
Policy Based Self-Management in Distributed
Environments

Lin Bao, Ahmad Al-Shishtawy, and Vladimir Vlassov
Royal Institute of Technology

Stockholm, Sweden
{linb, ahmadas, vladv}@kth.se

Abstract—Currently, increasing costs and escalating complex-
ities are primary issues in the distributed system management.
The policy based management is introduced to simplify the
management and reduce the overhead, by setting up policies
to govern system behaviors. Policies are sets of rules that govern
the system behaviors and reflect the business goals or system
management objectives.

This paper presents a generic policy-based management frame-
work which has been integrated into an existing distributed
component management system, called Niche, that enables and
supports self-management. In this framework, programmers can
set up more than one Policy-Manager-Group to avoid centralized
policy decision making which could become a performance
bottleneck. Furthermore, the size of a Policy-Manager-Group,
i.e. the number of Policy-Managers in the group, depends on
their load, i.e. the number of requests per time unit. In order to
achieve good load balancing, a policy request is delivered to one
of the policy managers in the group randomly chosen on the fly.
A prototype of the framework is presented and two generic policy
languages (policy engines and corresponding APIs), namely SPL
and XACML, are evaluated using a self-managing file storage
application as a case study.

I. INTRODUCTION

To minimize complexities and overheads of distributed
system management, IBM proposed the Autonomic Com-
puting Initiative [1], [2], aiming at developing computing
systems which can self-manage themselves. In this work,
we address a generic policy-based management framework.
Policies are sets of rules which govern the system behaviors
and reflect the business goals and objectives. Rules define
management actions to be performed under certain conditions
and constraints. The key idea of policy-based management
is to allow IT administrators to define a set of policy rules
to govern behaviors of their IT systems, rather than relying
on manually managing or ad-hoc mechanics (e.g. writing
customized scripts) [3]. In this way, the complexity of system
management can be reduced, and also, the reliability of the
system’s behavior is improved.

The implementation and maintenance of policies are rather
difficult, especially if policies are “hard-coded” (embedded) in
the management code of a distributed system, and the policy
logic is scattered in the system implementation. The drawbacks
of using “hard-coded” and scattered policy logic are the
following: (1) It is hard to trace policies; (2) The application

This research was partially supported by the FP6 project Grid4All (contract
IST-2006-034567) funded by the European Commission.

developer has to be involved in implementation of policies;
(3) When changing policies, the application has to be rebuilt
and redeployed that increases the maintenance overhead. In
order to facilitate implementation and maintenance of policies,
a language support, including a policy language and a policy
evaluation engine, is needed.

This paper presents a generic policy-based management
framework which has been integrated into Niche [4], [5], a
distributed component management system for development
and execution of self-managing distributed applications. The
main issues in development of policy-based self-management
for a distributed system are programmability, performance and
scalability of management. Note that robustness of manage-
ment can be achieved by replicating management components.
Our framework introduces the following key concepts to
address above issues: (1) Abstraction of policy that simplifies
the modeling and maintenance of policies; (2) Policy Manager
Group that allows improving scalability and performance of
policy-based management by using multiple managers and
achieving good load balance among them; (3) Distributed
Policy-Manager-Group Model that allows to avoid centralized
policy decision making, which can become a performance
bottleneck. We have built a prototype of the policy-based
management framework and applied it to a distributed storage
service called YASS, Yet Another Storage Service [4], [6]
developed using Niche. We have evaluated the performance of
policy-based management performed using policy engines, and
compared it with the performance of hard-coded management.

The rest of the paper is organized as follows. Section
II briefly introduces the Niche platform. In Section III, we
describe our policy based management architecture and control
loop patterns, and discuss the policy decision making model.
We present our policy-based framework prototype and perfor-
mance evaluation results in Section IV followed by a brief
review of some related work in Section V. Finally, Section VI
presents some conclusions and directions for our future work.

II. NICHE: A DISTRIBUTED COMPONENT MANAGEMENT
SYSTEM

Niche [4], [5] is a distributed component management
system for development and execution of self-managing dis-
tributed systems, services and applications. Niche includes a
component-based programming model, a corresponding API,
and a run-time execution environment for the development,



deployment and execution of self-managing distributed appli-
cations. Compared to other existing distributed programming
environments, Niche has some features and innovations that
facilitate development of distributed systems with robust self-
management. In particular, Niche uses a structured overlay
network and DHTs that allows increasing the level of distri-
bution transparency in order to enable and to achieve self-
management (e.g. component mobility, dynamic reconfigura-
tion) for large-scale distributed systems; Niche leverages self-
organizing properties of the structured overlay network, and
provides support for transparent replication of management
components in order to improve robustness of management.

Niche separates the programming of functional and man-
agement (self-*) parts of a distributed system or application.
The functional code is developed using the Fractal component
model [7] extended with the concept of component groups
and bindings to groups. A Fractal component may contain
a client interface (used by the component) and/or a server
interface (provided by the component). Components interact
through bindings. A binging connects a client interface of
one component to a server interface of another component (or
component group). The component group concept brings on
two communication patterns “one-to-all” and “one-to-any”. A
component, which is bound to a component group with a one-
to-any binding, communicates with any (but only one) compo-
nent randomly and transparently chosen from the group on the
fly. A component, which is bound to a group with a one-to-
all binding, communicates with all components in that group
at once, i.e. when the component invokes a method on the
group interface bound with one-to-all binding, all components,
members of the group, receive the invocation. The abstraction
of groups and group communication facilitates programming
of both functional and self management parts, and allows
improving scalability and robustness of management.

The self-* code is organized as a network of distributed
management elements (MEs) (Fig. 1) communicating with
each other through events. MEs are subdivided into Watchers
(W), Aggregators (Aggr), Managers (Mgr) and Executors,
depending on their roles in the self-* code. Watchers monitor
the state of the managed application and its environment, and
communicate monitored information to Aggregators, which
aggregate the information, detect and report symptoms to
Managers. Managers analyze the symptoms, make decisions
and request Executors to perform management actions.

III. NICHE POLICY BASED MANAGEMENT

A. Architecture

Fig. 2 shows the conceptual view of policy based manage-
ment architecture. The main elements are described below.

A Watcher (W) is used to monitor a managed resource1

or a group of managed resources through sensors that are

1Further in the paper, we call, for short, resource any entity or part of
an application and its execution environment, which can be monitored and
possibly managed, e.g. component, component group, binging, component
container, etc.

Fig. 1. Niche Management Elements

Fig. 2. Policy Based Management Architecture

placed on managed resources. Watchers will collect monitored
information and report to an Aggregator.

Aggregators (Aggr) aggregate, filter and analyze the in-
formation collected from Watchers or directly from sensors.
When a policy decision is possibly needed, the aggregator
will formulate a policy request event and send it to the Policy-
Manager-Group through one-to-any binding.

Policy-Managers (PM) take the responsibility of loading
policies from the policy repository, making decisions on policy
request events, and delegating the obligations to Executors
(E) in charge. Obligations are communicated from Policy-
Managers to Executors in the form of policy obligation events.

Niche achieves reliability of management by replicating
management elements. For example, if a Policy-Manager fails
when evaluating a request against policies, one of its replicas
takes its responsibility and continues with the evaluation.

Executors execute the actions, dictated in policy-obligation-
events, on managed resources through actuators deployed on
managed resources.

Special Policy-Watchers monitor the policy repositories and
policy configuration files. On any change in the policy reposi-



tories or policy configuration files (e.g. a policy configuration
file has been updated), a Policy-Watcher issues a Policy-
Change-Event and sends it to the Policy-Manager-Group
through the one-to-all binding. Upon receiving the Policy-
Change-Event, all Policy-Managers reload policies. This al-
lows administrators to change policies on the fly.

Policy-Manager-Group is a group of Policy-Managers,
which are loaded with the same set of policies. Niche is a
distributed component platform. In the distributed system, a
single Policy-Manager, governing system behaviors, will be a
performance bottleneck, since every request will be forwarded
to it. It is allowed in Niche to have more than one Policy-
Manager-Group in order to avoid the potential bottleneck with
centralized decision making. Furthermore, the size of Policy-
Manager-Group, that is, the number of Policy-Managers it
consists of, depends on its load, i.e. the intensity of requests
(the number of requests per time unit). When a particular
Policy-Manager-Group is highly loaded, the number of Policy-
Managers is increased in order to reduce burdens of each mem-
ber. Niche allows changing the group members transparently
without affecting components bound to the group.

A Local-Conflicts-Detector checks that the new or modi-
fied policy does not conflict with any existing local policy
for a given Policy-Manager-Group. There might be several
Local-Conflicts-Detectors, one per Policy-Manager-Group. A
Global-Conflicts-Detector checks whether the new policy con-
flicts with other policies in a global system-wise view.

B. Policy-Based Management Control Loop

Self-management behaviors can be achieved through control
loops. A control loop keeps watching states of managed
resources and acts accordingly. In policy-based management
architecture described above, a control loop is composed of
Watchers, Aggregators, a Policy-Manager-Group and Execu-
tors (Fig. 2). Note that the Policy-Manager-Group plays a role
of Manager (see Fig. 1).

Watchers deploy sensors on managed resources to monitor
their states, and report changes to Aggregators that communi-
cate policy request events to the Policy-Manager-Group using
one-to-any bindings. Upon receiving a policy request event, the
randomly chosen Policy-Manager retrieves applicable policies,
along with any information required for policy evaluation, and
evaluates policies with information available.

Based on rules and actions prescribed in the policy, the
Policy-Manager will choose the relevant change plan and
delegate to executor in charge. The executor executes the plan
on the managed resource through actuators.

C. Policy-Manager-Group Model

Our framework allows programmers to define one or more
Policy-Manager-Groups to govern system behaviors. There are
two ways of making decisions in policy management groups:
centralized and distributed.

In the centralized model of Policy-Manager-Group, there
is only one Policy-Manager-Group formed by all Policy-
Managers with common policies. The centralized model is

easy to implement, and it needs only one Local-Conflict-
Detector and one Policy-Watcher. However, a centralized de-
cision making can become a performance bottleneck in policy
based management for a distributed system. Furthermore, man-
agement should be distributed, based on spatial and functional
partitioning, in order to improve scalability, robustness and
performance of management. The distribution of management
should match and correspond to architecture of the system
being managed, taking into account its structure, location of
its components, physical network connectivity, management
structure of an organization where the system is used.

In the distributed model of Policy-Manager-Group, each
policy manager knows only partial policies of the whole
system. Policy managers with common policies form a policy-
manager group associated with a Policy-Watcher. There are
several advantages of the distributed model. First, it is a more
natural way to realize policy based management. For the
whole system, global policies are applied to govern system
behaviors. For different groups of components, local polices
are governing their behaviors based on the hardware platforms
and operating systems they are working on. Second, this model
is more efficient and scalable. Policy-managers reading and
evaluating fewer policies will shorten the evaluation time.
However, policy managers from different groups need to co-
ordinate their actions in order to finish policy evaluation when
the policy request is unknown to a policy manager, which, in
this case, needs to ask another policy manager from a different
group. Any form of coordination is a lost to performance. Last,
the distributed model of policy-based management is more
secure. Not all policies should be exposed to every policy
manager. Since some policies contain information on the
system parameters, they should be protected against malicious
users. Furthermore, both Global-Conflict-Detector and Local-
Conflict-Detector are needed to detect whether or not a newly
added, changed or deleted policy is in conflict with other
policies for the whole system or a given policy-manager-group.

IV. NICHE POLICY-BASED MANAGEMENT FRAMEWORK
PROTOTYPE

We have built a prototype of our policy-based management
framework for the Niche distributed component management
system by using policy engines and corresponding APIs for
two policy languages XACML (eXtensible Access Control
Markup Language) [8], [9] and SPL (Simplified Policy Lan-
guage) [10], [11].

We have had several reasons for choosing these two lan-
guages for our framework. Each of the languages is supported
with a Java-implemented policy engine; this makes it easier
to integrate the policy engines into our Java-based Niche plat-
form. Both languages allow defining policy rules (rules with
obligations in XACML, or decision statements in SPL) that
dictate the management actions to be enforced on managed
resources by executors. SPL is intended for management of
distributed system. Although XACML was designed for access
control rather than for management, its support for obligations
can be easily adopted for management of distributed system.



Fig. 3. YASS self-configuration control loop

In order to test and evaluate our framework, we have
applied it to YASS, Yet Another Storage Service [4], [6],
which is a self-managing storage service with two con-
trol loops, one for self-healing (to maintain a specified file
replication degree in order to achieve high file availability
in presence of node churn) and one for self-configuration
(to adjust amount of storage resources according to load
changes). For example, the YASS self-configuration con-
trol loop consists of Component-Load-Watcher, Storage-
Aggregator, Policy-Manager and Configuration-Executor as
depicted in Fig. 3. The Watcher monitors the free storage space
in the storage group and reports this information to Storage-
Aggregator. The Aggregator computes the total capacity and
total free space in the group and informs Policy-Manager
when the capacity and/or free space drop below predefined
thresholds. The Policy-Manager evaluates the event according
to the configuration policy and delegates the management
obligations to Executor, which tries to allocate more resources
and deploy additional storage components on them in order to
increase capacity and/or free space.

In the initial implementation of YASS, all management was
coded in Java; whereas in the policy-based implementation,
a part of management was expressed in a policy language
(XACML or SPL).

We have used YASS as a use case in order to evaluate ex-
pressiveness of different policy languages, XACML and SPL,
and the performance of policy-based management compared
with hard-coded Java implementation of management. It is
worth mentioning that a hard-coded manager, unless specially
designed, does not allow changing policies on the fly.

In the current version, for quick prototyping, we set up only
one Policy-Manager, which can be a performance bottleneck
when the application scales. We have evaluated the perfor-
mance of our prototype (running YASS) by measuring the
average policy evaluation times of XACML and SPL policy
managers. We have compared performance of both policy
managers with the performance of the hard-coded manager
explained above. The evaluation results TABLE I show that

Policy Load First evaluation Second evaluation
XACML MAX 379 36 7

MIN 168 11 1
AVG 246.8 18.9 3

SPL MAX 705 7 7
MIN 368 3 2
AVG 487.4 5.7 5.7

Java AVG — ≈0 ≈0

TABLE I
POLICY EVALUATION RESULT (IN MILLISECONDS)

Policy Re-Load 1st evaluation 2nd evaluation
XACML MAX 27 4 5

MIN 23 1 1
AVG 24.5 3 3

SPL MAX 62 8 6
MIN 53 2 2
AVG 56.3 5.8 5.3

TABLE II
POLICY RELOAD RESULT (IN MILLISECONDS)

the hard-coded management implementation performs better
(as expected) than the policy-based management implemen-
tation. Therefore, it could be recommended to use policy-
based management framework to implement less performance-
demanding managers with policies or objectives that need to
be changed on the fly. The time needed to reload the policy
file by both XACML and SPL policy managers is shown
in TABLE II. From these results we have observed that the
XACML management implementation is slightly faster than
the SPL management implementation; however, on the other
hand, in our opinion based on our experience, SPL policies
was easier to write and implement than XACML policies.

A. Scalability Evaluation using Synthetic Policies

The current version of YASS is a simple storage service and
its self-management requires a small number of management
policies (policy rules) governing the whole application. It is
rather difficult to find a large number of real-life policies.
To further compare the performance and scalability of man-
agement using XACML and SPL policy engines, we have
generated dummy synthetic policies in order to increase the
size of the policy set, i.e. the number of policies to be evaluated
on a management request. In order to force policy engines
to evaluate all synthetic policies (rules), we have applied
the Permit-Overrides rule combining algorithm for XACML
policies, where a permitting rule was the last in evaluation,
and the Execute All Applicable strategy for SPL policies.

Fig. 4 shows the XACML preprocessing time versus the
number of policies in a one-layered policy. We observe that
there is an almost linear correlation between the preprocessing
time of XACML and the number of rules. This result demon-
strates that the XACML-based implementation is scalable in
the preprocessing phase.

Fig. 5 shows the processing time of SPL versus the number
of policies. We observe that there is almost exponential
correlation between the processing time of SPL and the



Fig. 4. XACML policy evaluation results

Fig. 5. SPL policy evaluation results

number of policies. This result demonstrates that the SPL-
based implementation is not scalable in the processing time.

V. RELATED WORK

Policy Management for Autonomic Computing (PMAC)
[12], [13] provides the policy language and mechanisms
needed to create and enforce these policies for managed
resources. PMAC is based on a centralized decision maker
Autonomic Manager and all policies are stored in a centralized
policy repository. Ponder2 [14] is a self-contained, stand-
alone policy system for autonomous pervasive environments.
It eliminates some disadvantages of its predecessor Ponder.
First, it supports distributed provision and decision making.
Second, it does not depend on a centralized facility, such as
LDAP or CIM repositories. Third, it is able to scale to small
devices as needed in pervasive systems.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a policy based framework which fa-
cilitates distributed policy decision making and introduces the
concept of Policy-Manager-Group that represents a group of
policy-based managers formed to balance load among Policy-
Managers.

Policy-based management has several advantages over hard-
coded management. First, it is easier to administrate and main-
tain (e.g. change) management policies than to trace the hard-
coded management logic scattered across codebase. Second,
the separation of policies and application logic (as well as

low-level hard-coded management) makes the implementation
easier, since the policy author can focus on modeling policies
without considering the specific application implementation,
while application developers do not have to think about where
and how to implement management logic, but rather have to
provide hooks to make their system manageable, i.e. to enable
self-management. Third, it is easier to share and reuse the same
policy across multiple different applications and to change the
policy consistently. Finally, policy-based management allows
policy authors and administrators to edit and to change policies
on the fly (at runtime).

From our evaluation results, we can observe that the hard-
coded management performs better than the policy-based
management, which uses a policy engine. Therefore, it could
be recommended to use policy-based management in less
performance-demanding managers with policies or manage-
ment objectives that need to be changed on the fly (at runtime).

Our future work includes implementation of Policy-
Manager-Group in the prototype. We also need to define a
coordination mechanism for Policy-Manager-Groups, and to
find an approach to implement the local conflict detector and
the global conflict detector. Finally, we need to specify how
to divide the realm of each Policy-Manager-Group governs.

REFERENCES

[1] P. Horn, “Autonomic computing: IBM’s perspective on the state of
information technology,” Oct. 15 2001.

[2] IBM, “An architectural blueprint for autonomic comput-
ing, 4th edition,” http://www-03.ibm.com/autonomic/pdfs/
AC Blueprint White Paper 4th.pdf, June 2006.

[3] D. Agrawal, J. Giles, K. Lee, and J. Lobo, “Policy ratification,” in
Policies for Distributed Systems and Networks, 2005. Sixth IEEE Int.
Workshop, T. Priol and M. Vanneschi, Eds., June 2005, pp. 223– 232.

[4] A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas, V. Vlassov, and
P. Brand, “Enabling self-management of component based distributed
applications,” in From Grids to Service and Pervasive Computing,
T. Priol and M. Vanneschi, Eds. Springer, July 2008, pp. 163–174.

[5] Niche homepage. [Online]. Available: http://niche.sics.se/
[6] A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas, V. Vlassov,

and P. Brand, “Distributed control loop patterns for managing distributed
applications,” in Second IEEE International Conference on Self-Adaptive
and Self-Organizing Systems Workshops (SASOW 2008), Venice, Italy,
Oct. 2008, pp. 260–265.

[7] E. Bruneton, T. Coupaye, and J.-B. Stefani, “The fractal component
model,” France Telecom R&D and INRIA, Tech. Rep., Feb. 5 2004.

[8] Oasis extensible access control markup language (xacml) tc.
[Online]. Available: http://www.oasis-open.org/committees/tc home.
php?wg abbrev=xacml#expository

[9] Sun’s xacml programmers guide. [Online]. Available: http://sunxacml.
sourceforge.net/guide.html

[10] Spl language reference. [Online]. Available: http://incubator.apache.org/
imperius/docs/spl reference.html

[11] D. Agrawal, S. Calo, K.-W. Lee, J. Lobo, and T. W. Res., “Issues
in designing a policy language for distributed management of it in-
frastructures,” in Integrated Network Management, 2007. IM ’07. 10th
IFIP/IEEE International Symposium, June 2007, pp. 30–39.

[12] IBM, “Use policy management for autonomic computing,”
https://www6.software.ibm.com/developerworks/education/ac-guide/ac-
guide-pdf.pdf, April 2005.

[13] D. Kaminsky, “An introduction to policy for autonomic computing,”
http://www.ibm.com/developerworks/autonomic/library/ac-policy.html,
March 2005.

[14] K. Twidle, N. Dulay, E. Lupu, and M. Sloman, “Ponder2: A policy
system for autonomous pervasive environments,” in Autonomic and
Autonomous Systems, 2009. ICAS ’09. Fifth International Conference,
April 2009, pp. 330–335.


