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Abstract—Achieving self-management can be challenging,
particularly in dynamic environments with resource churn
(joins/leaves/failures). Dealing with the effect of churn on man-
agement increases the complexity of the management logic and
thus makes its development time consuming and error prone. We
propose the abstraction of robust management elements (RMEs),
which are able to heal themselves under continuous churn. Using
RMEs allows the developer to separate the issue of dealing with
the effect of churn on management from the management logic.
This facilitates the development of robust management by making
the developer focus on managing the application while relying
on the platform to provide the robustness of management. RMEs
can be implemented as fault-tolerant long-living services.

We present a generic approach and an associated algorithm to
achieve fault-tolerant long-living services. Our approach is based
on replicating a service using finite state machine replication
with a reconfigurable replica set. Our algorithm automates the
reconfiguration (migration) of the replica set in order to tolerate
continuous churn. The algorithm uses P2P replica placement
schemes to place replicas and uses the P2P overlay to monitor
them. The replicated state machine is extended to analyze
monitoring data in order to decide on when and where to
migrate. We describe how to use our approach to achieve robust
management elements. We present a simulation-based evaluation
of our approach which shows its feasibility.

Keywords-autonomic computing; distributed systems; self-
management; replicated state machines; service migration; P2P.

I. INTRODUCTION

Autonomic computing [1] is a paradigm to deal with

management overhead of complex systems by making them

self-managing. Self-management can be achieved through au-

tonomic managers [2] that monitor the system and act accord-

ingly. In our previous work, we have developed a platform

called Niche [3], [4] that enables one to build self-managing

large-scale distributed systems. An autonomic manager in

Niche consists of a network of management elements (MEs)

each of which can be responsible for one or more roles of the

MAPE loop [2]: Monitor, Analyze, Plan, and Execute. MEs

are distributed and interact with each other through events.

Large-scale distributed systems are typically dynamic with

resources that may fail, join, or leave the system at any

time (resource churn). Constructing autonomic managers in

environments with high resource churn is challenging because

MEs need to be restored with minimal disruption to the

autonomic manager, whenever the resource (where an ME

executes) leaves or fails. This challenge increases if the MEs

are stateful because the state needs to be maintained.

We propose the Robust Management Element (RME) ab-

straction that allows simplifying the development of robust

autonomic managers that can tolerate resource churn, and thus

self-managing large-scale distributed systems. With RMEs,

developers of self-managing systems can assume that manage-

ment elements never fail. An RME 1) is replicated to ensure

fault-tolerance; 2) tolerates continuous churn by automatically

restoring failed replicas on other nodes; 3) maintains its state

consistent among replicas; 4) provides its service with minimal

disruption in spite of resource churn (high availability), and 5)

is location transparent, i.e. RME clients communicate with it

regardless of current location of its replicas. Because we target

large-scale distributed environments with no central control, all

algorithms of the RME abstraction should be decentralized.

In this paper, we present our approach to implement RMEs

which is based on state machine replication [5] combined with

automatic reconfiguration of replica set. Replication by itself

is insufficient to guarantee long-term fault-tolerance under

continuous churn, as the number of failed nodes hosting ME

replicas, and hence the number of failed replicas, will increase

over time, and eventually RME will stop. Therefore, we use

service migration [6] to enable the reconfiguration of the

set of nodes hosting ME replicas. Using service migration,

new nodes can be introduced to replace the failed ones. We

propose a decentralized algorithm that will use migration to

automatically reconfigure the set of nodes hosting ME replicas.

This will guarantee that RME will tolerate continuous churn.

The major contributions of this paper are:

• The use of Structured Overlay Networks (SONs) [7] to

monitor the nodes hosting replicas in order to detect

changes that may require reconfiguration. SONs are also

used to determine replica location using replica placement

schemes such as symmetric replication [8].

• The replicated state machine, beside replicating a service,

receives monitoring information and uses it to construct

a new configuration and to decide when to migrate.

• A decentralized algorithm that automates the reconfigu-

ration of the replica set in order to tolerate continuous

resource churn.
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The remainder of the paper is organised as follows. Sec-

tion II presents necessary background. In Section III we

describe our decentralized algorithm to automate the reconfig-

uration process. Section IV describes how our approach can be

applied to achieve RMEs in Niche. In Section V we discuss our

experimental results. Related work is discussed in Section VI.

Finally, Section VII presents conclusions and our future work.

II. BACKGROUND

This section presents the necessary background to our

approach and algorithms presented in this paper, namely: The

Niche platform, SON and symmetric replication, replicated

state machines, and an approach to migrate stateful services.

A. Niche Platform

Niche [3] is a distributed component management system

that implements the autonomic computing architecture [2].

Niche includes a programming model, APIs, and a runtime

system. The main objective of Niche is to enable and to

achieve self-management of component-based applications de-

ployed in a dynamic distributed environment where resources

can join, leave, or fail. A self-managing application in Niche

consists of functional and management parts. Functional com-

ponents communicate via interface bindings, whereas manage-

ment components communicate via a publish/subscribe event

notification mechanism.

The Niche runtime environment is a network of containers

hosting functional and management components. Niche uses a

Chord [7]-like structured overlay network (SON) as its com-

munication layer. The SON is self-organising on its own and

provides overlay services such as address lookup, Distributed

Hash Table (DHT) and a publish/subscribe mechanism for

event dissemination. Niche provides higher-level communica-

tion abstractions such as name-based bindings to support com-

ponent mobility, dynamic component groups, one-to-any and

one-to-all group bindings, and event based communication.

B. Structured Overlay Networks and Symmetric Replication

Structured Overlay Networks (SONs) are known for their

self-organisation and resilience under churn [9]. We assume

the following model of SONs and their APIs. In the model,

SON provides the lookup operation to locate items on the

network. For example, items can be data items for DHTs,

or some compute facilities that are hosted on individual

nodes in a SON. We say that the node hosting or providing

access to an item is responsible for that item. Both items

and nodes posses unique SON identifiers that are assigned

from the same identifier space. The SON automatically and

dynamically divides the responsibility between nodes such

that for every SON identifier there is always a responsible

node. The lookup operation returns the address of a node

responsible for a given SON identifier. Because of churn,

node responsibilities change over time and, thus, lookup can

return over time different nodes for the same item. In practical

SONs, the lookup operation can also occasionally return

wrong (inconsistent) results due to churn. Furthermore, SON

can notify application software running on a node when the

responsibility range of the node changes. When responsibility

changes, items need to be moved between nodes accordingly.

In Chord-like SONs the identifier space is circular, every

node is responsible for items with identifiers in the range

between the identifier of its predecessor and its own identifier.

Such a SON naturally provides for symmetric replication

of items on the SON, where replica identifiers are placed

symmetrically around the identifier space circle.

Symmetric Replication [8] is a scheme used to determine

replica placement in SONs. Given an item identifier i, a

replication degree f , and the size of the identifier space N ,

symmetric replication is used to calculate the identifiers of the

item’s replicas. The identifier of the x-th (1 ≤ x ≤ f ) replica

of the item i is computed as follows:

r(i, x) = (i+ (x− 1)N/f) mod N (1)

C. Replicated State Machines

A common way to achieve high availability of a service is to

replicate it on several nodes. Replicating stateless services is

relatively simple and is not considered here. A common way to

replicate stateful services is to use the replicated state machine

approach [10]. Using this approach requires the service to be

deterministic. A set of deterministic services will have the

same state change and produce the same output given the same

sequence of inputs and the same initial state. This implies

that sources of nondeterminism, such as local clocks, random

numbers, and multi-threading, should be avoided.

Replicated state machines can use the Paxos [11] consensus

algorithm to ensure that all service replicas execute the same

input requests in the same order. Paxos relies on a leader

election algorithm, such as [12], to elect one of the replicas

as the leader. The leader determines the order of requests by

proposing slot numbers for requests. Paxos assigns requests to

slots. Several requests can be processed by Paxos concurrently.

Replicas execute an assigned request after all requests assigned

to previous slots have been executed. Paxos can tolerate replica

failures and still operate correctly as long as the number of

failures is less than half of the total number of replicas.

D. Migrating Stateful Services

SMART [6] is a technique for changing the set of nodes

where a replicated state machine runs, i.e. for migrating the

service to a new set of nodes. A fixed set of nodes, where a

replicated state machine runs, is called a configuration.

SMART is built on the migration technique proposed by

Lamport [11] where the configuration is kept as a part of the

service state. Migration to a new configuration proceeds by

executing a special state-change request that describes the con-

figuration change. Lamport also proposed to delay the effect

of the configuration change (i.e., using the new configuration)

for α slots after the state-change request have been executed.

This improves performance by allowing to assign concurrently

α more requests in the current configuration.

SMART provides a complete treatment of Lamport’s idea,

but it does not provide a specific algorithm for automatic
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configuration management. SMART also allows to replace

non-failed nodes, enabling configuration management that

occasionally removes working nodes due to, e.g., an imperfect

failure detector.

The central idea in SMART is the configuration-specific

replicas. SMART preforms service migration from a config-

uration conf1 to a new configuration conf2 by creating a

new independent set of replicas for conf2 that run, for a

while, in parallel with replicas in conf1. The first slot of

conf2 is assigned to be the next slot after the last slot of

conf1. The replicas in conf1 are kept long enough to ensure

that conf2 is established and replica state is transferred to

new nodes. This simplifies the migration process and helps

SMART to overcome limitations of other techniques. Nodes

that carry replicas in both conf1 and conf2 keep a single

copy of replica state per node. The state shared by replicas of

different configurations is maintained by a so-called execution

module. Each configuration runs its own instance of the Paxos

algorithm independently without sharing. Thus, from the point

of view of the replicated state machine instance, it looks like

as if the Paxos algorithm is running on a static configuration.

III. AUTOMATIC RECONFIGURATION OF REPLICA SETS

In this section we present our approach and associated

algorithms to achieve robust services. Our approach automates

the process of selecting a replica set (configuration) and the de-

cision of migrating to a new configuration in order to provide

a robust service that can tolerate continuous resource churn

and run for long periods of time without the need of human

intervention. The approach uses the replicated state machine

technique, migration support, and the symmetric replication

scheme. Our approach was mainly designed to provide the

Robust Management Elements (RMEs) abstraction which is

used to achieve robust self-management. An example is our

platform Niche [3], [4] where this approach can be applied

directly and RMEs can be used to build robust autonomic

managers. However, we believe that our approach is generic

enough to be used to achieve other robust services.

We assume that the environment that will host the Repli-

cated State Machines (RSMs) consists of a number of nodes

forming a Structured Overlay Network (SON) that may host

multiple RSMs. Each RSM is identified by a constant ID (de-

noted RSMID) drawn from the SON identifier space. RSMID

permanently identifies an RSM regardless of the number of

nodes in the system and node churn that causes reconfiguration

of the replica set. Given an RSMID and the replication degree,

the symmetric replication scheme is used to calculate the

SON ID of each replica. The replica SON ID determines the

node responsible for hosting the replica. This responsibility,

unlike the replica ID, is not fixed and may changes over

time due to churn. Clients that send requests to the RSM

need to know only its RSMID and replication degree. With

this information clients can calculate identifiers of individual

replicas using the symmetric replication scheme, and locate the

nodes currently responsible for the replicas using the lookup

operation provided by the SON. Most of the nodes found in

this way will indeed host the RSM replicas, but not necessarily

all of them because of lookup inconsistency and churn.

Fault-tolerant consensus algorithms like Paxos require a

fixed set of known replicas that we call configuration. Some

of replicas, though, can be temporarily unreachable or down

(the crash-recovery model). The SMART protocol extends the

Paxos algorithm to enable explicit reconfiguration of replica

sets. Note that RSMIDs cannot be used for neither of the

algorithms because the lookup operation can return over time

different sets of nodes. In the algorithm we contribute for

management of replica sets, individual RSM replicas are

mutually identified by their addresses which in particular

do not change under churn. Every single replica in a RSM

configuration knows addresses of all other replicas in the RSM.

The RSM, its clients and the replica set management algo-

rithm work roughly as follows. A dedicated initiator chooses

RSMID, performs lookups of nodes responsible for individual

replicas and sends to them a request to create RSM replicas.

Note the request contains RSMID, replication degree, and the

configuration consisting of all replica addresses, thus newly

created replicas perceive each other as a group and can

communicate with each other directly withoud relying on the

SON. RSMID is also distributed to future RSM clients.

Because of churn, the set of nodes responsible for individual

RSM replicas changes over time. In response, our distributed

configuration management algorithm creates new replicas on

nodes that become responsible for RSM replicas, and eventu-

ally deletes unused ones. The algorithm consists of two main

parts. The first part runs on all nodes of the overlay and is

responsible for monitoring and detecting changes in the replica

set caused by churn. This part uses several sources of events

and information, including SON node failure notifications,

SON notifications about change of responsibility, and requests

from clients that indicates the absence of a replica. Changes

in the replica set (e.g. failure of a node that hosted a replica)

will result in a configuration change request that is sent to

the corresponding RSM. The second part is a special module,

called the management module, that is dedicated to receive

and process monitoring information (the configuration change

requests). The module use this information to construct a

configuration and also to decide when it is time to migrate

(after a predefined number of changes in the configuration).

We discuss the algorithm in greater detail in the following.

A. Configurations and Replica Placement Schemes

All nodes in the system are part of SON as shown in

Fig. 1. The RSM that represents the service is assigned an

RSMID from the SON identifier space of size N . The set

of nodes that will form a configuration are selected using the

symmetric replication scheme [8]. The symmetric replication,

given the replication factor f and the RSMID, is used to

calculate the Replica IDs according to equation 1. Using the

lookup() operation, provided by the SON, we can obtain

the IDs and direct references (IP address and port) of the

responsible nodes. These operations are shown in Algorithm 1.

The rank of a replica is the parameter x in equation 1. A
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Fig. 1. Replica Placement Example: Replicas are selected according to the
symmetric replication scheme. A Replica is hosted (executed) by the node
responsible for its ID (shown by the arrows). A configuration is a fixed set
of direct references (IP address and port) to nodes that hosted the replicas at
the time of configuration creation. The RSM ID and Replica IDs are fixed
and do not change for the entire life time of the service. The Hosted Node
IDs and Configuration are only fixed for a single configuration. Black circles
represent physical nodes in the system.

Algorithm 1 Helper Procedures

1: procedure GETCONF(RSMID)

2: ids[ ]← GETREPLICAIDS(RSMID) ⊲ Replica Item IDs

3: for i← 1, f do refs[i]← LOOKUP(ids[i])
4: end for

5: return refs[ ]
6: end procedure

7: procedure GETREPLICAIDS(RSMID)

8: for x← 1, f do ids[x]← r(RSMID, x) ⊲ See equation 1

9: end for

10: return ids[ ]
11: end procedure

configuration is represented by an array of size f . The array

holds direct references (IP and port) to the nodes that form

the configuration. The array is indexed from 1 to f , and

each element contains the reference to the replica with the

corresponding rank.

The use of direct references, instead of using lookup oper-

ations, as the configuration is important for our approach to

work for two reasons. First reason is that we can not rely on the

lookup operation because of the lookup inconsistency problem.

The lookup operation, used to find the node responsible for an

ID, may return incorrect references. These incorrect references

will have the same effect in the replication algorithm as

node failures even though the nodes might be alive. Thus the

incorrect references will reduce the fault tolerance of the repli-

cation service. Second reason is that the migration algorithm

requires that both the new and the previous configurations

coexist until the new configuration is established. Relying on

lookup operation for replica_IDs may not be possible. For

example, in Fig. 1, when a node with ID = 5 joins the overlay

it becomes responsible for the replica SM_r4 with ID = 2.

Shared Execution Module

Paxos 1 Paxos 2 Paxos 3

1 2 3 ... ... ...

Service
State

Conf 1
Conf 2
Conf 3

assign
requests
to slots

State

Slots

sequentially
execute requests

R1
FirstSlot

R1
LastSlot

R3
FirstSlot

R2
FirstSlot

R2
LastSlot

Input

Output

Paxos,
Leader Election, and
Migration Messages

Service Specific Module Management Module

Fig. 2. State Machine Architecture: Each machine can participate in
more than one configuration. A new replica instance is assigned to each
configuration. Each configuration is responsible for assigning requests to
a none overlapping range of slot. The execution module executes requests
sequentially that can change the state and/or produce output.

A correct lookup(2) will always return 5. Because of this,

the node 7, from the previous configuration, will never be

reached using the lookup operation. This can also reduce the

fault tolerance of the service and prevent the migration in the

case of large number of joins.

Nodes in the system may join, leave, or fail at any time

(churn). According to the Paxos, a configuration can survive

the failure of less than half of the nodes in the configuration.

In other words, f/2+1 nodes must be alive for the algorithm

to work. This must hold independently for each configuration.

After a new configuration is established, it is safe to destroy

instances of older configurations.

Due to churn, the responsible node for a certain replica

may change. For example in Fig.1 if node 20 fails then

node 22 becomes responsible for identifier 18 and should

host SM_r2. The algorithms described below automate the

migration process by detecting the change and triggering a

ConfChange request. The ConfChange request will be

handled by the state machine and will eventually cause it to

migrate to a new configuration.

B. State Machine Architecture

The replicated state machine (RSM) consists of a set of

replicas, which forms a configuration. Migration techniques

can be used to change the configuration. The architecture of

a replica, shown Fig. 2, uses the shared execution module

optimization presented in [6]. This optimization is useful

when the same replica participates in multiple configurations.

The execution module executes requests. The execution of a

request may result in state change, producing output, or both.

The execution module should be deterministic. Its outputs and

states must depend only on the sequence of input and the
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initial state. The execution module is also required to support

checkpointing which enables state transfer between replicas.

The execution module is divided into two parts: the service

specific module and the management module. The service spe-

cific module captures the logic of the service and executes all

requests except the ConfChange request which is handled by

the management module. The management module maintains a

next configuration array that it uses to store ConfChange re-

quests in the element with the corresponding rank. After a pre-

defined threshold of the number and type (join/leave/failure)

of changes, the management module decides that it is time to

migrate. It uses the next configuration array to update the cur-

rent configuration array resulting in a new configuration. After

that, the management module passes the new configuration

to the migration protocol to actually preform the migration.

The reason to split the state into two parts is because the

management module is generic and independent of the service

and can be reused with different services. This simplifies

the development of the service specific module and makes

it independent from the replication technique. In this way

legacy services, that are already developed, can be replicated

without modification given that they satisfy execution module

constraints (determinism and checkpointing).

In a corresponding way, the state of a replica consists

of two parts: The first part is internal state of the service

specific module which is application specific; The second part

consists of the configurations. The remaining parts of the

replica, other than the execution module, are responsible to

run the replicated state machine algorithms (Paxos and Leader

Election) and the migration algorithm (SMART). As described

in the previous section, each configuration is assigned a

separate instance of the replicated state machine algorithms.

The migration algorithm is responsible for specifying the

FirstSlot and LastSlot for each configuration, starting

new configurations, and destroying old configurations after the

new configuration is established.

The Paxos algorithm guarantees liveness when a single

node acts as a leader, thus it relies on a fault-tolerant leader

election algorithm. Our system uses the algorithm described

in [12]. This algorithm guarantees progress as long as one of

the participating processes can send messages such that every

message obtains f timely (i.e. with a pre-defined timeout)

responses, where f is a algorithm’s constant parameter speci-

fying how many processes are allowed to fail. Note that the f
responders may change from one algorithm round to another.

This is exactly the same condition on the underlying network

that a leader in the Paxos itself relies on for reaching timely

consensus. Furthermore, the aforementioned work proposes an

extension of the protocol aiming to improve leader stability so

that qualified leaders are not arbitrarily demoted which causes

significant performance penalty for the Paxos protocol.

C. Replicated State Machine Maintenance

This section describes the algorithms used to create a

replicated state machine and to automate the migration process

in order to survive resource churn.

Algorithm 2 Replicated State Machine API

1: procedure CREATERSM(RSMID)

⊲ Creates a new replicated state machine

2: Conf [ ]← GETCONF(RSMID)
⊲ Hosting Node REFs

3: for i← 1, f do

4: sendto Conf [i] : INITSM(RSMID, i, Conf )

5: end for

6: end procedure

7: procedure JOINRSM(RSMID, rank)

8: SUBMITREQ(RSMID,ConfChange(rank,MyRef))

⊲ The new configuration will be submitted and assigned a slot to be executed

9: end procedure

10: procedure SUBMITREQ(RSMID, req)

⊲ Used by clients to submit requests

11: Conf [ ]← GETCONF(RSMID)
⊲ Conf is from the view of the requesting node

12: for i← 1, f do

13: sendto Conf [i] : SUBMIT(RSMID, i, Req)

14: end for

15: end procedure

1) State Machine Creation: A new RSM can be created

by any node by calling CreateRSM in Algorithm 2. The

creating node constructs the configuration using symmetric

replication and lookup operations. The node then sends an

InitSM message to all nodes in the configuration. Any node

that receives the message (Algorithm 5) starts a state machine

(SM) regardless of its responsibility. Note that the initial

configuration, due to lookup inconsistency, may contain some

incorrect references. This does not cause problems for the

RSM because all incorrect references in the configuration will

eventually be detected and corrected by our algorithms.

2) Client Interactions: A client that requires the service

provided by the RSM can be on any node in the system. The

client needs to know only the RSMID and the replication

degree to be able to send requests to the service. Knowing the

RSMID, the client can determine the current configuration

using equation 1 and lookup operations (See Algorithm 1).

In this way we avoid the need for an external configuration

repository that points to nodes hosting the replicas in the

current configuration. The client submits requests by calling

SubmitReq, shown in Algorithm 2, that sends the request

to all replicas in the current configuration. Due to lookup

inconsistency, that can happen either at the client side or the

RSM side, the client’s view of the configuration and the actual

configuration may differ. For the client to be able to submit

requests, the client’s view must overlap, at least at one node,

with the actual configuration. Otherwise, the request will fail

and the client can retry later. We assume that each request is

uniquely stamped and that duplicate requests are filtered. In

the current algorithm the client submits the request to all nodes

in the configuration. It is possible to optimise the number of

messages by submitting the request only to one node in the

configuration that will forward it to the current leader. The

trade off is that sending to all nodes increases the probability

of the request reaching the RSM . This reduces the negative

effects of lookup inconsistencies and churn on the availability

of the service. Clients may also cache the reference to the

current leader and use it directly until the leader changes.
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Algorithm 3 Execution

1: receipt of SUBMIT(RSMID, rank,Req) from m at n

2: SM ← SMs[RSMID][rank]
3: if SM 6= φ then ⊲ Node is hosting the replica

4: if SM.leader = n then SM.schedule(Req) ⊲ Paxos schedule it

5: else ⊲ forward the request to the leader

6: sendto SM.leader : SUBMIT(RSMID, rank,Req)

7: end if

8: else ⊲ Node is not hosting the replica

9: if r(RSMID, rank) ∈]n.predecessor, n] then ⊲ I’m responsible

10: JOINRSM(RSMID, rank) ⊲ Fix the configuration

11: else ⊲ I’m not responsible

12: DONOTHING ⊲ This is probably due to lookup inconsistency

13: end if

14: end if

15: end receipt

16: procedure EXECUTESLOT(req) ⊲ The Execution Module

17: if req.type = ConfChange then ⊲ The Management Module

18: nextConf [req.rank]← req.id

⊲ Update the candidate for the next configuration

19: if nextConf.changes = threshold then

20: newConf ← UPDATE(CurrentConf,NextConf)

21: SM.migrate(newConf)
⊲ SMART will set LastSlot and start new configuration

22: end if

23: else ⊲ The Service Specific Module handles all other requests

24: ServiceSpecificModule.Execute(req)
25: end if

26: end procedure

3) Request Execution: The execution of client requests is

initiated by receiving a submit request from a client and

consists of three steps: checking if the node is responsible

for the RSMID in the request, scheduling the request, and

executing it. These steps are shown in Algorithm 3.

When a node receives a request from a client it will first

check, using the RSMID in the request, if it is hosting the

replica to which the request is directed to. If this is the case,

then the node will submit the request to that replica. The

replica will try to schedule the request for execution if the

replica believes that it is the leader. Otherwise the replica

will forward the request to the leader. The scheduling is done

by assigning the request to a slot that is agreed upon among

all replicas in the configuration (using the Paxos algorithm).

Meanwhile, the execution module executes scheduled requests

sequentially in the order of their slot numbers.

On the other hand, if the node is not hosting a replica

with the corresponding RSMID, it will proceed with one

of the following two scenarios. In the first scenario, it may

happen due to lookup inconsistency that the configuration

calculated by the client contains some incorrect references.

In this case, a incorrectly referenced node ignores client

requests (Algorithm 3 line 12) because it is not responsible

for the target RSM. In the second scenario, it is possible

that the client’s view is correct but the current configuration

contains some incorrect references. In this case, the node that

discovers, through the client request, that it was supposed

to be hosting a replica will attempt to correct the current

configuration by sending a ConfChange request replacing

the incorrect reference with the reference to itself (Algorithm 3

line 10). At execution time, the execution module will direct

all requests except the ConfChange request to the service

specific module for execution. The ConfChange will be

Algorithm 4 Churn Handling

1: procedure NODEJOIN ⊲ Called by SON after the node joined the overlay

2: sendto successor : PULLSMS(]predecessor,myId])
3: end procedure

4: procedure NODELEAVE

sendto successor : NEWSMS(SMs) ⊲ Transfer all hosted SMs to Successor

5: end procedure

6: procedure NODEFAILURE(newPredID, oldPredID)

⊲ Called by SON when the predecessor fails

7: I ←
⋃

f

x=2
]r(newPredID, x), r(oldPredID, x)]

8: multicast I : PULLSMS(I)

9: end procedure

Algorithm 5 SM maintenance (handled by the container)

1: receipt of INITSM(RSMID,Rank,Conf ) from m at n

2: new SM ⊲ Creates a new replica of the state machine

3: SM.ID ← RSMID

4: SM.Rank ← Rank ⊲ 1 ≤ Rank ≤ f

5: SMs[RSMID][Rank]← SM ⊲ SMs stores all SM that node n is hosting

6: SM.Start(Conf) ⊲ This will start the SMART protocol

7: end receipt

8: receipt of PULLSMS(Intervals) from m at n

9: for each SM in SMs do

10: if R(SM.id, SM.rank) ∈ I then

11: newSMs.add(SM)
12: end if

13: end for

14: sendto m : NEWSMS(newSMs)

15: end receipt

16: receipt of NEWSMS(NewSMs) from m at n

17: for each SM in NewSMs do

18: JOINRSM(SM.id, SM.rank)

19: end for

20: end receipt

directed to the management module for processing.

4) Handling Churn: Algorithm 4 contains procedures to

maintain the replicated state machine when a node joins,

leaves, or fails. When any of these events occur, a new node

might become responsible for hosting a replica. In the case of

node join, the new node will send a message to its successor

to get information (RSMID and replication degree) about any

replicas that the new node should be responsible for. In the

case of leave, the leaving node will send a message to its

successor containing information about all replicas that it was

hosting. In the case of failure, the successor of the failed node

needs to discover if the failed node was hosting any replicas.

This can be done in a proactive way by checking all intervals

(Algorithm 4 line 7) that are symmetric to the interval that the

failed node was responsible for. One way to achieve this is by

using range-cast that can be efficiently implemented on SONs,

e.g., using bulk operations [8]. The discovery can also be done

lazily using client requests as described in the previous section

and Algorithm 3 line 10.

In all three cases described above, newly discovered replicas

are handled by NewSMs (Algorithm 5). The node will request

a configuration change by joining the corresponding RSM for

each new replica. Note that the configuration size is fixed to f .

A configuration change means replacing reference at position

r in the configuration array with the reference of the node

requesting the change.
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IV. ROBUST MANAGEMENT ELEMENTS IN NICHE

The proposed approach with corresponding algorithms, de-

scribed in the previous section, allows meeting the require-

ments of the Robust Management Element (RME) abstraction

specified in Section I. It can be used to implement the RME

abstraction in Niche in order to achieve robustness and high

availability of autonomic managers in spite of churn. An

autonomic manager in Niche is constructed from a set of

management elements (MEs). A robust management element

can be implemented by wrapping an ordinary ME inside a state

machine which is transparantly replicated by the RME support

added to the Niche platform. The ME will serve as the service-

specific module shown in Fig. 2. However, to be able to use

this approach, the ME must follow the same constraints as the

execution module, that is the ME must be deterministic and

provide checkpointing. The clients (e.g., sensors) need only to

know the RME identifier to be able to use an RME regardless

of the location of individual replicas. The RME support in

the Niche platform will facilitate development of applications

with robust self-management.

V. PROTOTYPE AND EVALUATION

In this section, we present a simulation-based performance

evaluation of our approach for replicating and maintaining

stateful services in various scenarios. In evaluating the per-

formance, we are mainly interested in measuring the request

latency and the number of messages exchanged by our al-

gorithms. The evaluation is divided in three main categories:

critical path evaluation, failure recovery evaluation, and eval-

uation of the overheads associated with the leader election.

To evaluate the performance of our approach and to show

the practicality of our algorithms, we built a prototype imple-

mentation of Robust Management Elements using the Kompics

component model [13]. Kompics is a framework for building

and evaluating distributed systems in simulation, local execu-

tion, and distributed deployments. In order to make network

simulation more realistic, we used the King latency dataset,

available at [14], that measures the latencies between DNS

servers using the King [15] technique. For the underlying

SON, we used Chord implementation provided by Kompics.

To evaluate the performance of our algorithms in various

churn scenarios, we have used the lifetime-based node failure

model [9], [16] with the shifted Pareto lifetime Distribution.

A. Methodology

In the simulation scenarios described below, we assumed

one stateful service (a Robust Management Element) and

several clients (sensors and actuators). A client represents

both a sensor and an actuator. The service is replicated using

our approach. For simplicity but without losing generality,

the service is implemented as an aggregator that accumulates

integer values received from clients and replies with the

current aggregated value which is the state of the service.

A client request (containing a value) represents monitoring

information whereas a service response represents an actuation

command. Each client repeatedly sends requests to the service.

Upon receiving a client request, the service performs all the

actions related to the replicated state machine, makes a state

transition, and sends the response to the requesting client.

There are various factors in a dynamic distribution environ-

ment that can influence the performance of our approach. The

input parameters to the simulator include:

• Numeric (architectural) parameters:

– Overlay size: in the rage of 200 to 600 nodes;

– Number of services (management elements): 1;

– Number of clients: 4;

– Replication degree: varies from 5 to 25;

– Failure threshold: this is the number of failures that

will cause the RSM to migrate. This can range from

1 to strictly less than half of the number of replicas.

• Timing (operational) parameters

– Shifted Pareto distribution of client requests with a

specified mean time between consecutive requests. In

the simulations we used four clients each with mean

time between requests of 4 seconds. This gives the

total mean time of 1 second between requests from

all four clients to the service.

– Shifted Pareto distribution of node life time with a

specified mean to model churn. We modeled three

levels of churn: high churn rate (mean life time of

30 minutes), medium churn rate (90 minutes), low

churn rate (150 minutes).

In our experiments, we have enabled pipelining of requests

(by setting α to 10) as suggested by SMART [6], i.e., up to

10 client requests can be handled concurrently. In all plots,

unless otherwise stated, we simulated 8 hours. The plot is the

average of 10 independent runs with standard deviation bars.

In our simulation, we have evaluated how the performance

of the proposed algorithms depends on the replication degree

(the number of replicas) and the overlay size (the number of

physical nodes). The overlay size affects the performance (time

and message complexity) of overlay operations [8], namely,

lookup and range-cast, used by our algorithms in the following

three cases: (1) when creating the initial RSM configuration

that is done only once, (2) when looking up the current

configuration, and (3) when performing failure recovery. The

intensity of configuration lookups depends on the churn rate,

and it can be reduced by caching the lookup results (configu-

ration). The intensity of failure recovery depends on the failure

rate. Therefore, if the rate of churn (including failures) is lower

than the client request rate, the performance of our approach

mostly depends on the replication degree rather than on the

overlay size. This is because the overlay operations happen

relatively rarely. With increasing the overlay size, we expect

our approach to scale due to the logarithmic scalability of the

overlay operations.

In our experiments, we assumed a reasonable load (the

request rate) on the system, and churn rates which are lower

than the client request rate. We simulated overlays with

hundreds of nodes. Study of systems with larger scales and/or

extreme values of load and churn rates is in our future work.
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 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20  25  30

M
e
s
s
a
g
e
 O

v
e
rh

e
a
d
 p

e
r 

R
e
p
lic

a
 P

e
r 

M
in

u
te

Replication Degree

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

average(noReplication)

(c) Messages/minute vs. replication degree
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(d) Request latency vs. replication degree

 1080

 1100

 1120

 1140

 1160

 1180

 1200

 1220

 1240

 1260

 0  2  4  6  8  10  12  14

M
e
s
s
a

g
e
 O

v
e

rh
e
a
d

 p
e
r 

R
e

p
lic

a
 P

e
r 

M
in

u
te

Failure Threshold

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

(e) Messages per minute vs. failure threshold
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(f) Request latency vs. overlay size

Fig. 3. Request latency and message overhead

We use more than one client in order to get a better average of

client-server communication latency. The mean time between

requests of 1 sec was selected (via testing experiments) as a

reasonable workload that does not overload the system.

The baseline in our evaluation is the system with no repli-

cation and no churn. We expect that the baseline system has

better performance compared to the performance of a system

with replication and with/without churn. This is because the

replication mechanism as well as migration caused by churn

introduce overhead. There are three kinds of overhead in the

system: (i) Paxos (which happens upon arrival of requests to

RSM), (ii) RSM migration (which happens upon churn), and

(iii) the leader election algorithm (which runs continuously).

All the overheads cause increase in the number of messages

and may cause performance degradation. In our experiments

described below we compare performance of different system

configurations (overlay size and replication degree) and differ-

ent churn rates against the baseline system configuration with

no replication and no churn (hence no migration).

B. Simulation Scenarios

1) Request Critical Path: In this series of experiments we

study the effect of various input parameters on the performance

(the request latency and the number of messages) of handling

client requests. The request critical path includes sending the

request, Paxos, migration, and receiving the reply.

The effect of churn on performance (request latency) is

minimal. Fig. 3(a) depicts latencies of requests submitted by

a single client during 8 hours in a system with a high churn

rate. Out of more than 7000 requests, only less than 20 requests

were severely affected by churn. The spikes happen when the

leader in the Paxos algorithm fails. This is because Paxos can

not proceed until a new leader is elected. The average number

of leader failures during 8 hours is shown in Fig. 3(b). This

can help to estimate the number of such spikes that can happen

in a system with a specified replication degree and churn rate.

The time to detect the failure of the current leader and elect

a new leader is maximum 10 seconds according to the leader

election parameters used in the simulations. During this time

any request that arrives at the RSM will be delayed. If non-

leader fails, the RSM is not affected as long as the total number

of failed replicas is less than the failure threshold parameter.

If the number of failed replicas is at least the value of the

failure threshold parameter then a migration will happen. On

average a migration takes 300 milliseconds to complete.

Using our approach increases the number of critical path

messages needed to handle a request compared to the number

of messages in the baseline (Fig. 3(c)). This is mainly because

of the Paxos messages needed to reach consensus for every

request. However, increasing the replication degree does not

significantly increase the number of messages per replica, as
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(a) Discovery delay vs. replication degree

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30

F
a

ilu
re

 R
e

c
o

v
e

ry
 O

v
e

rh
e

a
d

 p
e

r 
R

e
p

lic
a

 P
e

r 
M

in
u

te

Replication Degree

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

(b) Recovery messages vs. replication degree

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  5  10  15  20  25  30

E
L

D
 M

s
g

 O
v
e

rh
e

a
d

 p
e

r 
R

e
p

lic
a

 P
e

r 
M

in
u

te

Replication Degree

average(highchurn)
std div(highchurn)

average(mediumchurn)
std div(mediumchurn)

average(lowchurn)
std div(lowchurn)

average(nochurn)
std div(nochurn)

(c) Leader election overhead

Fig. 4. Failure recovery and leader election

can be seen in Fig. 3(c). The slight increase in the number of

messages, when the replication degree increases, is due to the

increase in the number of migrations. The number of messages

is also affected by the churn rate. This is because the higher

the churn rate is the higher the migration rate will be. On

the other hand, the request latency, as shown in Fig. 3(d), is

not affected by the replication degree because Paxos requires

two phases regardless of the number of replicas. Fig. 3(d) also

shows the overhead of our approach compared to the baseline.

The average number of critical path messages per request

is also affected by the failure threshold parameter as shown

in Fig. 3(e). A higher failure threshold results in the lower

number of messages caused by migration. This is because the

higher the failure threshold is, the lower the migration rate will

be. For example, with the threshold of 1, the RSM will migrate

immediately after one failure; whereas with the threshold of

10, it will wait for 10 replicas to fail before migrating. In

this experiment we used 25 replicas. Note that in this case the

maximum possible failure threshold is 12. In order to highlight

the effect of failure threshold on the message complexity, we

increased the request rate from 1 to 4 requests per second.

Our experiments for overlays with hundreds of nodes have

shown that the overlay size has minimal or no impact on the

request latency, as depicted in Fig. 3(f). The request latency

deviates when changing the overlay size. One of the possible

explanations could be a possible deviations in the average

communication latency due to the use of the King latency

dataset for network delay. This requires further study and more

simulation experiments.

In the above experiments we did not include the lookup

performed by clients to discover the configuration. This is

because it is not on the critical path, as clients may cache the

configuration. For this reason the performance is not affected

by the overlay size because all critical path messages are

passed over direct links rather that through the overlay.

2) Failure Recovery: When an overlay node fails, another

node (the successor) becomes responsible for any replicas

hosted by the failed node. The successor node needs to

discover if any replicas were hosted on the failed node. In the

simulation experiments we used overlay range-cast to do the

discovery. Note that this process is not on the critical path for

processing client requests since both can happen in parallel.

Fig. 4(a) depicts the discovery delay for various replication

degrees. The discovery delay decreases when the number of

replicas increases. This is because it is enough to discover

only one replica, and it takes shorter time to find a replica in

a system with a higher replication degree, as the probability

to find a replica which is close (in terms of link latency and/or

overlay hops) to the requesting node is higher. As shown in

Fig. 4(b), a higher churn rate requires more failure recovery

and thus causes higher message overhead.

3) Other Overheads: Maintaining the SON introduces an

overhead in term of messages. We did not count these mes-

sages in our evaluation because they vary a lot depending on

the type of the overlay and the configuration parameters. One

important parameter is the failure detection period that affects

the delay between a node failure and the failure notification

issued by the SON. This delay is configurable and was not

counted when evaluating the fault recovery.

Another source of message overhead is the leader election

algorithm. Fig. 4(c) shows the average number of leader

election messages versus replication degree. The number of

messages increases linearly with increasing number of repli-

cas. This overhead is configurable and affects the period

between the leader failure and the election of a new leader.

In our simulation this period was configured to be maximum

10 seconds. This period is on the critical path and affects the

execution of requests as discussed in section V-B1.

VI. RELATED WORK

For the implementation of the RME abstraction we adopt

the replicated state machine approach [5] which is routinely

used to build stateful fault-tolerant algorithms and systems.

For consensus among replicas on the sequence of input events,

our implementation deploys the so-called ”Multi-Paxos” [11]

version of the Paxos protocol [11], [17] where all proposals

from the same leader until its demotion share one single

ballot. Other specialized versions of Paxos addressing latency
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and message complexity (e.g. [18], [19]) can clearly be used

instead when appropriate. If input events do not interfere with

each other and can be processed in any order yielding the

same results and replica state, the Generalized Consensus can

be used [20], similarly to relaxing the total order broadcast

with generic broadcast [21]. State machine replication can be

made tolerant to Byzantine failures [22].

For reconfiguration of the replicate state machine we use

the SMART approach [6] which builds on the original idea by

Lamport to treat the information about system configuration

explicitly as a part of its state [11]. Recently, Lamport also

proposed similar extensions to Paxos that enable system re-

configuration by transition through a series of explicit configu-

ration with well-defined policies on proposal numbering [23].

The major alternative way to ensure consistency among

replicas is to use a group communication protocol such as Vir-

tual Synchrony [24]. In a Virtual Synchrony system processes

(replicas in our case) are organized in groups, and messages

sent by group members arrive to all group members in the

same order; the system also notifies all group members about

joins and leaves of group members. Between membership

changes virtual synchrony systems would use a non-uniform

total order broadcast, while membership changes requires

fault-tolerant consensus. We could deploy our replica group

management protocol with state machine replication using a

group communication middleware, but from the practical point

of view it appeared to be simpler to implement from scratch

a version of reconfigurable Paxos.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed the concept of Robust Management

Elements (RMEs) which are able to heal themselves under

continuous churn. Using RMEs allows the developer to sep-

arate the issue of robustness of management from the actual

management mechanisms. This will simplify the construction

of robust autonomic managers. We have presented an approach

to achieve RMEs which uses replicated state machines and

relies on our proposed algorithms to automate replicated state

machine migration in order to tolerate churn. Our approach

uses symmetric replication, which is a replica placement

scheme used in structured overlay networks to decide on the

placement of replicas and uses SON to monitor them. The

replicated state machine is used, besides its main purpose of

providing the service, to process monitoring information and

to decide when to migrate. Although in this paper we discussed

the use of our approach to achieve RMEs, we believe that this

approach is generic and can be used to replicate other services.

In order to validate and evaluate our approach, we have

developed a prototype and conducted various simulation ex-

periments which have shown the validity and feasibility of our

approach. Evaluation has shown that the performance (latency

and number of messages) of our approach mostly depends on

the replication degree rather than on the overlay size.

In our future work, we will evaluate our approach on larger

scales and extreme values of load and churn rate. We will

optimise the algorithms in order to reduce the amount of

messages and improve performance. We intend to implement

our approach in the Niche platform to support RMEs in self-

managing distributed applications. Finally, we will try to apply

our approach to other problems in distributed computing.
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