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Abstract—In stream processing, data is streamed as a con-
tinuous flow of data items, which are generated from multiple
sources and geographical locations. The common approach for
stream processing is to transfer raw data streams to a central data
center that entails communication over the wide-area network
(WAN). However, this approach is inefficient and falls short for
two main reasons: i) the burst in the amount of data generated
at the network edge by an increasing number of connected
devices, ii) the emergence of applications with predictable and
low latency requirements. In this paper, we propose SpanEdge,
a novel approach that unifies stream processing across a geo-
distributed infrastructure, including the central and near-the-
edge data centers. SpanEdge reduces or eliminates the latency
incurred by WAN links by distributing stream processing ap-
plications across the central and the near-the-edge data centers.
Furthermore, SpanEdge provides a programming environment,
which allows programmers to specify parts of their applications
that need to be close to the data source. Programmers can develop
a stream processing application, regardless of the number of
data sources and their geographical distributions. As a proof of
concept, we implemented and evaluated a prototype of SpanEdge.
Our results show that SpanEdge can optimally deploy the
stream processing applications in a geo-distributed infrastructure,
which significantly reduces the bandwidth consumption and the
response latency.

Keywords—geo-distributed stream processing; geo-distributed
infrastructure; edge computing; edge-based analytics

I. INTRODUCTION

Stream processing plays an important role in the area of
Big Data analytics. It enables the analysis of large volumes of
data as soon as the data is available, and supports real-time
decision-making. In stream processing, data is streamed as a
continuous flow of data items that is generated from multiple
sources and geographical locations. A simple example of a
data stream is the sequence of temperature values emitted
from a weather sensor at a fixed rate. Other examples include
motion detection information sent from surveillance cameras,
traffic information, server logs, user clicks, and data generated
from Internet of Things. A stream processing application can
continuously analyse and extract useful information from the
data streams emitted from one or several sources. For example,
detecting trending topics in a social network, analyzing stock
market, intrusion detection, and traffic management in trans-
portation. A stream processing application is usually presented

as a graph of operators (e.g., aggregations or filters), called
stream processing graph.

Several stream processing systems have been developed,
in both academia and industry [1]–[3], in order to provide
scalable solutions for stream processing. These systems pro-
vide sophisticated application development and run-time en-
vironments. Their programming model enables to implement
complex applications [4]. Their run-time systems provide a
scalable execution environment by distributing the application
among a cluster of machines. The existing stream processing
systems, such as Apache Spark [5] and Flink [3], are designed
and optimized for running in a single data center. Therefore,
the common approach for the stream processing is to transfer
raw data streams to a central location.

The aforementioned approach for the stream processing
entails communication over wide-area network (WAN) be-
tween data sources on the network edge and stream processing
applications hosted in a central data center. However, this
approach is inefficient and falls short for several reasons: 1)
the WAN bandwidth is expensive and can be scarce [6], 2)
there has been a huge increase in the number of connected
devices in the network edge (50 billion devices by 2020 [7]),
which increase the network traffic dramatically, 3) applications
that require predictable and low network latency can not
tolerate the long communication delay in the WAN links (e.g.,
sensor networks that monitor the environment, smart grid, and
smart urban traffic management), and 4) some data have legal
constraints to a certain jurisdiction and can not be moved to
another geographical area. Therefore, there is a need to avoid
the data movement, to reduce the network latency and the
communication over WAN as much as possible. In several
distributed applications, it is known that placing applications
closer to data/users can effectively decrease the network cost
and the latency [8], [9]. Despite the fact that stream processing
can benefit from placing the stream processing applications
closer to the data sources, this approach is not well explored.

In this paper, we consider stream processing in a geo-
distributed setting and at the edge that we believe will improve
existing and enable novel real-time stream processing appli-
cations, including mission-critical applications. We propose
SpanEdge, a novel approach that unifies stream processing
over a geo-distributed infrastructure, i.e., multiple data centers
located in different geographical locations. In addition to the
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central data centers, SpanEdge leverages the state-of-the-art
solutions for hosting applications close to the network edge,
such as carrier clouds [10], cloudlets [11], and Fog [12]. In
SpanEdge, the data centers are categorized into two tiers,
where the central data centers come in the first tier and the
near-the-edge data centers are in the second tier. In SpanEdge,
programmers can develop a stream processing application,
regardless of the number of data sources and their geographical
distribution. SpanEdge provides a programming environment,
which allows programmers to specify parts of their applica-
tions that need to be close to the data sources. SpanEdge
executes the application on the data centers across the two
tiers in order to reduce the network latency and the cost.
SpanEdge, by placing the stream processing applications close
to the network edge reduces or eliminates the latency incurred
by the WAN links, thus speeding up the analysis and the
decision-making. In order to aggregate the results from several
near-the-edge data centers, SpanEdge utilizes the central data
centers to optimally place the application components in order
to reduce the network latency and the cost. As a proof of
concept, we implemented a prototype of SpanEdge using
Apache Storm [1], an open source stream processing system.

Our contributions in this paper are as follows:

• We propose a novel approach to distribute stream pro-
cessing applications across central and near-the-edge
data centers in order to reduce the response latency
and bandwidth consumption and thus improving the
performance of stream processing applications.

• We introduce two new groupings for stream process-
ing graphs that facilitate programmers to define the
logic of stream processing applications in a complex
geo-distributed environment.

• We provide a scheduler to optimally distribute the
applications among central and near-the-edge data
centers.

• We implement a prototype of our system on Apache
Storm, an open source stream processing system, and
evaluate it in an emulated environment.

The rest of this paper is organized as follows. In section II,
we provide the required background information. In section III,
we explain SpanEdge, the task groupings, and the scheduler.
In section IV, we explain our implementation of the system
on Apache Storm followed by evaluation in section V. In
section VI, we discuss the related work. Finally, in section VII,
we present conclusions and future work.

II. BACKGROUND

A. Geo-distributed Infrastructure

Recent advancement in the geo-distributed infrastructure
advocates a hierarchical infrastructure model, with at least two
tiers. The first tier is built of typical central data centers and
the second tier includes near-the-edge data centers such as
cloudlets [11], central [13] and distributed [14] micro data
centers, carrier clouds [10] and Fog [12]. The difference
between the data centers in the first tier and second tier are two-
fold: first, in their amount of compute and storage resources
and second, in their network latency and cost to access the

Fig. 1: An example of a stream processing graph.

Fig. 2: An example of an execution graph.

edge. Usually, the central data centers have more compute and
storage than the second tier data centers. On the other side,
the second tier data centers have lower latency and network
cost for accessing the network edge.

More tiers can be considered for a geo-distributed in-
frastructure. However, as we move toward the lower tiers,
we have more limitations in the amount of computing and
storage resources. In this paper, we leverage a geo-distributed
infrastructure with two-tiers of central and near-the-edge data
centers. We assume that near-the-edge data centers have
enough resources to host stream processing applications.

B. Stream Processing

Stream processing is about processing data streams in real-
time. A data stream is made of atomic data items each called
a tuple. A data stream is generated from a streaming data
source [4]. A stream processing application is an application
that is developed for processing data stream. For the develop-
ment and execution of stream processing applications, many
stream processing systems have emerged [1]–[3], [15]–[17].
They provide sophisticated application development and run-
time environments. In the rest of this section, we explain
the common stream processing ecosystem, methods for the
development of stream processing applications, the runtime en-
vironment for the execution of stream processing applications
and categories of the applications based on their requirements.

Ecosystem: A common ecosystem for stream processing
is built of a large number of heterogeneous streaming data
sources that generate millions of tuples and send them to
stream processing applications. However, the streaming data
sources may not directly send the tuples to the stream pro-
cessing applications. For example, IoT devices generate the
tuples and send them through a gateway, which is responsible
for protocol translation. Then, the gateway redirect the tuples
to a message broker inside a data center. Finally, the broker
sends the tuples to the right application. In addition, the broker
buffers the incoming tuples so they can alleviate spikes on the
tuple production rate for the stream processing applications.
There has been several open-source [18], [19] and commercial
message brokers [20], [21]. There are some trade-offs on
the latency, scalability and fault tolerance among the existing
message brokers.
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Application Development: Stream processing systems pro-
vide a development environment that enables programmers to
express the logic of their stream processing applications. A
stream processing application is expressed as a graph, which
is called a stream processing graph. Nodes of the graph include
operators, sources and sinks. The operators can be some
basic function units or some complex logic to be applied on
incoming tuples. The source nodes are for reading tuples from
an external system, e.g., from a message broker. The sink nodes
are to send the results to an external service, such as triggering
an alarm or storing the results in a database. The connections
between nodes of the stream processing graph, depending on
the stream processing system, can be defined explicitly or
implicitly. In the explicit model, programmers connect the
operators directly. In the implicit model, programmers define
the operators’ dependency on the types of data stream and then
the stream processing system generates the graph on runtime.
For example, Storm [1] has the explicit model and Flink [3]
and Spark [2] support the implicit model. An example of a
stream processing graph is shown in Fig. 1. In this figure,
there are three operators. S1 is a source that generates the
tuples. The operator OP1 outputs the tuple of the type D1 and
the operator OP2 receives the tuple D1 and transmits the tuple
D2 to the operator OP3 and this operator outputs its results
to the sink R1.

Runtime environment: Every stream processing system
provides a runtime environment in order to execute stream
processing applications. A common architecture for the run-
time environment is a master-worker architecture [1], [3], [15],
[22], where the primary task of the master is to execute stream
processing applications across the workers. To execute a stream
processing application, the master, through a runtime engine,
converts a given stream processing graph to an execution
graph (Fig. 2). Each node of the execution graph is a task
corresponding to an operator in a stream processing graph.
Multiple tasks may be created for an operator in order to run
in parallel. The runtime engine has a scheduler that allocates
the tasks to run on the workers. The runtime engine gives the
execution graph and the available resources on the workers
to the scheduler. The scheduler, depending on the scheduling
policy, allocates the tasks to different processes on the workers.
The runtime engine may get the resources dynamically through
a resource allocator such as Mesos [23] and Yarn [24]. The
resource allocators enable to share the resources of a cluster
among multiple frameworks. A scheduler may assign multiple
tasks to one process, multiple processes to one machine or
may distribute multiple processes among several machines.
Different placements of the tasks depend on the trade-offs
between the level of fault-tolerance, load balancing, network
cost, and throughput [25]. After the runtime engine schedules
the tasks, they will run on the workers infinitely.

Applications: Each stream processing application has a set
of requirements. Some stream processing applications require
to preserve the order of events with respect to the time
they occurred not the time they are processed. Some stream
processing applications require to process very large data being
streamed. Stream processing applications could require to pro-
cess streams from multiple streaming data sources of different
types. The streams may come from different geographical
locations. Some stream processing applications could be highly
latency sensitive. Some data have privacy restrictions to a

specific geographical boundary and that should be considered
in the development of a stream processing application.

III. SPANEDGE OVERVIEW

SpanEdge is a novel approach that unifies the stream
processing across a geo-distributed infrastructure, including
the central and near the edge data centers. In the rest of this
section, first, we describe the architecture of SpanEdge and
how it works in a geo-distributed infrastructure. Second, we
present the two new groupings of the operators for defining a
stream processing graph. Finally, we describe the scheduler
of SpanEdge, which can manage the execution of stream
processing graphs across a geo-distributed infrastructure.

A. Architecture

SpanEdge has a master-worker architecture, which con-
sists of a manager as the master and several workers. The
architecture is demonstrated in Fig. 3. The manager receives
the stream processing applications and schedules them among
the workers as tasks (Section III-C). A worker consists of a
cluster of compute nodes and executes tasks assigned to it
by the manager. We define two types of workers: the hub-
worker and the spoke-worker, where a hub-worker resides
in a data center in the first tier and a spoke-worker resides
in a data center in the second tier near the edge. We name
the hub-worker and the spoke-worker after their conceptual
similarity with the hub and spoke model. The data centers,
which host the workers, are connected through Wide Area
Network (WAN). Since the data centers are geographically
distributed, the network communication cost and the latency
between them are correlated with their geographical locations
and their underlying WAN connection [13]. Therefore, the
geographical proximity of the data centers is a good estimate
for the network latency and the cost among the workers. In this
paper, there is no functional difference between a hub-worker
and a spoke-worker. They only differ in their proximity to the
network edge, which SpanEdge exploits in the deployment of
the stream processing applications.

In SpanEdge, there are two types of communications: i)
the system management communication (worker-manager), ii)
the data transfer communication (worker-worker). The system
management communication between the workers and the
manager is for scheduling the tasks and ensuring that the tasks
are running as expected. The data transfer communication is
the actual data streams that the tasks dispatch to each other
for processing.

An agent runs within each worker for doing the system
management operations. The agent’s role is to send/receive the
management data to/from the manager. The agent constantly
monitors the compute nodes and ensures that the given tasks
run properly. The agent periodically sends the worker’s status
to the manager as heartbeat messages. SpanEdge uses the
heartbeat messages for the failure detection of the workers. In
case a compute node fails, the agent can detect it and restart
the tasks in another compute node.

We designed SpanEdge for an ecosystem with many het-
erogeneous streaming data sources that are geographically
dispersed, i.e., i) the stream sources can differ in type, e.g.,
weather or traffic sensors, and ii) there can be several number
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Fig. 3: The architecture of SpanEdge across a two-tier geo-distributed infrastructure.

Fig. 4: An example of the local-task and the global-task.

of instances of each source type in different geographical areas.
We assume that the streams are redirected from their sources
to the nearest second tier data centers.

B. Task Grouping

SpanEdge enables programmers to group the operators of
a stream processing graph either as a local-task or a global-
task, where a local-task refers to the operators that require to
be close to the streaming data sources and a global-task refers
to the operators that process the results of a group of local-
tasks.

The operators grouped in a local-task are placed close
to the sources from which they consume data. SpanEdge
creates a replica of a local-task at each spoke-worker with the
corresponding data source types. Note that, SpanEdge assigns
the tasks to the spoke-workers only if all the sources in a
local-task are available. Otherwise, it will assign the tasks to
a hub-worker. In Fig. 4, we demonstrate a high level view of
an example stream processing graph. In this example, there
are three types of the streaming data sources S1, S2 and S3.
Every local-task should contain at least one streaming data
source. In this example, we group OP1, OP2 and OP3 as

a local-task L1 accordingly with the sources S1 and S2. As
it can be seen, OP3 generates a partial result and transmits
it to the sink R1. This indicates that R1 receives the results
as soon as OP3 produces a tuple. In Fig. 5, we show how
SpanEdge schedules and deploys this stream processing graph
in a particular infrastructure. We explain the scheduler in detail
in Section III-C.

Grouping a set of operators as a global-task indicates that
the run-time must schedule the operators on a single hub-
worker. The scheduler selects a hub-worker optimally in order
to decrease the network latency and the cost (Section III-C).
Programmers can use the global-task grouping for processing
the data generated from the local-tasks. For example, it can be
an aggregation over the data generated by some local-tasks. In
Fig. 4, the global operators OP4 and OP6 receive the data from
the local operators OP3 and OP5. These operators receive the
results from all replicas of the local operators.

The operators grouping provides a general and an extensi-
ble model in order to develop any arbitrary operations. The
notions of local and global groupings enable programmers
to instruct the scheduler with respect to the partial and the
aggregated results. Programmers can consider that by selecting
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Algorithm 1 Main logic of the scheduler

INPUT:
graph � Stream Processing Graph
sMap � Map of streaming data sources to spoke-workers
topology � Topology of workers

1: procedure SCHEDULE(Graph graph, Map sMap, Topology topology)
2: lwMap ← assignLocalTasks(graph, sMap);
3: gwMap ← assignGlobalTasks(lwMap, graph, topology);
4: twMap.add(lwMap);
5: twMap.add(gwMap);
6: return twMap;

Algorithm 2 Assign the local-tasks to the spoke-workers.

INPUT:
graph � Stream Processing Graph
sMap � Map of streaming data sources to spoke-workers

1: procedure ASSIGNLOCALTASKS(Graph graph, Map sMap)
2: lTasks ← graph.getLocalTasks();
3: for each l ∈ lTasks do
4: sNodes ← l.getSourceNodes();
5: for each s ∈ sNodes do
6: workers ← findWorkersWithSource(sMap, s);
7: workerSet.add(workers);
8: end for
9: lwMap.put(l, workerSet);

10: end for
11: return lwMap;

a group of operators as a local-task, those operators exploit
the proximity of the sources to generate low latency results.
However, the (partial) results are based on the data generated
from the sources close to a specific geographical location. In
order to create the aggregated results based on the whole data
processed in different geographical locations, programmers can
select a group of the operators as the global-task in order to
aggregate the partial results.

C. Scheduler

In SpanEdge, the manager receives a stream processing
graph to be executed in a geo-distributed infrastructure. The
manager employs the scheduler, which converts the stream
processing graph to an execution graph by assigning the tasks
to the hub-workers and the spoke-workers. Each node of the
execution graph represents a task and each connection indicates
the flow of data among the tasks.

The scheduler requires some information in order to assign
the tasks to the workers: i) a stream processing graph, ii)
a map of the streaming data sources to the spoke-workers,
iii) the network topology between the workers. The scheduler
leverages the map of streaming data sources to the spoke-
workers in order to deploy the local-tasks in all the spoke-
workers with the required data source types. We assume that
the map is provided by a source discovery service. The network
topology of workers can be either dynamically generated based
on a network monitoring service or it can be based on the
geographical location of their host data centers.

The scheduler assigns the tasks to the workers in two
steps (Algorithm 1). First, it assigns the local-tasks to the
spoke-workers and second, it assigns the global-tasks to the
hub-workers. In Algorithm 2, we demonstrate the assignment

Algorithm 3 Assign the global-tasks to the hub-workers

INPUT:
graph � Stream Processing Graph
lwMap � Map of local-tasks to spoke-workers
topology � Topology of workers

1: procedure ASSIGNGLOBALTASKS(Map lwMap, Graph graph, Topology
topology)

2: gTasks ← graph.getGlobalTasks();
3: for each g ∈ gTasks do
4: lTasks ← g.getLocalTasks();
5: for each l ∈ lTasks do
6: workers ← lwMap.get(l);
7: workerSet.add(workers);
8: end for
9: hWorker ← findClosestHubWorker(workerSet, topology);

10: w ← assignTaskToWorker(g, hWorker);
11: gwMap.put(g, w);
12: end for
13: return gwMap;

of the local-tasks to the spoke-workers. In this algorithm,
the scheduler gets all the local-tasks from the graph. It goes
through each local-task and retrieves the source nodes. Each
source node represents the type of a streaming data source.
The scheduler uses the type of source nodes to list a set of
spoke-workers that are closest to streaming data sources. To
do this, the scheduler finds each source node in the map of
stream sources to spoke-workers. In the end of this step, the
scheduler assigns the local-task to all the workers in the created
set. In other words, the scheduler replicates a local-task in all
the data centers that are close to the streaming data sources.
By assigning all the local-tasks, the scheduler has a map of the
local-task to the spoke-workers. This enables the scheduler to
place the global-tasks more wisely. The scheduler chooses a
hub-worker that is closest to the corresponding spoke-workers
in the given topology of workers (line 9 in Algorithm 3). As we
present in Algorithm 3, the scheduler iterates through all the
global-tasks inside the graph. For each global-task, it iterates
through all its adjacent local-tasks and creates a set of their
assigned spoke-workers. The scheduler can find the nearest
hub-worker to the set of spoke-workers by having a set of
assigned spoke-workers and the network topology of workers.
Finally, the scheduler assigns the global-task to the selected
hub-worker.

After assigning all the local-tasks and the global-tasks, the
scheduler returns a map of the tasks to the workers. SpanEdge,
using its runtime engine, distributes the tasks (the binaries from
compiling the source codes) among the workers according to
the output generated from the scheduler.

IV. IMPLEMENTATION

We implemented a prototype of SpanEdge1 by extending
Apache Storm [1]. We choose Apache Storm because its low-
level API for stream processing makes it more flexible and
intuitive to evaluate our prototype. In the Storm’s terminology,
the term spout is used to refer to a source and the term bolt
is used to refer to an operator or a sink.

Apache Storm has a master-slave architecture. The master
node (called Nimbus), schedules the tasks over the slave

1The source code is available at https://github.com/Telolets/StormOnEdge
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Fig. 5: A deployment of the example application in SpanEdge.

nodes (called the worker nodes). Apache Storm provides fault-
tolerance and reliability guarantees through sending heartbeats
and ack messages. We implement the prototype by having
one Storm cluster across a geo-distributed infrastructure. We
evaluated Apache Storm’s performance when distributed over a
set of machines connected through a high latency network [26].
Our evaluation shows that the heartbeat and ack messages have
no significant network cost. However, increasing the network
latency delays the detection of the workers failure. Another ap-
proach to implement SpanEdge is by having multiple instances
of Apache Storm cluster each deployed in a data center. Each
instance has its own local manager, which are all coordinated
by a higher level manager. Also, each local manager can handle
the failure detection in their cluster. Discussion over the fault-
tolerance and reliability guarantees are beyond the scope of
this paper and we aim it as a future work.

We implemented the scheduler of SpanEdge as a plugin
in Apache Storm. Creating a custom scheduler in Storm is
based on implementing the IScheduler interface available in
the storm-core library. The scheduler is executed by Nimbus.
The topology is defined in Storm by creating an instance of
the class TopologyBuilder. An instance of TopologyBuilder is
given to the scheduler as a stream processing graph. We define
the local-tasks and the global-tasks by the addConfiguration
method. This method receives a key and a value as the input
parameters. The key specifies the type of task grouping, local-
task or global-task. The value is an arbitrary name to refer to
a specific task group. All the spouts and bolts under the same
group name will be considered as one local-task or global-task.
Storm can create a configurable number of parallel tasks for
each bolt and spout. The way that the data is distributed among
the parallel tasks are defined by the stream groupings. We
implemented a new grouping called zone-grouping, in order
to avoid the data transfer among the parallel tasks of two
different data centers. We implement the zone-grouping by
extending the CustomStreamGrouping abstract class available
in the Storm’s library.

An example topology is shown in Listing 1. In this
example, we want to process the data generated from some
temperature sensors. We create a spout (tSpout) as a data
source and add it to the local-task L1. We want to have two

operators, one to process the temperature data in order to detect
anomalies and the other to aggregate the anomalies statistics.
The anomalies in the temperature can be detected by placing
the operator close to the data source. Therefore, we create a
bolt lBolt and add it to the same local-task as tSpout. For
the aggregation, we define a bolt aBolt and add it to a global-
task G1. The integer numbers in lines 3, 6 and 10 specify
the number of parallel instances of the spouts and the bolts.
For example, in line 3, we specify 4 parallel instances of the
spout tSpout. The shuffleGrouping in line 7 indicates that the
data from the spout instances should be uniformly distributed
among the instances of lBolt.

1 TopologyBuilder builder = new TopologyBuilder();
2 . . .
3 builder.setSpout("temperatureSpout", tSpout, 4)
4 .addConfiguration("local-task", "L1");
5 ...
6 builder.setBolt("localTempBolt", lBolt, 2)
7 .shuffleGrouping("temperatureSpout")
8 .addConfiguration("local-task", "L1");
9 . . .

10 builder.setBolt("aggregateBolt", aBolt, 4)
11 .shuffleGrouping("localTempBolt")
12 .addConfiguration("global-task", "G1");

Listing 1: An example of defining a local-task and a global-
task in the SpanEdge prototype.

V. EVALUATION

In this section, we evaluate the performance of SpanEdge
based on the prototype implementation. We start by describing
the experimental setup followed by the evaluation criteria and
the evaluation results. We compare SpanEdge against a central
data center deployment architecture.

A. Experimental Setup

In order to evaluate SpanEdge in different deployment
scenarios, we use the CORE [27] network emulator to emulate
a geo-distributed infrastructure with both central and near-the-
edge data centers. The setup we use in our experiments is
depicted in Fig. 6. The setup consists of 2 central data centers
(shown as squares in Fig. 6) and 9 near-the-edge data centers
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Fig. 6: The geo-distributed infrastructure used in the experiments implemented in the CORE network emulator

(shown as circles in Fig. 6). For the streaming data sources, we
use two types of data streams (type A and type B). Each near-
the-edge data center can provide none, one, or both types of
data streams. We vary the total number of data stream sources
as detailed in the experiments. Each instance of a data source
type is set to generate a 500 bytes tuple with a constant rate
of 450 tuples per second.

The CORE network emulator can be used to emulate var-
ious network components, such as routers, switches, servers,
and network links between them. The CORE network emulator
uses Linux containers to run the same software used in a real
deployment of such routing protocols and server software. It
also emulates the network latency and bandwidth for the links
between the different components.

We deploy the SpanEdge prototype in the emulated en-
vironment by deploying the various software components
inside the server containers provided by the CORE network
emulator. The main components include the master (Nimbus
and ZooKeeper), which we deploy in one of the central data
centers, and the workers, which we deploy in both the central
and the near-the-edge data centers. Our proposed geo-aware
scheduler is deployed as a plugin for Nimbus (see Section IV).
For each experiment, we provide a map (see Section III-C) that
contains the data streams available at each of the near-the-edge
data centers.

We compare SpanEdge against a standard central deploy-
ment architecture for stream processing systems. In a central
deployment, both the master and the worker reside in the same

central data center. However, the streaming data sources are
still geo-distributed and the data streams need to be transferred
to the central data center for processing.

Our evaluation is inspired by Yahoo’s Storm performance
test [28]. The graph of the stream processing application used
throughout the experiments is depicted in Fig. 7. The stream
processing application requires two types of data streams (type
A and type B), produces two local results (the local result
A and the local result B) from the two local tasks, and one
global result (the global result AB) from the global task.
Since preforming computationally intensive processing of the
streams is not feasible in an emulated environment and would
impact the latency in an unrealistic manner, we emulated the
stream processing by having each bolt randomly dropping
40% of the incoming tuples. This emulates a typical stream
processing operator such as filtering or aggregation where the
output stream rates are usually smaller than the input stream
rates. Our geo-aware scheduler uses the stream processing
graph together with the map of available data stream sources
to generate an execution graph that will assign the tasks to the
workers. The local tasks will be replicated and assigned to the
workers in the near-the-edge data centers with the required data
stream sources. The global task will be assigned to a worker
in the best central data center in terms of the latency to the
other workers.

B. Performance Evaluation Experiments

To evaluate the performance of SpanEdge, we measure
the overall bandwidth consumption and the average response
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Fig. 7: The stream processing graph representing the logic of
application used in the experiments.
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latency (tuple processing latency). The overall bandwidth con-
sumption is the sum of the bandwidth consumed in transferring
the data between each pair of the data centers involved in the
stream processing application. The average tuple processing
latency is the average time required to process a tuple measured
from the time it is generated at the data stream until a result
is produced. In SpanEdge, we distinguish between the local
and the global results. Thus, we measure the average tuple
processing latency for both the local and the global results.

1) Overall Bandwidth Consumption: In this experiment,
we compare the overall bandwidth consumption for SpanEdge
versus a central deployment. We fix the data generation rate
for each streaming data source while varying their number. We
increase the number of data sources from 4 to 16. The data
sources are either Type A or Type B. By increasing the number
of data sources, we increase the geographical distribution and
the amount of data that needs to be processed.

The results, depicted in Fig. 8, shows that SpanEdge sig-
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Fig. 9: The average tuple processing time (the local result).

nificantly reduces the overall bandwidth consumption between
the data centers. This is because, in the case of a central
deployment, the raw streaming data needs to be transferred
to the central data center. While in the case of SpanEdge,
the data before being transferred between the data centers is
already processed near-the-edge (by the spoke-worker).

2) Average Response Latency: In this experiment, we mea-
sure the average response latency for producing a result both
for the case of local results and global results.

The average response latency for producing a local result
is depicted in Fig. 9. In the case of SpanEdge, the latency is
very low. This is because the stream processing computation
is near the data stream and the consumer of the result. Thus,
no WAN communication is needed for computing the local
result. However, in the case of a central deployment, the high
response latency is mainly due to the round trip needed to
transfer the data stream to a central location and then sending
the results back.

The average response latency for producing a global result
is depicted in Fig. 10. The results show that both SpanEdge and
the central deployment have the same average response latency.
This is expected as in both cases the data is traveling through
the same network path. However, note that SpanEdge achieves
this latency while consuming less bandwidth as shown in the
overall bandwidth consumption experiment. Thus, we expect
SpanEdge to have a better response latency in scenarios where
the bandwidth is the bottleneck.

VI. RELATED WORK

We present the related work in four categories: 1) works
that have been done in introducing novel stream processing
systems, 2) researches on stream processing with respect to
geo-distribution, 3) researches on improving the scheduler
for stream processing systems and 4) works on distributed
algorithms for stream processing.
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A. Stream Processing Systems

Aurora [29] and its distributed descendant Borealis [30],
TelegraphCQ [31], and STREAM [32] are the very first
streaming databases. In these systems, they address the major
problems in traditional data management systems with respect
to management of unbounded streams of data. These systems
provide extensions to SQL language to fit continuous queries
and their system model is based on processing streams of
data in real-time. Their successful solutions have paved the
way for the next generation of large-scale stream processing
systems in industry. Flink Streaming [3], Spark Streaming [2],
Storm [1], Heron [15] and MillWheel [16] are some of the
existing systems that has been developed to be used within data
centers. Our work is mainly inspired by studying these existing
systems. Our contribution to the existing stream processing
systems is that we propose an approach to extend a stream
processing system beyond a single data center. Our approach
can extend the existing stream processing system to deploy
stream processing applications across multiple data centers.

B. Geo-distributed Streaming Data Analytics

There have been some researches on streaming data ana-
lytics considering diverse geographical locations for streaming
data sources. In [33] and [34], the authors try to propose solu-
tions for placement of the operators over a set of computational
resources scattered in a wide-area network. However, due to
the recent advancements in the geo-distributed infrastructure,
we expect a combination of two layers of central data centers
and near-the-edge infrastructure. JetStream [35] is another
stream processing system across a wide-area network. The
system provides adaptive filtering and data aggregation that
can adjust the transferred data over wide-area network accord-
ing to the available bandwidth. However, JetStream’s query
model does not support programming arbitrary algorithms.
It is entirely based on aggregation and approximation. In

SpanEdge, we provide a more general approach for program-
ming stream processing applications regardless of the under-
lying technology. In [36], the authors focus on optimization
of the grouped aggregation in hub-and-spoke model across
data centers. However, they do not provide any solution for
development, placement, and scheduling of stream processing
applications across data centers.

C. Stream Processing Scheduler

There are some researches on improving the scheduler for
stream processing systems. In [25] and [37], the authors try to
improve the default scheduler in Storm [1], which is a simple
round-robin scheduler. Their goal is to provide a network-
aware scheduler that can reschedule tasks based on the network
traffic. In both of these works, the focus is on a improving the
network performance in a single data center. However, in this
paper, we try to improve scheduling across several data centers
with respect to the location of data sources. We expect that the
state-of-the-art solutions to improve scheduling inside a data
center can be employed in SpanEdge for an optimal scheduling
of the tasks assigned to each each data center.

D. Distributed algorithms for Streaming Data

There has been several studies done in the area of dis-
tributed data mining and algorithms to process distributed
streaming data. Cormode et al. [38] and Rodrigues et al. [39]
propose distributed algorithms to cluster streaming data with-
out aggregating all data in a central location. There has
been also distributed algorithms for outlier detection [40],
detection of denial of service attacks [41], mining frequent
items [42] and classification [43]. These algorithms try to
decrease the network communication between the computation
nodes, which are suitable for environments with distributed
streaming datas. One of our contribution is to provide an
approach that enables programmers to implement these al-
gorithms in a geo-distributed infrastructure with a standard
programming language and stream processing graph.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problems with the current
approach for stream processing, which includes transferring
raw data streams from the network edge to a central data
center. We proposed SpanEdge, a novel approach to unify
stream processing across the central and the near-the-edge
data centers. We discussed that SpanEdge can utilize the
near-the-edge data centers in order to reduce the network
communication over the WAN links and consequently, to avoid
the incurred network latency. We explained that in SpanEdge,
programmers can develop a stream processing application,
regardless of the number of data sources and their geographical
distributions. We achieved this by introducing two new task
groupings, which enables programmers to specify the parts of
their application that should run close to the data sources. We
presented the geo-aware scheduler that processes the stream
processing graphs and distributes the application components
optimally. We implemented a prototype of SpanEdge as a proof
of concept by augmenting the Apache Storm stream processing
system. We evaluated our work in an emulated environment
using the CORE network emulator. We demonstrated that
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SpanEdge can optimally deploy the stream processing appli-
cations in a geo-distributed infrastructure, which significantly
reduces the bandwidth consumption and the response latency.

Encouraged by the results, we are interested in extending
our solution in different dimensions including: i) enabling
the geo-aware scheduler to dynamically adapt changes in
the network conditions and the available resources on the
edge, ii) taking into account the mobility of devices and their
state migration, and iii) research on more sophisticated fault-
tolerance mechanisms.
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