
SpanEdge: Towards Unifying Stream 

Processing over Central and Near-the-Edge 

Data Centers

Hooman Peiro Sajjad*, Ken Danniswara*, Ahmad Al-Shishtawy†, Vladimir Vlassov*

* KTH Royal Institute of Technology † SICS Swedish ICT

SEC 2016
Washington DC, USA



Real-time Analytics

Examples: 
● Server logs
● User clicks
● Social network 

interactions



Real-time Analytics

Examples: 
● Server logs
● User clicks
● Social network 

interactions



Real-time Analytics

Examples: 
● Server logs
● User clicks
● Social network 

interactions

50 billion devices 
connected to the 

Internet by 2020



Real-time Analytics

Examples: 
● Server logs
● User clicks
● Social network 

interactions

50 billion devices 
connected to the 

Internet by 2020

New consumers of data 

analytics are joining the 

Cloud that require low-
latency results



Geo-Distributed Data

Internet



Central Approach

Internet

Data Center

Data Center

Data Center

Micro Data Center
Micro Data Center

Micro Data Center



Central Approach

Internet

Data Center

Data Center

Data Center

Micro Data Center
Micro Data Center

Micro Data Center



Problems: Wide Area Network

Internet

Gateway Gateway

Data Center



Problems: Wide Area Network

• The WAN bandwidth is 

scarce and expensive.

Internet

Gateway Gateway

Data Center



Problems: Wide Area Network

Internet

Gateway Gateway

Data Center

• Long communication 

latency over the WAN 

links

• The WAN bandwidth is 

scarce and expensive



Problems: Hard to Program

• It is hard to program 

and maintain stream 

processing 

applications both 

for the edge and for 

central data centers

Data Center
Data Center

Data Center

Micro Data 

Center

Micro Data 

CenterMonitor 

Traffic

Monitor 

Traffic

Aggregate 

Anomaly 

statistics



Problem Definition

How to enable and achieve effective and efficient stream 

processing given the following:

• Multiple central and near-the-edge DCs

• Multiple data sources and sinks

• Multiple stream processing applications

and:

• Data is streamed from sources to their closest near-the-edge 

DC

• DCs are connected with heterogeneous network



SpanEdge

A multi-data center stream processing solution that 

provides:

• an expressive programming model to unify 

programming on a geo-distributed infrastructure.

• a run-time system to manage (schedule and 

execute) stream processing applications across 

the DCs.



Single Data Center
Stream Processing Systems

• Several open-source stream 

processing systems

• Run-time system + application 

development environment

• Multi-applications + multi-streams

• Such as Apache Storm, Spark 

streaming, and Flink



SpanEdge Architecture

Internet

Data Center
Data Center

Data Center

Micro Data 

Center
Micro Data 

Center

Micro Data 

Center



SpanEdge Architecture

Two tiers:

• First tier includes 

central data centers

• Second tier includes 

near-the-edge data 

centers

1st tier

1st tier

1st tier

2nd tier 2nd tier

2nd tier

2nd tier 2nd tier



SpanEdge Architecture

Two types of workers:

• Hub-worker

• Spoke-worker 1st tier

1st tier

1st tier

2nd tier 2nd tier

2nd tier

2nd tier 2nd tier

Hub-Worker Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker Spoke-Worker

Spoke-Worker

Hub-Worker

Manager



SpanEdge Architecture

Two types of workers:

• Hub-worker

• Spoke-worker 1st tier

1st tier

1st tier

2nd tier 2nd tier

2nd tier

2nd tier 2nd tier

Hub-Worker Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker Spoke-Worker

Spoke-Worker

Hub-Worker

Manager



SpanEdge Architecture

1st tier

1st tier

1st tier

2nd tier 2nd tier

2nd tier

2nd tier 2nd tier

Hub-Worker Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker Spoke-Worker

Spoke-Worker

Hub-Worker

Manager



SpanEdge Architecture

1st tier

1st tier

1st tier

2nd tier 2nd tier

2nd tier

2nd tier 2nd tier

Hub-Worker Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker Spoke-Worker

Spoke-Worker

Hub-Worker

Manager



SpanEdge Architecture

1st tier

1st tier

1st tier

2nd tier 2nd tier

2nd tier

2nd tier 2nd tier

Hub-Worker Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker Spoke-Worker

Spoke-Worker

Hub-Worker

Manager

Cross data center traffic:

1. Actual data streams



SpanEdge Architecture

1st tier

1st tier

1st tier

2nd tier 2nd tier

2nd tier

2nd tier 2nd tier

Hub-Worker Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker Spoke-Worker

Spoke-Worker

Hub-Worker

Manager

Cross data center traffic:

1. Actual data streams

2. Maintenance overhead 

(workers-manager)



Task Groupings



Task Groupings

S1
OP1 OP2 OP3

R1

OP4 R2

Output based on 
aggregation of the 

locally processed data

Output based on the 
analysis of the local 

data (fast)



Task Groupings

S1
OP1 OP2 OP3

R1

OP4 R2

Output based on 
aggregation of the 

locally processed data

Output based on the 
analysis of the local 

data (fast)

• Fast results based 

on the data 

available near-the-

edge

• Avoid sending 

unnecessary tuples 

over the WAN



Task Groupings

• Local-Task: close 

to the data source 

on spoke-workers.

• Global-Task: for 

processing data 

generated from 

local-tasks, placed 

on a hub-worker.

S1
OP1 OP2 OP3

R1

OP4 R2

Output based on 
aggregation of the 

locally processed data

Output based on the 
analysis of the local 

data (fast)

L1

G1



Task Groupings

• Defining local-tasks and 

global-tasks in our 

implementation:

It can be set as a configuration to 

TopologyBuilder by the keys 

local-task and global-task



Scheduler

• Converts a stream 

processing graph to an 

execution graph and assigns 

the created tasks to workers.
1st tier

1st tier

1st tier

2nd tier 2nd tier

2nd tier

2nd tier 2nd tier

Hub-Worker Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker Spoke-Worker

Spoke-Worker

Hub-Worker

Manager

The manager runs 

the scheduler.



Scheduler

Scheduler

A map of tasks to workers



Scheduler

Scheduler

1. A stream 

processing graph

A map of tasks to workers



Scheduler 2. A map of streaming 

data sources

Scheduler

Source 

Type
Spoke-Worker

src1 {sw1, sw2, sw3}

src2 {sw2,sw4}

…. ….

1. A stream 

processing graph

A map of tasks to workers



Scheduler 2. A map of streaming 

data sources

Scheduler

Source 

Type
Spoke-Worker

src1 {sw1, sw2, sw3}

src2 {sw2,sw4}

…. ….

1. A stream 

processing graph

3. The network topology 

between workers

A map of tasks to workers



Scheduler

S
1

OP1 OP3 OP4 OP5 R2

L1

G1
Spoke-Worker Spoke-Worker Spoke-Worker

Hub-Worker Hub-Worker

Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker

S1 S1

S1

Assigns tasks to workers in two 

steps:

S1



Scheduler

S
1

OP1 OP3 OP4 OP5 R2

L1

G1
Spoke-Worker Spoke-Worker Spoke-Worker

Hub-Worker Hub-Worker

Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker

1. assigns local-tasks to spoke-

workers.

S1 S1

S1

S1



Scheduler

Spoke-Worker Spoke-Worker Spoke-Worker

Hub-Worker Hub-Worker

Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker

L1 L1

L1

OP4 OP5

L1

G1

R2

S
1

OP1 OP3

L1

1. assigns local-tasks to spoke-

workers.

S1 S1

S1

S1



Scheduler

Spoke-Worker Spoke-Worker Spoke-Worker

Hub-Worker Hub-Worker

Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker

L1 L1

L1

2. assigns global-tasks to 

the closest hub-worker.

S
1

OP1 OP3 OP4 OP5

L1

G1

R2

L1

S1 S1

S1

S1



Scheduler

Spoke-Worker Spoke-Worker Spoke-Worker

Hub-Worker Hub-Worker

Hub-Worker

Spoke-Worker Spoke-Worker Spoke-Worker

L1 L1

L1

G1

S
1

OP1 OP3 OP4 OP5

L1

G1

R2

L1

2. assigns global-tasks to 

the closest hub-worker.

S1 S1

S1

S1



Scheduler: Implementation

● As a plug-in in Apache Storm

● Nimbus (master) executes the 

scheduler



Evaluation: Infrastructure

• The CORE network 

emulator

• Our prototype of 

SpanEdge runs in the 

Linux containers managed 

by the CORE emulator

• The manager runs in one 

of the central data centers

2 central and 9 near-the-edge 

data centers



Evaluation: Infrastructure

• Compare with the 

Centralized Approach

• Apache Storm running in 

one of the central data 

centers

2 central and 9 near-the-edge 

data centers



Evaluation: Stream Processing Graph

• 2 stream sources:

Type A and 

Type B A A1 A2
GA

GAB

L1

G1

B B1 B2

L2

RA

RB
GB

RAB



Evaluation: Bandwidth

Bandwidth Consumption



Evaluation: Latency

Partial results
Aggregated 

results



Conclusions

SpanEdge:

• facilitates programming on a geo-distributed

infrastructure including central and near-the-

edge data centers

• provides a run-time system to manage stream 

processing applications across the DCs.



Future Work

• A dynamic scheduler 

• Mobility of the data sources and their state 

migration

• Fault-tolerance mechanisms in geo-distributed 

infrastructure



Thank You!

The source code is available at: 

www.github.com/telolets/stormonedge


