen in the following subsection. The results obtained
were very similar for both experiments.

Figure 4.10: Decision Tree without Moving Average results.

4.4.1.1 Decision Trees

The decision tree had a maximum depth of 10. The selected features for
predicting the label were density, speed, flow, weather, hour, mean density,
mean speed, standard deviation speed, standard deviation density, moving
average speed and moving average density. The features road, lane and km
represent a single sensor, but they were not included because the means and
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Figure 4.11: Decision Tree results using the full dataset.

standard deviations for speed and density offer the necessary information for
each one of them.

Figure 4.11 illustrates the F-score values obtained for each of the classes.
The high results obtained for error code and sensor error were expected because
there are clear thresholds that define their boundaries and the tree was capable
of detecting them. A similar situation also occurs with the not congested
category. Even though the boundaries are not as clear (see Figure 4.2), most
of the observations reflect a not congested behavior and the tree most likely
used a wider threshold to define this region, such as the one defined by the
discontinued brown lines in Figure 4.2. This also explains the low score for
normal congestion since the tree is most likely classifying them as not congested
or abnormal congestion - other. As for the abnormal congestion regarding
weather, it is very likely that most of the observations with rain as the value
for their weather feature were classified as abnormal congestion - weather. This
means that the tree classifies instances in this category just by checking if the
weather feature is rain. However, the opposite is the case for fog and snow
and this might be the reason why the tree is not capable of detecting them.
Finally, even with the presence of the moving average features, accidents are
most likely not being detected because they only represent 0.0017% of the data
and are most likely being classified as abnormal congestion - other. Moreover,
regarding the accuracy, the model was able to correctly classify 98.27% of the
observation. This is explained by the fact that almost 95% of the dataset falls
under the categories of error code, sensor error or not congested and these
labels obtained a high F-score when compared to others.
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4.4.1.2 Random Forest

For the training of this model, both the maximum depth and the selection
of features are the same as the one used in the Decision Tree with the full
dataset experiment. The number of maximum trees was set to 10.

Figure 4.12: Random Forest results using the full dataset.

Figure 4.12 illustrates the F-score values obtained for each of the classes.
As it was the case of the decision tree with the full dataset, and for the same
reasons, error code, sensor error and not congested obtained the highest results.
The low score obtained for normal congestion can be explained by the fact that
this technique creates multiple trees using a random subset of features and this
label depends on the means and standard deviations for the speed and density.
However, the model probably created different trees where these features are
not together. Furthermore, even if a tree correctly classifies an observation in
this category, the others will most likely label it as not congested or abnormal
congestion - other. A similar situation also happens to abnormal congestion
-rain and all of their instances will probably go to abnormal congestion - other.
The same problems found for labels fog, snow and accidents in the decision
tree model are also present in this one. Finally, the accuracy for this model is
97.95% because almost 95% of the dataset falls under the categories of error
code, sensor error or not congested and these labels obtained a high F-score
when compared to others.
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4.4.1.3 Logistic Regression

The model uses a regularization parameter of 0, a maximum number of
iterations of 100, L2 penalty for elastic net and the features are standardized
before fitting the model. The selection of features is the same as the one used
in the Decision Tree and Random Forest with the full dataset experiments.

Figure 4.13: Logistic Regression results using the full dataset.

Figure 4.13 illustrates the F-score values obtained for each of the classes. As
it was the case of the decision tree and random forest with the full dataset, error
code, sensor error and not congested obtained the highest results. However,
instead of rules, the model calculates a set weights per feature and category
to determine the output. Nevertheless, these weights still represent a wide
threshold and don’t capture the actual boundaries for the not congested category,
which ends up affecting the normal congestion score. Since this model takes
into account the interaction between all variables, a better score for normal
congestion was expected. However, the weights for detecting a not congested
instance most likely return a higher probability than the ones used for selecting
normal congestion. Regarding abnormal congestion caused by weather, this
model presents a better result than the previous. This is due to the importance
the weights for detecting these categories give to the corresponding weather
feature. However, this is clearly affecting abnormal congestion - other as not all
abnormal congestion are due to bad weather. Regarding accuracy, the model
reached a 98.64% due to the high scores obtain by the labels that represent
the 95% of the dataset: error code, sensor error or not congested.
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4.4.1.4 Conclusion

Overall, the Logistic Regression model had better results since it was able
to take into account the weather feature to classify observations as abnormal
congestion caused by its corresponding weather condition. Decision Trees was
the second best with similar results to the former and was slightly better at
detecting normal congestion. Nevertheless, it could not label all the weather
anomalies. Random Forest obtained the worse results and could not detect
normal congestion. Finally, none of the models were able to detect accidents.

4.4.2 Relaxed Models

A more simplistic approach for labeling the dataset was defined during the
early stages of the project. The criteria for this classification is the following:

• If speed and/or flow are not within the OK range values defined in Table
4.1, the observation is labeled as Error Code.

• If flow is higher than 50 veh/min, the observation is labeled as Sensor
Error.

• If the observation verifies the conditions for detecting an accident (See
section 4.3.3), it is labeled as Accident.

• If density is higher than 35 and the day is part of the weekend, the
observation is labeled as Normal Congestion.

• If density is higher than 35 and the day is not part of the weekend, but the
day moment (see Table 3.3) is early morning or afternoon, the observation
is labeled as Normal Congestion.

• If density is higher than 35, the day is not part of the weekend and the
day moment is morning night or evening, the observation is labeled as
Abnormal Congestion.

• If none of the conditions above are met, the observation is labeled as Not
Congested.

The application of this criteria led to the creation of relaxed models. These
models were defined with the same parameters used in section 4.4.1. The
selected features were the same, but the weather was not included. Day
Moment was used and a new binary variable called Is Weekend was added.

Figure 4.14 shows the results obtained from training the models to predict
these labels and they are very good. Almost all the categories reach an F-score
higher than 90%. However, accidents still get an F-score of 0% due to the
imbalanced nature of the dataset. Furthermore, the behavior of the flow for
accidents resembles the one for abnormal congestion, which leads the classifiers

43



4.4. MODEL TRAINING CHAPTER 4. EXPERIMENTS AND RESULTS

to label accidents as members of this category. As for the accuracy, all models
scored close to 99.9%.

Regardless of the good scores obtained, this approach cannot be used. The
thresholds that define not congested behavior is too wide, it does not considered
the behavior of flow per sensor and it assumes that the traffic flow for all of
them is the same.

Figure 4.14: Relaxed Models results.

4.4.3 Under-Sampling vs Over-Sampling

One of the main issues encountered was the imbalanced nature of the
dataset. To solve it, there are two approaches that are commonly used: under-
sampling and over-sampling [31] [16] [21]. The former aims at removing
observations from the majority class while the latter increments the number of
observations from the minority label by replicating its instances.

Under-sampling can be useful when run time and storage capacity are
limited. However, the resulting class might end up being an inaccurate rep-
resentation of the population. On the other hand, over-sampling prevents
information loss but increases the risk of overfitting the model.

4.4.3.1 Under-Sampling of the Majority Classes

For this technique, enough instances were removed from the majority
classes to make sure that 25% of the observations were from the accident
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Figure 4.15: Under-sampled dataset results.

category. The relaxed model approach was also used for this experiments. The
resulting F-score from the evaluation of each model can be seen in Figure 4.15.

Labels error code, sensor error and not congested scored highly across all
techniques, but still a bit lower than the relaxed model with the full dataset.
This is understandable considering that their combined portion of the dataset
is now 70% instead of the usual 95%. The score for normal congestion is
also reduced across all models. This might be due to the higher presence of
anomalies and the models not being able to distinguish normal congestion from
abnormal behavior. The same can be said about the accident and abnormal
congestion categories. They still score highly, but since accidents represent a
bigger portion than abnormal congestion, the models are considering it the first
choice. However, this is the opposite for Random Forest and it might be due
to having trees that only include the features day moment, is weekend and
density.

In general, Logistic Regression performs worse than the other models in this
experiment. This makes sense because the labels were put using clear thresholds
and trees will be better at detecting them. In contrast, the interaction of the
variables in the Logistic Regression might create noise in the classification of a
congested observation (accident, abnormal or normal). Besides, the reduced
dataset contains less than 1% of the full set and there is a higher number of
accidents than abnormal congestion. These conditions are surely affecting the
classification for the latter label.
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4.4.3.2 Over-Sampling of the Accident Data

For this approach, all the features from each of the observations from
the abnormal congestion - accident label were replicated enough times until
its proportion could match that of the abnormal congestion - other category.
The reason behind this choice is that accidents can be mistaken as abnormal
congestions - other since their features show similar values. Table 4.5 shows
the distribution of the instances across the categories.

Table 4.5: Percentage of observations assign to each label.

Label Proportion
Sensor Error 3.26%

Abnormal Congestion - Other 15.07%
Error Code 59.96%

Abnormal Congestion - Snow 0.58%
Abnormal Congestion - Accident 15.29%

Normal Congestion 4.14%
Abnormal Congestion - Rain 1.21%
Abnormal Congestion - Fog 0.48%

Furthermore, all instances labeled as not congested were removed from the
dataset. This was done to create a model that could distinguish an accident
from within the abnormal congestion area of the curve as seen in Figure 4.2.
Moreover, the instances were classified following the criteria described in section
4.3.4.

The results from this experiment are shown in Figures 4.16 and 4.17. The
former includes the moving average of speed and density features while the
latter ignores them. Their results are quite similar. However, the outcome for
the abnormal congestion - fog label is much better when the moving average
features are used. Moreover, and similar to previous experiments, labels error
code and sensor error scored highly across all techniques. However, normal
congestion obtained a 0% for the Decision Tree model, 49% for Random Forest
and 67% for Logistic Regression. The score for the first model can be explained
due to the class only having 4.14% of the total number of instances and the
tree not being able to distinguish among this label and abnormal congestions.
A similar problem can be seen in the other models but having multiple trees,
in the case of Random Forest, and having all variables interact with each other,
in the case of Logistic Regression, helps improve this issue. The same can be
said about the scores obtained for the labels abnormal congestion - other and
abnormal congestion - accident, which got an average score of 74% and 64%,
respectively, across all models. Finally, the weather categories obtained an
average score of 95% for the Logistic Regression model. Unfortunately, the
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Figure 4.16: Over-sampling of accident dataset results.

Figure 4.17: Over-sampling of accident dataset without moving average results.

other models could only detect anomalies caused by rain, which is very similar
result to what was obtained in section 4.4.1.

In contrast to what was seen in the section 4.4.3.1, Logistic Regression
turned out to be the better model. This is understandable because the labels
were chosen following the criteria explained in section 4.3.4, where the thresholds
are not as distinguishable as in the relaxed models. Having increased the amount
of accident data improved the results for the model and no information was
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lost. However, even if the results for this test are better than previous ones,
there is a risk of the model being overfitted.

Figure 4.18: Over-sampled model over normal dataset results.

Figure 4.18 illustrates the results of an experiment in which the resulting
model was used to classify the observations of the normal dataset. Unfortunately,
the overall result shows similar values to those of section 4.4.1. This confirms
that the application of over-sampling of the accident dataset resulted in an
overfitted model.

4.4.3.3 Inclusion of Not Congested Label

A new experiment, similar to the previous one, was performed. The
configuration is the same. However, this time the Not Congested observations
were included in the dataset. The reason behind this decision was to verify
if accidents could be detected even if the presence of the Not Congested
observations is included. Table 4.6 illustrates the distribution of the dataset
for each of the categories.

Table 4.6: Percentage of observations assign to each label.

Label Proportion
Sensor Error 1.05%

Abnormal Congestion - Other 2.38%
Error Code 24.18%

Abnormal Congestion - Snow 0.04%
Not Congested 69.05%
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Label Proportion
Abnormal Congestion - Accident 2.18%

Normal Congestion 1%
Abnormal Congestion - Rain 0.09%
Abnormal Congestion - Fog 0.03%

The results can be seen in Figure 4.19. The F1-scores were not good. All
models were capable of classifying the Not Congested instances. However, since
the abnormal congestion - other and accident data were still a small percentage
of the dataset (2.5% each) and the Not Congested label was 70%, the models
were able to correctly classify that latter, but had trouble classifying the former.
The low F1-score for the accidents is most likely due to the fact that the models
are classifying them as abnormal congestion - other.

Figure 4.19: Over-sampling of accident dataset matching AC - Other results.

Regarding precision and recall metrics, Tables 4.7 and 4.8 illustrate the
obtained scores. The initials of the machine learning techniques are used
to distinguish the models in the following way: DT = Decision Tree, RF =
Random Forest and LR = Logistic Regression.

Table 4.7: Precision for over-sampled dataset matching AC - Other.

Label DT RF LR
Not Congested 0.9951 0.981 0.9887
Error Code 1 1 0.9999

Abnormal Congestion - Other 0.6023 0.7932 0.9272
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Label DT RF LR
Abnormal Congestion - Accident 0.0003 0.0002 0.0001

Sensor Error 0.9999 1 0.9964
Normal Congestion 0 0 0.671

Abnormal Congestion - Rain 0 0 0.8591
Abnormal Congestion - Snow 0 0 0.6706
Abnormal Congestion - Fog 0 0 0.7682

Table 4.8: Recall for over-sampled dataset matching AC - Other.

Label DT RF LR
Not Congested 0.9922 0.9994 0.9963
Error Code 1 1 1

Abnormal Congestion - Other 0.9183 0.6898 0.634
Abnormal Congestion - Accident 0.2229 0.2648 0.576

Sensor Error 0.9995 0.9992 0.9995
Normal Congestion 0 0 0.3769

Abnormal Congestion - Rain 0 0 0.8269
Abnormal Congestion - Snow 0 0 0.6439
Abnormal Congestion - Fog 0 0 0.794

The scores indicate that the models are not precise for accident classification.
This means that there were instances incorrectly labeled as accidents. As for
the recall, the scores show that the models can detect some of the accidents
but not enough to be considered robust.

Another experiment was performed with the same configuration. However,
this time the accident instances were replicated until they could match the pro-
portion of Not Congested observations. This resulted in 30% of the proportion
for each of the categories. The results were very similar to the previous one, but
the accident and abnormal congestion - other F1-scores were swapped. This is
most likely due to the accident label representing a much bigger proportion of
the dataset.

4.4.4 Other Experiments

4.4.4.1 Single Sensor Training

Judging by how unfavorable the results of previous experiments have
been for the abnormal congestion - accident label, a new approach was tested.
Instead of training a general model for all sensors, there could be a model for
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each one of them. However, there is a total of 2000 sensors, so only a single
sensor was used for this approach. The chosen sensor is located on lane 1 of
road E75W at KM 7075.

Figure 4.20: Model Training for Sensor E75W - 7075 on Lane 1 results.

The results can be seen in Figure 4.20. Sensor errors observations were
not present for this sensor. The scores were average across all models. Random
Forest was not capable of detecting normal congestion, abnormal congestion -
other and weather instances. Decision Tree and Logistic Regression obtained
the best results. The accident label got an F1-score of 4% for the former and
11% for the latter. This is because the accident data is still too similar to
the abnormal congestion - other observations. The 0% weather score for fog
and snow is most likely due to not having enough data with those labels. The
normal congestion and abnormal congestion - other categories received a lower
score in the Logistic Regression model when compared to the Decision Tree
one.

Tables 4.9 and 4.10 illustrate the obtained scores for the recall and precision.
Just like in previous sections, the initials of the machine learning techniques
are used to distinguish the models in the following way: DT = Decision Tree,
RF = Random Forest and LR = Logistic Regression.

Table 4.9: Precision for single sensor training.

Label DT RF LR
Not Congested 0.9959 0.9742 0.9793
Error Code 1 1 1

Abnormal Congestion - Other 0.8026 0 0.7811
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Label DT RF LR
Abnormal Congestion - Accident 0.0259 0.8163 0.0621

Normal Congestion 0.5976 0 0
Abnormal Congestion - Rain 0.9135 0 0.8007
Abnormal Congestion - Snow 0 0 0
Abnormal Congestion - Fog 0 0 0

Table 4.10: Recall for single sensor training.

Label DT RF LR
Not Congested 0.9973 1 0.9982
Error Code 0.9997 0.9994 1

Abnormal Congestion - Other 0.6604 0 0.2648
Abnormal Congestion - Accident 0.6795 0.5128 0.5513

Normal Congestion 0.6362 0 0
Abnormal Congestion - Rain 0.4332 0 0.4082
Abnormal Congestion - Snow 0 0 0
Abnormal Congestion - Fog 0 0 0

The scores indicate that Random Forest is precise and quite robust for
classifying accidents. However, the other models are not precise and are less
robust when compared to Random Forest.

4.4.4.2 Feed-forward Neural Network Model

During the development of the work, an experiment using a different
machine learning technique than the previously described was applied. The
algorithm is called Feedforward Neural Network [10] and it is similar to Logistic
Regresssion [25]. The stages of the algorithm found in the latter can also
be found in the former. However, Feedforward Neural Networks have hidden
layers, meaning that instead of having just an output layer (see section 2.3), the
network can have many where the output of one is the input of the following.
Moreover, each layer can have a different amount of neurons where an activation
function is applied to the input in order to generate an output. Because of
these reasons, defining the best architecture of a neural network for a given
problem is a complicated task.

The architecture used for this experiment was a simple one: 2 hidden
layers, the first of them with 100 neurons and the second with 50, and sigmoid
was used as the activation function. The relaxed model approach and the full
dataset were used for training this model.
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Figure 4.21: Feed-forward Neural Network results.

The results of this experiment can be seen in Figure 4.21. Unfortunately,
the output is not favorable. The network scored 99.9% for the not congested
class and 100% for the error code label, just like the previous techniques.
However, it scored an 88% for the normal congestion category which is worse
than what the previous models were able to achieve. As for the other labels,
the resulting score was a 0% for all of them.

As it was mentioned earlier, the training of a neural network is a compli-
cated task that requires tuning. The chosen architecture for this experiment
was quite simple and was not the best fit for the goal of this thesis. Further
development of this model might bring better results.
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Discussion

During the development of the work, one of the most difficult challenges
came from having to not only separate the normal from the abnormal observa-
tions, but to go a step further and sublabel the different abnormal observations
based on the nature of their caused. An approach used to deal with this
situation was to include datasets containing information about accidents and
weather, but even though they were quite useful for representing new types of
anomalies, defining the thresholds was not an easy task. The boundaries that
were applied still leave room for the misclassification of instances, something
that became an important issue when training different supervised classification
models, as they struggle to effectively distinguish among the subclasses of
anomalies. The training of a model was also important since it helps make
stream processing faster than following a set of conditions.

Furthermore, anomalies are uncommon observations that don’t appear too
often, which is why the dataset turned out to be imbalanced. At the very early
stages of the project, this issue made us switch the focus from the accuracy
to the F-score as the main evaluation metric for evaluating performance. It
indicates how precise and robust the model is, and can be used to evaluate the
classification for each of the classes in order to demonstrate the effectiveness of
the approach. Nevertheless, the imbalanced dataset resulted in models that
were capable of detecting normal behavior but that were not so effective for
distinguishing the different types of abnormal observations.

To fix the imbalanced nature of the dataset issue, under-sampling and
over-sampling techniques were applied. They both returned good results, but
the former approach reduces the number of instances from the majority classes,
leading to information loss. However, the latter replicated the number of
accidents, giving the models more information to work with, but it resulted in
an overfitted model. Moreover, a feedforward neural network was also trained.
However, the results were not favorable because more tuning is required.
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Conclusion

Multiple models for detecting anomalies in the traffic flow of Stockholm
were developed using Decision Trees, Random Forest and Logistic Regression
methods. The first step was to perform a data exploration analysis on a sensor
dataset that processed traffic information from the highways of Stockholm to
separate the normal behavior (not congestion) from the abnormal (congestion
due to rush hours, accidents or weather) and label it accordingly.

We touched upon the issues that arise both during the data exploration
and model training phases. Based on the results, it was concluded that Logistic
Regression turned out to be a slightly better model than the rest in terms of how
precise and robust it is at classifying data into the different labels. Nevertheless
it failed to correctly detect accidents due to the imbalanced nature of the data.
This led to the training of a model using a smaller dataset containing 25% of the
accidents. The detection of such events improved considerably. However, the
dataset was labeled using the relax model approach and could not be considered
representative enough for the behavior of the traffic flow. Instead, the accident
data was replicated as a way to avoid losing information from other classes.
This returned good results but the model turned out to be overfitted.

Finally, a streaming application was designed to: (1) read the information
from the sensors, (2) group them based on the road, lane and km reference
variables, (3) calculate the average for speed and density of the last 20 minutes
and then (4) input the observation and the value of the window into the best
model to (5) get its corresponding label.

6.1 Future Work

At the beginning of the project, we wanted to include a dataset containing
information regarding important events occurring in Stockholm, such as concerts
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or sport games, since this kind of occurrences would have probably cause
congestion outside the peak hours. Unfortunately, no such data was found but
it would be interesting to add this feature and evaluate the performance of the
model.

A technique that would have been interesting to try is Gradient Boosted
Trees [9], which is a technique based on Decision Trees but that uses gradient
descent to generate the decision rules. Unfortunately, the available API 1 for
this tool was designed to work with pandas dataframe which only works locally
and cannot be used in the hops cluster. A library called XGBoost4J 2 offers
compatibility with Apache Spark dataframes, but it is only available for Java
and Scala.

Finally, it would also be interesting to improve the training of the neural
network presented in this work since they seem to work well for detecting
accidents according to [19]. However, the dataset used in those experiments
was balanced and the output was binary (observation is accident or not), so it
might still not work as well for the problem presented in this thesis.

1https://xgboost.readthedocs.io/en/latest/model.html
2https://github.com/dmlc/xgboost/tree/master/jvm-packages
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