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Examples: 
● Server logs
● User clicks
● Social network 

interactions

50 billion devices 
connected to the 

Internet by 2020

New consumers of data 

analytics are joining the 

Cloud that require low-
latency results
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• The WAN bandwidth is 

scarce and expensive



Problems: Hard to Program

• It is hard to program 

and maintain stream 

processing 

applications both 

for the edge and for 

central data centers
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Problem Definition

How to enable and achieve effective and efficient stream 

processing given the following:

• Multiple central and near-the-edge DCs

• Multiple data sources and sinks

• Multiple stream processing applications

and:

• Data is streamed from sources to their closest near-the-edge 

DC

• DCs are connected with heterogeneous network



SpanEdge

A multi-data center stream processing solution that 

provides:

• an expressive programming model to unify 

programming on a geo-distributed infrastructure.

• a run-time system to manage (schedule and 

execute) stream processing applications across 

the DCs.



Single Data Center
Stream Processing Systems

• Several open-source stream 

processing systems

• Run-time system + application 

development environment

• Multi-applications + multi-streams

• Such as Apache Storm, Spark 

streaming, and Flink
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SpanEdge Architecture

Two tiers:

• First tier includes 

central data centers

• Second tier includes 

near-the-edge data 

centers
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SpanEdge Architecture

1st tier

1st tier

1st tier

2nd tier 2nd tier

2nd tier

2nd tier 2nd tier

Hub-Worker Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker Spoke-Worker

Spoke-Worker

Hub-Worker

Manager

Cross data center traffic:

1. Actual data streams

2. Maintenance overhead 

(workers-manager)
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Task Groupings

S1
OP1 OP2 OP3

R1

OP4 R2

Output based on 
aggregation of the 

locally processed data

Output based on the 
analysis of the local 

data (fast)

• Fast results based 

on the data 

available near-the-

edge

• Avoid sending 

unnecessary tuples 

over the WAN



Task Groupings

• Local-Task: close 

to the data source 

on spoke-workers.

• Global-Task: for 

processing data 

generated from 

local-tasks, placed 

on a hub-worker.

S1
OP1 OP2 OP3

R1

OP4 R2

Output based on 
aggregation of the 

locally processed data

Output based on the 
analysis of the local 

data (fast)

L1

G1



Task Groupings

• Defining local-tasks and 

global-tasks in our 

implementation:

It can be set as a configuration to 

TopologyBuilder by the keys 

local-task and global-task



Scheduler

• Converts a stream 

processing graph to an 

execution graph and assigns 

the created tasks to workers.
1st tier
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Hub-Worker Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker Spoke-Worker

Spoke-Worker

Hub-Worker

Manager

The manager runs 

the scheduler.
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Scheduler 2. A map of streaming 
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Scheduler 2. A map of streaming 

data sources

Scheduler

Source 

Type
Spoke-Worker

src1 {sw1, sw2, sw3}

src2 {sw2,sw4}

…. ….

1. A stream 

processing graph

3. The network topology 

between workers

A map of tasks to workers
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Scheduler: Implementation

● As a plug-in in Apache Storm

● Nimbus (master) executes the 

scheduler



Evaluation: Infrastructure

• The CORE network 

emulator

• Our prototype of 

SpanEdge runs in the 

Linux containers managed 

by the CORE emulator

• The manager runs in one 

of the central data centers

2 central and 9 near-the-edge 

data centers



Evaluation: Infrastructure

• Compare with the 

Centralized Approach

• Apache Storm running in 

one of the central data 

centers

2 central and 9 near-the-edge 

data centers



Evaluation: Stream Processing Graph

• 2 stream sources:

Type A and 

Type B A A1 A2
GA

GAB

L1

G1

B B1 B2

L2

RA

RB
GB

RAB



Evaluation: Bandwidth

Bandwidth Consumption



Evaluation: Latency

Partial results
Aggregated 

results



Conclusions

SpanEdge:

• facilitates programming on a geo-distributed

infrastructure including central and near-the-

edge data centers

• provides a run-time system to manage stream 

processing applications across the DCs.



Future Work

• A dynamic scheduler 

• Mobility of the data sources and their state 

migration

• Fault-tolerance mechanisms in geo-distributed 

infrastructure



Thank You!

The source code is available at: 

www.github.com/telolets/stormonedge


