
Scientific Computing Department
Faculty of Computer and Information Sciences
Ain Shams University

SECURITY OF GRID COMPUTING

ENVIRONMENTS

A Thesis Submitted to the Department of Scientific Computing, Faculty of Computer
and Information Sciences, Ain Shams University, in the Partial Fulfillment of the

Requirements for the Master Degree of Computer and Information Sciences

By:

Ahmad Mohammad Al-Shishtawy
B.Sc. Degree in Computer and Information Sciences

Demonstrator at Scientific Computing Department,

Faculty of Computer and Information Sciences,

Ain Shams University.

Supervised By:

Prof. Dr. Mohammed Fahmy Tolba
Professor at Scientific Computing Department,

Faculty of Computer and Information Sciences.

Vice president for education and student affairs,

Ain Shams University.

Prof. Dr. Mohammed Said Abdel-Wahab
Professor at Scientific Computing Department.

Ex-Dean of the Faculty of Computer and Information Sciences.

Head of Information Systems Department.

Ain Shams University.

Dr. Eng. Ismail Abd Elhamid Taha
Associate Professor at Military Technical College,

Cairo, Egypt.

Cairo 2006

Table of Contents
List of Abbreviations..iv
List of Figures..vii
List of Tables..ix
Acknowledgments...x
Abstract...xi
Chapter 1: Introduction..2

1.1 General Knowledge about the Field of Grid....................................2
1.2 Peer to Peer Computing..15
1.3 Problem Motivation..20
1.4 Objectives and Scope of Work...22
1.5 Thesis Organization..23

Chapter 2: Analysis of some Grid Architectures....................27
2.1 Globus..27
2.2 Legion...32
2.3 UNICORE..39
2.4 GridBus..45
2.5 Conclusion..51

Chapter 3: The Grid Security Infrastructure...........................53
3.1 Security Infrastructure..53
3.2 Evaluation of the Current Grid Security Infrastructure..................60
3.3 The Grid Research Project...66

3.3.1 The Signature Verification Problem.......................................68
3.3.2 The Signature Verification System Architecture...................69
3.3.3 Project Results..79
3.3.4 Project Conclusions..82

Chapter 4: Intrusion Detection..84
4.1 Introduction..84

i

4.2 The Anatomy of Intrusion Detection Systems...............................89
4.3 Network vs. Host Based Intrusion Detection.................................93
4.4 Anomaly Detection vs. Misuse Detection......................................97
4.5 Centralized vs. Distributed Intrusion Detection.............................99
4.6 Other Classifications and Attributes..102
4.7 Problems of Traditional Intrusion Detection Systems.................104
4.8 Conclusion..106

Chapter 5: The Proposed Grid Intrusion Detection
Architecture...108

5.1 Problem Definition...109
5.2 The Proposed Grid Intrusion Detection Architecture..................110

5.2.1 The Data Gathering Module...115
5.2.2 The Data Analysis Module...117

5.3 GIDA Compatibility with the Grid..120

Chapter 6: The proposed GIDA Implementation..................125
6.1 Simulating the Computational Grid...126
6.2 The Intrusion Detection Agent Implementation...........................128

6.2.1 The Simulation Problem Definition.....................................129
6.2.2 The Proposed Grid and IDA Simulator................................132

6.3 The Intrusion Detection Server Implementation..........................136
6.3.1 The Analysis and Detection Module....................................137
6.3.2 The Learning Vector Quantization.......................................140
6.3.3 Using LVQ for implementing IDSs.....................................144
6.3.4 The Cooperation Module..147

Chapter 7: Experimental Results...151
7.1 Evaluation Parameters and Test Approach..................................151
7.2 Data Preprocessing...153
7.3 Number of IDSs...163
7.4 Number of users...167
7.5 Number of resources..169
7.6 Number of intruders...172

Chapter 8: Conclusions and Future Work.............................176

ii

8.1 The Grid Environment...176
8.2 The Grid Intrusion Detection Architecture..................................177
8.3 The Grid Simulator..178
8.4 Results Summary...178
8.5 Future Work...179

Published Work...183
References..186

iii

List of Abbreviations

Abbreviation Meaning

AJO Abstract Job Object

API Application Programming Interface

ASU Ain Shams University

DAG Directed Acyclic Graph

DAM Data Analysis Module

DGM Data Gathering Module

DNS Domain Name Server or Domain Name System

GASS Globus Access to Secondary Storage

GGF Global Grid Forum

GIDA Grid Intrusion Detection Architecture

GIIS Grid Information Index Service

GIS Grid Information Service

GMD Grid Market Directory

GRAM Globus Resource Allocation Manager

GRIS Grid Resource Information Service

GSB Grid Service Broker

GSC Grid Service Consumer

GSI Grid Security Infrastructure

GSP Grid Service Provider

GUI Graphical User Interface

GWU George Washington University

IDA Intrusion Detection Agent

IDB Incarnation Data Base

IDE Integrated Development Environment

IDL Interface Description Language

iv

Abbreviation Meaning

IDS Intrusion Detection Server

IP Information Providers

IS Information Science

IT Information Technology

JMC Job Monitor Controller

JPA Job Preparation Agent

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LOA Legion object address

LOID Legion Object IDentifier

LVQ Learning Vector Quantization

MDS Monitoring and Discovery Service

MIR Magnetic Resonance Imaging

MPI Message Passing Interface

NIDS Network Intrusion Detection System

NJS Network Job Supervisor

OGSA Open Grid Services Architecture

OID Object IDentifier

OPR Object Persistent Representation

P2P Peer-to-Peer

PDA Personal Digital Assistant

PKI Public Key Infrastructure

QoS Quality of Service

RP Resource Proxy

RSA Rivest, Shamir, and Adleman, the inventors of the RSA
cryptosystem

RSL Resource Specification Language

v

Abbreviation Meaning

SDK Software Development Kit

SHTTP Secure Hyper Text Transfer Protocol

SOAP Simple Object Access Protocol

SPMD Single Program Multiple Dataset

SSL Secure Socket Layer

TCP/IP Transmission Control Protocol/Internet Protocol

TSI Target System Interface

UNICORE UNiform Interface to COmputer REsource

UP User Proxy

Usite UNICORE Grid site(s)

Uspace UNICORE space

UUDB UNICORE User Data Base

Vsites Virtual sites

WSDL Web Service Definition Language

XML eXtensible Markup Language

vi

List of Figures

Figure 1.1: The evolution of the Grid compared to the Internet...........5

Figure 1.2: The basic Grid services...8

Figure 1.3: The layered Grid architecture...11

Figure 2.1: The Globus ToolKit components......................................28

Figure 2.2: The Legion architecture..33

Figure 2.3: Legion object model and relationships.............................37

Figure 2.4: The UNICORE architecture...43

Figure 2.5: The GridBus architecture..46

Figure 3.1: A typical Grid security architecture..................................56

Figure 3.2: Grid applications, a typical example................................61

Figure 3.3: The old scenario..70

Figure 3.4: The modern scenario..72

Figure 3.5: The Grid scenario...76

Figure 3.6: Layout of available resources used in implementation.....78

Figure 4.1: Different security levels to protect a computer system....85

Figure 4.2: Access control mechanisms..87

Figure 4.3: Video cameras, by analogy, typical to intrusion detection

role in computer systems..88

Figure 4.4: Organization of a generalized intrusion detection system....

..90

Figure 4.5: Centralized intrusion detection.......................................100

Figure 4.6: Simple distributed intrusion detection............................101

Figure 4.7: Hierarchical distributed intrusion detection...................102

vii

Figure 5.1: The proposed Grid intrusion detection architecture.......111

Figure 5.2: The Data Gathering Module...116

Figure 5.3: Hierarchical view of the proposed GIDA.......................119

Figure 6.1: The simulated Grid and the IDA....................................131

Figure 6.2: The log file record format...133

Figure 6.3: A trust relationship tree..135

Figure 6.4: The analysis and detection module first utilize the

simulated data, then cooperate through the cooperation module.......136

Figure 6.5: The analyzing and detection module..............................145

Figure 7.1: Different possible types of windows..............................154

Figure 7.2: The effect of increasing the capacity of the fixed window

type...157

Figure 7.3: The effect of increasing the capacity of the fixed time

period window type..158

Figure 7.4: The effect of increasing the capacity of the hybrid window

type at size 10...159

Figure 7.5: The effect of increasing the capacity of the hybrid window

type at size 20...160

Figure 7.6: The effect of increasing the capacity of the hybrid window

type at size 30...161

Figure 7.7: The effect of increasing the number of the intrusion

detection servers...164

Figure 7.8: The effect of increasing the number of users..................168

Figure 7.9: The effect of increasing the number of resources...........171

Figure 7.10: The effect of increasing the number of intruders..........174

viii

List of Tables

Table 3.1: Execution time of experiments (in minutes) when the user

in Egypt..80

Table 3.2: Execution time of experiments (in minutes) when the user

in USA..81

Table 6.1: Different approaches to intrusion detection139

ix

Acknowledgments

I'd like to start by expressing my appreciation to Prof.
Dr. Essam Khalifa the dean of our faculty for providing us
with the appropriate climate for research by encouraging
researchers and supporting us with the needed resources.

I'm also grateful to my supervisor Prof. Dr. Mohamed
Fahmy Tolba for his guidance throughout my work by his
observations and comments that kept me focused on achieving
my goals.

I'd like to thank my supervisor Prof. Dr. Mohamed Said
Abdel-Wahab for continuous support, helpful ideas, time, and
encouragement. I also thank him for his efforts in fine-tuning
my work till its final state.

Also I thank Dr. Ismail Abd Elhamid Taha for being my
supervisor throughout my research and helping me with
correct directions and advices.

I'd like to thank my parents very much for raising me up
and helping me to be where I am now. I want also to tell them
that they are the best parents in the world.

Finally I greatly appreciate my wife Marwa for standing
by me and encouraging me to complete this work. Also big
thanks to my colleague and best friend Ahmad Anbar.

x

Abstract

With the rapid advance in science, engineering, and
business; people seek more computational power and
resources to solve their problems more efficiently in terms of
accuracy, time, and money. The field of Grid computing was
born to fill the gap between available technology and
increasing demand for computational power. The Grid
provides a powerful computational environment by coupling
distributed resources to enable seamless aggregation and
sharing to create more powerful resource. The term distributed
here does not refer only to geographical locations but also to
administration that may span multiple organizations.

Security issues were addressed from the beginning of
the Grid computing because of their importance to the success
of such field. Intrusion detection is an important component of
any modern security system because it is considered as a
second line of defense against bugs and security holes as well
as providing protection against insiders.

This thesis studies the problem of intrusion detection in
Grid environments since it is considered as an important
security issue. It introduces flexible cooperative distributed
intrusion detection architecture for computational Grids. This
work is based on the study of latest Grid projects and intrusion
detection systems to deliver an architecture that suits and
benefits form the underlying computational Grid environment.

xi

A prototype implementation of the proposed
architecture for the purposes of validation and verification is
also introduces. The presented prototype uses homogeneous
distributed intrusion detection servers that use the Learning
Vector Quantization (LVQ) neural network for classification
to detect intrusion cases if occurred.

The introduced prototype was tested against various
Grid environments with different organizations and
architectures through a Grid environment simulator that was
developed to suit the study of security and intrusion detection.
The test results showed the applicability of the proposed
system in Grid environments and also showed distinct
advances versus centralized systems. The thesis also presents
the different parameters that may affect the proposed intrusion
detection system showing and explaining their effects on the
overall system performance.

xii

C

h
ap

te
r

 1

Introduction

1.1 General Knowledge about the Field of Grid
1.2 Peer to Peer Computing
1.3 Problem Motivation
1.4 Objectives and Scope of Work
1.5 Thesis Organization

Chapter 1: Introduction

Chapter 1: Introduction

This chapter introduces the concept of the Grid and
presents how this field emerged. It describes the main
components and the special characteristics of a working Grid
environment that distinguishes it from other distributed or
peer-to-peer systems. The chapter continues by introducing the
motivation, objectives, and scope of work presented in this
thesis.

1.1 General Knowledge about the Field of Grid

The Grid concept began to appear in the mid 1990s [34],
it started as a project to link supercomputers at different sites
[54] to solve state-of-the-art science, engineering, and business
problems that did not fit on a single supercomputer either
because the problem size was large or because it required a
combination of different hardware and software that could not
be combined in a single supercomputer. Because of the rapid
advances in computers, high speed networks, and the Internet,
this project grew far beyond its initial plans and goals to
become what is now known as the Grid.

The Grid was inspired from the analogous advances in
the electrical grids [56]. It is believed that the real revolution,
which leads to the current advances in this area, was not
because the invention of electricity, but because of the

2

Chapter 1: Introduction

construction of electrical power grids that grow in size rapidly
to become international. After building the required
infrastructure – generators, wiring, wall plugs, etc... – the
consumers of electrical energy could satisfy their needs,
because the deployed electrical grid will provide a consistent,
dependable, reliable, pervasive, and relatively cheap source of
electricity. Otherwise consumers of electricity will have to
build their own generators (which the case nowadays for
computational power) and this is in most cases infeasible
because of the high costs, decrease of reliability and in some
cases not possible because for example some generators have
to be placed in special locations at waterfalls or wind.

Research in different fields in science and engineering is
faster than the advances in the computer technology, this lead
to sophisticated computational problems that can not be solved
with the current available computational power. Solutions to
this gap can be classified into three categories [23]:

● Work Harder: researchers in Information

Technology (IT) and Information Science (IS) areas try to
improve computer architecture and design to allow them to
solve larger and more sophisticated computational
problems. Today workstations are more powerful than early
supercomputers.

● Work Smarter: researchers in IT & IS areas try to

3

Chapter 1: Introduction

improve the algorithms used to solve computational
problems so they will work efficiently on the available
computer technology. They also should seek to find new
approaches and models to solve computational problems.

● Get Help: researchers in IT & IS areas try to solve

large and sophisticated problems by allowing more than one
computer to work together to solve one problem by dividing
and distributing the task among available computers.

Distributed computing, cluster computing, and Grid
computing are among research areas that fit into the last
category of narrowing down the gap between current
computational requirements and demands and available
computing power. However, Grid computing is distinguished
from conventional distributed computing by its focus on large-
scale resource sharing, innovative applications, and in some
cases, high-performance orientation [36]. The Grid is also
distinguished from cluster computing by its lack of centralized
control and single policy, its heterogeneous resources, and the
fact that the state of the Grid system is not well known at any
point of time.

Grid environments will pool the available resources to
create a virtual supercomputer or Virtual Organizations [36]
by coupling of these resources. These Virtual Organizations
are similar to the temporary alliance between enterprises or
organizations that share their resources and experiences to

4

Chapter 1: Introduction

improve business [53]. A resource in the Grid is anything that
can be allocated including processor time, memory, secondary
storage, databases, network bandwidth, special devices and
sensors. The resources may be heterogeneous, geographically
distributed, and owned by different enterprises or
organizations. These pooled resources coupled by the Grid
will enable solving problems that were not possible otherwise.
It will also narrow the gap between the demands of science,
engineering and business for computational power and the

available technology. The Grid, as shown in Figure 1.1, has
evolved in a way similar to the Internet, the difference is that
the Internet is sharing of information while the Grid is sharing
of computational power.

The Grid is needed for many reasons including for

5

PC Cluster Distributed

Computing
The Grid

PC LAN WAN The Internet

Figure 1.1: The evolution of the Grid compared to the

Internet.

The Internet: Sharing of information.

The Grid: Sharing of computational power.

Chapter 1: Introduction

example:

● Some resources that are needed to solve problems can
not be efficiently duplicated such as an expensive
supercomputer or an electrical telescope that must be placed
at a specific geographical position. The Grid will enable
remote access to such resources.

● Some problems need heterogeneous resources that are
not available in the same machine, such as a combination of
parallel and vector machines, to be solved efficiently. The
Grid will enable such scenarios.

● Resources needed to solve a problem may be
geographically distributed in different countries. The Grid
will couple such resources in a seamless manner.

Grid Research aims to develop the necessary
infrastructures that will make access to computational power
as easy and reliable as access to electrical power, and create a
seamless, integrated computational and collaborative
environment to solve innovative applications [53]. This new
field was known by several names such as metacomputing,
scalable computing, global computing and more recently as
the Grid or Grid Computing. The Grid was defined as
"coordinated resource sharing and problem solving in a
dynamic, multi-institutional virtual organizations" [36]. It has
many special characteristics, requirements, and components

6

Chapter 1: Introduction

that distinguished it from other similar fields. It also enabled
new application models that are more suitable to their nature.

The Grid includes special characteristics such as:

● Multiple administrative domains and autonomy:

Resources in the Grid are controlled by different
administrative domains and owned by different
organizations. The autonomy of each domain must be
protected, and the Grid infrastructure must cooperate with
rather than replace the local policies at each domain [53].

● Heterogeneity: The resource pool in the Grid

contains a collection of different resources that may range
from electronic sensors and Personal Digital Assistants
(PDAs) to supercomputers and large databases. These
resources have different technologies and are controlled by
different operating systems and software. The Grid should
couple these resources seamlessly [53].

● Scalability: A Grid environment can grow from few

computers to span the entire earth, the Grid infrastructure
must be able to handle all resources and be scalable and
flexible. The applications must be designed to handle
possible degradation in performance when using large
number of resources by designing the applications to be
latency tolerant [53].

7

Chapter 1: Introduction

● Dynamicity or Adaptability: In the Grid the failure

is the rule. Among all the resources in a grid environment,
the probability of one component failure is high. The Grid
must deal with such failures and allow resources to join or
leave a grid environment as they want [53].

With these characteristics in mind, a working grid
environment infrastructure must provide some basic services

as shown in Figure 1.2. On top of this infrastructure,
developers should build their grid enabled applications.

The basic services of such Grid environments are:

● Resource Management: These services are required

to manage the resources available in a Grid environment.
The services span both basic services, such as resource
allocation, up to more advanced services such as scheduling,
co-allocation, advanced reservation, and payment
management. The resource management should provide
solutions to problems such as site autonomy, resource

8

Resource

Management

Information

Services

Data

Management

Security

Figure 1.2: The basic Grid services.

Chapter 1: Introduction

heterogeneity, policy extensibility, and on-line control [50].

● Information Service: These are responsible of

providing all required information about the Grid
environment such as a directory service for easy search of
available resources, naming service to provide uniform
name space, monitoring and discovery services for
monitoring resources and jobs running and discovering new
resources. Thus allowing careful selection and configuration
not only of computers, networks, and other resources but
also of the protocols and algorithms used by applications
[81].

● Data Management: Innovative applications usually

need to deal with large amounts of data in most cases at
remote sites. Thus large data collections are emerging as
important community resources. The volume of interesting
data is already measured in terabytes and will soon total
petabytes. The Grid infrastructure must handle this data
efficiently such as providing parallel transfer, replica
management, processing subsets of huge datasets, and
manage distributed data [98].

● Security: Considered the heart of the Grid, it spans

all the services in the Grid. It must provide services such as
secure communication and single sign on. Security in the
Grid is complicated by the need to establish secure

9

Chapter 1: Introduction

relationships between a large number of dynamically
created parties and across a range of administrative
domains, each with its own local security policy [37].

To provide these services, the Grid infrastructure must
develop the necessary Software Development Kits (SDKs),
Application Programming Interfaces (APIs), and protocols
[36]. The infrastructure must be open and build on top of
available standards such as the Transmission Control
Protocol/Internet Protocol (TCP/IP) and the Lightweight
Directory Access Protocol (LDAP), and it should not require
the replacement of existing site policies, operating systems, or
network protocols. It must not enforce programming
paradigm, language, or tools. It should also protect site
autonomy, not compromise existing security, and be fault
tolerant with no single point of failure [53]. To fulfill these
requirements, the hour glass model represents a good example
for both the Grid and the Internet [13]. Its narrow neck maps to
a small set of core protocols that are used to build a larger set
of protocols and applications at the top, and this small set can
be mapped on different underlying technologies at the bottom.
The Grid infrastructure consists of four major layers as shown

in Figure 1.3 [36][54]. These major layers are:

● The Fabric Layer: This layer consists of all the

resources that will be shared by the Grid. This includes
physical resources such as computers and scientific

10

Chapter 1: Introduction

instruments, and virtual resources such as clusters and
distributed file systems. Each resource may include local
protocols and management systems that are independent on
the Grid. These Resources, according to their nature, must
provide appropriate capabilities upon which upper services
will be built such as program execution and monitoring,
access to files and sub files, and reservation services.

● The Connectivity Layer: Protocols in this layer are

responsible for providing communication and authentication
services. This will enable the exchange of data between
fabric layer resources and secure mechanism to verify the
identity of communicating parties. Communication services
include transport, routing, and naming. Security services
include single sign on, delegation, and integration with local

11

Application

Collective

Resource

Connectivity

Fabric

Figure 1.3: The layered Grid architecture.

Applications: Scientific,

Engineering,
Collaboration, portals, ...

User Level Middle

ware: Monitoring,

Directory, Brokers, Co-
allocation, ...

Core Middle ware:

Security, Single

resource management,
Information,

Communication, ...
Fabric: Computers,

Networks, Instruments,

databases, Clusters, ...

Chapter 1: Introduction

security services.

● The Resource Layer: This layer is concerned with

accessing to single resource in the fabric layer. This
includes management protocols such as resource allocation,
monitoring, controlling, and payment mechanisms. And
information protocols to get information about resource
structure, and status. Connectivity and resource layers are
considered the core protocols – the tight neck of the hour
glass – so they should be few and precisely specified. These
core protocols are mapped on a large number of resources in
the fabric layer and the upper level protocols will use them
to build a wide variety of Grid enabled applications.

● The Collective Layer: This is build on top of the

resource layer. It is used to provide coupling and
coordinated access to a collection of resources and not
associated with any single resource. This includes
Directories for information about available resources, co-
allocation, monitoring, diagnosing, workload management,
data replication, and so on. Compared to Resource layer
which is generic, this layer spans a wide spectrum from
general purpose to highly application specific services that
are build on top of the few generic resource layer services.

● The Application Layer: This layer contains the Grid

enabled science, engineering and business applications.

12

Chapter 1: Introduction

These applications can be built on top of either the
connectivity, resource, or collection layers or any
combination of them.

The wide spread of Grid new concepts and
methodologies in the past few years made a confusion about
which system is a Grid and which is not. There was a strong
need for a way to identify Grid systems. A three point
checklist was introduced to classify Grid systems [31]:

● A Grid system should coordinate resources that are
not subject to centralized control. So a scheduler deployed
on a Local Area Network (LAN) is not a Grid system
because of the scheduler central control nature. Grid
systems integrate users and resources at different
administrating domains and address communication,
security, payment and all services presented before.

● A Grid system should use standard, open, general-
purpose protocols and interfaces. Otherwise it is an
application specific system. The Grid core middle ware
reviewed before must use standard, open, general-purpose
protocols.

● A Grid system should deliver nontrivial Qualities of
Service (QoS). A Grid coordinates its resources to deliver
various qualities of service, such as response time,
throughput, availability, and/or co-allocation to adapt

13

Chapter 1: Introduction

complex user demands, so that the utility of the combined
system is significantly greater than the sum of its parts.

Below are some of the major application classes that are
enabled by the grid, and for which the grid will be used for
[34]:

● Distributed Supercomputing: Uses the grid to

couple supercomputers to solve problems that can not be
solved on a single supercomputer such as distributed
interactive simulations.

● High-Throughput Computing: Uses the grid to

schedule a large number of loosely coupled or independent
tasks on idle workstations. The nature of tasks led to
different types of problems and problem solving
methodologies such as parametric studies and hard
cryptographic problems.

● On-Demand Computing: Uses the grid to satisfy the

short term requirements of applications for a specific
resource that can not be available locally in a cost effective
manner. This differs from distributed supercomputing in
that it is driven by cost-performance constraints not absolute
performance. For example computer-enhanced Magnetic
Resonance Imaging (MIR) uses supercomputers to achieve
real-time image processing.

14

Chapter 1: Introduction

● Data-intensive Computing: Uses the grid to

synthesize new information form data that is maintained in
geographically distributed repositories, digital libraries, and
databases. These applications are both computationally and
communication intensive. For example future high-energy
physical experiments will generate terabytes per day.

● Collaborative Computing: Uses the grid to enable

and enhance human-to-human interactions. Applications are
concerned with enabling the shared use of computational
resources such as data archives and simulations.

1.2 Peer to Peer Computing

Peer-to-Peer (P2P) [5] is a new computing paradigm that
employ distributed resources – computing power (cycles) ,
data (storage and content), network bandwidth, and presence
(computers, human, and other resources) – available at the
edge of the Internet to perform a critical function – distributed
computing, data/content sharing, communication
collaboration, and so on – in a decentralized manner[11][19].
The Grid and P2P technologies are two different approaches
for distributed computing that are close to each other and have
the same ultimate goal of the pooling and coordinated use of
large sets of distributed resources. The difference is that each
of these technologies started – aiming to achieve the ultimate
goal – from different points of interests, this is because of the

15

Chapter 1: Introduction

different communities, design requirements, and applications
targeted by both technologies. It is expected for these
technologies to converge in the future [33]. The remainder of
this section briefly reviews P2P and contrasts the differences
between it and the Grid technologies based on real systems not
theoretical assumptions and goals.

P2P started to take enormous interest with the
appearance of Napster music sharing [67]. After that, many
P2P applications and infrastructures appeared such as Gnutilla
[20], SETI@home [14], and JXTA [48] among others. The
main design goals of P2P include [19]:

● Cost sharing/reduction: In client/server model the

server that served many clients was responsible for the
majority of the system's cost that may grow very large with
the system. P2P systems share the cost of ownership among
the peers. For example file sharing systems divide the
storage space needed by the shared files among peers.

● Improved scalability/reliability: The lack of central

server helps improving system scalability and reliability.
But this requires new innovative algorithms for resource
discovery and search that is a hot topic with many research
projects.

● Resource aggregation and interoperability: Each

node in a P2P network provide a small amount of needed

16

Chapter 1: Introduction

resource – such as storage space or processor cycles – that
must be integrated into a large system to enable applications
that benefits from huge amounts of these resource to solve
the larger problems.

● Increased autonomy: This means that all data and

work of the user of a P2P system be performed locally
without relaying on any centralized server.

● Anonymity/privacy: A peer in the network may not

want anyone or any service provider to know about his
environment in the system. This is related to autonomy. It is
difficult to keep anonymity with the existence of central
server because a server may identify its clients with at least
their IP address. In P2P systems users may avoid having to
provide any information about themselves to anyone else.

● Dynamism: The computing environment of any P2P

system is highly dynamic. With resources joining and
leaving dynamically and unpredictably. P2P applications
must support this highly dynamic nature.

● Enabling ad-hoc communication and

collaboration: This is related to dynamism. Ad-hoc refers

to environments were members come and go based perhaps
on their current physical location or current interests. P2P
applications must take into account changes in the group of
participants.

17

Chapter 1: Introduction

In addition to these goals P2P system must address
issues such as self organization, performance, security,
transparency, usability, fault resilience, and interoperability.

P2P targets resources on the edge of the Internet that
considered in the past to be dump useless clients but now –
with the advance in technologies and lower cost – grew to be
interesting. Resources on the edge of the Internet have
unstable connectivity and unpredictable IP addresses. Because
resources may connect or disconnect unpredictably and obtain
IP address dynamically from ISPs. This is completely different
from Internet servers having stable always on connection with
fixed IP Address. This means that P2P must operate outside
the Domain Name Server (DNS) system and have significant
or total autonomy from central servers. P2P should also be
able to handle a large number (millions) of resources around
the Internet owned by anonymous users. On the other hand the
Grid started as a project to link super computers and expanded
to scientific collaborations. This environment is more stable
with well known moderate size (thousands) resources with
high availability and more professional administration than
P2P and stronger trust relationship between resource owners.

The Grid couples more powerful and diverse resources
with better connectivity than P2P resources. Grid resources –
such as databases, scientific instruments, clusters, and
supercomputers – have in general more value and are

18

Chapter 1: Introduction

administrated in a more organized way according to some well
known policies. In contrast P2P deals with nonuniform and
highly variable behavior. The majority of P2P resources are
normal home computers.

Grid technologies are used to solve a wide variety of
scientific problems according to the requirements of the
scientific collaborations sharing their resources. On the other
hand, P2P systems are more specialized to solve a particular
specific resource sharing problem such as file sharing. More
work has been spent in the Grid on infrastructure that provides
the required basic services presented in the previous sections
and this infrastructure assumes at least limited level of trust
and did not address the situation of the absence of trust which
is the case in P2P computing dealing with anonymous
resources. The Grid infrastructure is based on open, general
purpose and standard protocols which helps the integration of
diverse grid infrastructure. In contrast each P2P application
defines its own protocol that solves a specific problem of that
application.

According to I. Foster, and A. Iamnitchi it is concluded
that [33]:

● Both P2P and Grid computing are concerned with the
same general problem, namely, the organization of resource
sharing within virtual communities.

19

Chapter 1: Introduction

● Both take the same general approach to solving this
problem. Namely the creation of overlay structures that
coexist with, but need not correspond in structure to, the
underlying organizational structures.

● Each has made genuine technical advances, but each
also has crucial limitations, which summarized as Grid
computing addresses infrastructure but not yet failure,
whereas P2P addresses failure but not yet infrastructure.

● The complementary nature of the strengths and
weakness of the two approaches suggests that the interests
of the two communities are likely to grow closer over time.

1.3 Problem Motivation

Grid computing is a new and fast growing field that
came to fill the gap between the increasing need for processing
power and available technologies [34]. This new field, Grid
computing, is considered as one of the top ten technologies
that will change the future [102]. The name came from an
analogy to the electrical power grid, to show the ultimate goal
of the Grid computing field which is making access to
computational power as easy as the access to electricity.
Security was the heart of Grid computing from its early
beginnings because designers of its infrastructure knew that it
will not succeed without efficient security and that securing
the Grid will be hard to add later [37]. The importance of

20

Chapter 1: Introduction

security came from the power of this new Grid environment
that will enable seamless access to powerful resources. This
turns the Grid to an attractive target for many attackers who
may want to misuse the Grid powerful resources.

The Grid computing field is still under research, and so
are the security mechanisms that are used to protect Grid
environments. Both research domains, Grid computing and
Grid security mechanisms, are growing and evolving through
time which motivates the research. Security mechanisms had
started with simple password based systems and evolved to
Public Key Infrastructure (PKI) based systems. With many
requirements and services needed by both networks and Grid
users, other security mechanisms had also evolved such as
authentication, authorization, single sign on, and encryption
[37].

Intrusion detection is considered as a second line of
defense and it is needed to detect attackers when first line
security mechanisms fail to prevent these attacks. In addition
intrusion detection provides protection against legitimate users
of the system that is not possible with security mechanisms.
Unfortunately intrusion detection mechanisms have not been
addresses yet by researchers in the field of Grid security. This
motivates the research work presented in this thesis and
encouraged the researcher to also study and get an insight into
the problem of intrusion detection in Grid environments to

21

Chapter 1: Introduction

build a Grid enabled intrusion detection system for the purpose
of improving the security of future Grids.

1.4 Objectives and Scope of Work

The main objective of this thesis is to design and
develop a Grid enabled intrusion detection system as a second
line security mechanism that can prevent Grid resources from
different attack types.

Based on this main objective the scope of this research
work can be stated in some directions as follows:

● Study and analyze the current Grid architectures and
projects to understand and synthesis the requirements and
constraints of this field in order to underlying and
identifying the capabilities of current security mechanisms.

● Study and comprehend the current intrusion detection
systems while keeping the Grid constraints in mind to
identify how these intrusion detection systems are
compatible with Grid environments and to specify their
limitations, capabilities, and suitableness.

● Propose a Grid Intrusion Detection Architecture
based on the findings in the Grid and Intrusion detection
fields. The proposed architecture should be compatible with
various Grid environments and should comprehensively
address their needs.

22

Chapter 1: Introduction

● Design and develop a prototype implementation of
the proposed Grid Intrusion detection architecture to prove
its applicability in grid environment and to test its
performance in various Grid environments through
computer simulation.

● Analyze the obtained experimental results from the
various experiments to check the applicability of the
proposed system and to determine the effect of different
parameters on the overall system performance.

1.5 Thesis Organization

This thesis has four main parts. The first part is a
literature review of the Grid field. This part includes chapter 1
and chapter 2. Chapter one presents the literature review of the
Grid computing field and introduces different Grid computing
infrastructures showing their components, services, layers,
requirements, and constraints. Chapter two picks four of the
most famous current Grid computing projects and illustrates
them by depicting their architectures, basic components,
vision, and how they meet the basic Grid requirements.

The second part presents security issues related to the
Grid and intrusion detection. Chapter Three focuses on the
Grid security issues and it depicts different Grid Security
Infrastructures and identifies their capabilities and limitations.
It ends by presenting a Grid research project between Ain

23

Chapter 1: Introduction

Shams University in Egypt and George Washington University
in USA to build a Grid enabled application. The aim of the
application is to help us, through hands on practice, to better
understand the new Grid environments specially its security
mechanism. The latest research work in the field of intrusion
detection is introduced in chapter four. It presents different
approaches and classifications of intrusion detection systems
and identifies the advantages and disadvantages of each
presented approach.

The third part, chapter five, presents the proposed Grid
Intrusion Detection Architecture and its different modules that
are based on the survey of the previous chapters. The proposed
architecture was designed with almost all the Grid
characteristics and requirements in mind to make it compatible
with Grid environments. The components of the proposed
system and their functionalities and features are illustrated in
this chapter.

The forth part includes chapter six and seven. Chapter
six presents an implementation of the proposed architecture.
The presented implementation is based on homogeneous
intrusion detection servers that employ neural networks
techniques using the Learning Vector Quantization (LVQ)
neural network. The Grid environment was simulated to
facilitate testing in different environments with different
characteristics. A computer simulator was developed to enable

24

Chapter 1: Introduction

the testing of different security related issues. Chapter seven
examines the experimental results obtained from various
simulated experiments of different Grid environments. It
presents the effect of different parameters on the conducted
experiments against the proposed GIDA performance. These
results provided a deep insight on better understanding the
problem of intrusion detection in Grid environments by
underlying the conditions affecting their performance.
Moreover, the obtained results may be exploited in designing
more enhanced and fine tuned future intrusion detection
systems.

The final conclusion of this research is presented in
Chapter eight along with possible future directions and
expansions of the presented research.

25

C

h
ap

te
r

 2

Analysis of some

Grid Architectures

2.1 Globus
2.2 Legion
2.3 UNICORE
2.4 GridBus
2.5 Conclusions

Chapter 2: Analysis of some Grid Architectures

Chapter 2: Analysis of some Grid

Architectures

This chapter introduces four of the Grid projects,
namely, Globus, GridBus, Legion, and UNICORE. Showing
their architectures, basic components, and how they meet the
basic Grid requirements presented in Chapter 1.

2.1 Globus

The Globus project [93] is a US R&D project aiming to
put standards for the Grid infrastructure and to develop the
open source Globus ToolKit that facilitates the construction of
Grids and Grid applications.

The Globus ToolKit is used by many Grid Communities
as a technology base [35]. It is a community based, open
architecture, open source set of services and software libraries
that support Grid and Grid applications [32]. It is packaged as
a set of components that can be used either independently or
together to develop Grid enabled applications. These
components provide the basic services needed by Grid
applications and can be grouped into four basic categories –
resource management, information services, data management,

and security – as shown in Figure 1.2. The ToolKit adopts a

layered architecture, as shown in Figure 1.3, and for each
component it defines the needed protocols and application

27

Chapter 2: Analysis of some Grid Architectures

programming interfaces (APIs). It allows sharing of resources
– computing power, scientific instruments, databases, and so
on – across corporate, institutional and geographic boundaries
seamlessly while keeping local autonomy. The Globus ToolKit

components, as shown in Figure 2.1, are:

● Resource Management: This main component is

responsible for providing services for resource allocation,
job submission and monitoring, and result gathering. It
consists of two components:

− Globus Resource Allocation Manager (GRAM):

GRAM [50] is responsible for remote execution and
status reporting. A user can execute a job on a remote
host by contacting the gatekeeper – a GRAM component
– on that host. The gatekeeper will mutually authenticate
with the user – the UP acting on his behalf – and then
checks the Grid map file – a file containing mapping

28

Globus

Resource

Management
Security

Data

Management

Information

Services

GRAM ReplicaGridFTPGIISGRISIPGASS

Figure 2.1: The Globus ToolKit components.

Chapter 2: Analysis of some Grid Architectures

between global user name and local account or ID – to
see if the user is authorized to use the resource. If the user
is authenticated and authorized the gatekeeper receives
the job details through the Globus Resource Specification
Language (RSL) and then starts a job monitor that
initiates and monitor the job execution.

− Globus Access to Secondary Storage (GASS):

GASS [42] is used for accessing remote files. It is used
for staging-in executables and input files before starting
the job and retrieving outputs after finishing the job.
GASS can also be used for redirecting standard output
and standard error streams of a job. GASS is GSI enabled
and uses Secure Hyper Text Transfer Protocol (SHTTP)
based streams.

● Information Services: This main component is

responsible for delivering static and dynamic information
about the available resources. In the Globus ToolKit they
are called the Monitoring and Discovery Service (MDS)
[51]. The information is represented as a hierarchy of entries
with zero or more attribute-value pairs based on the
Lightweight Directory Access Protocol (LDAP) [84]. MDS
has three-tier structure:

− The Information Providers (IP): They are at the

bottom of the structure. Each resource should have one or

29

Chapter 2: Analysis of some Grid Architectures

more information provider that is responsible for
gathering data about a specific system attribute or status.
There are standard information providers with the Globus
ToolKit that provide generic information such as the CPU
type, memory size, free disk space, and operating system.
The resource administrators could implement their own
information provider to gather any needed properties of
the resource. After gathering the needed data it should be
converted into standard format (LDAP) and then
published into the GRIS described below to make it
available to every one.

− The Grid Resource Information Service (GRIS):

There could be multiple information providers on each
resource but only one GRIS. The GRID receives the data
published by the information providers and responds to
queries about the resource attributes. For dynamic data,
the GRIS updates its database based on a time-to-live
value by querying the relevant information provider.

− The Grid Information Index Service (GIIS):

They are at the top of the structure. A GIIS receives
resource information from other GRISs and GIISs
registered with them. The GIIS indexes the received
aggregated information about the resources and facilitates
efficient searches for multiple resources by querying one
GIIS.

30

Chapter 2: Analysis of some Grid Architectures

● Data Management: Innovative scientific

applications demand efficient access to large data sets that
are growing in size and sometimes in distribution. The data
management components are responsible for providing
utilities and libraries for transmitting, storing and managing
massive data sets efficiently and securely. In the Globus
ToolKit there are two main components for data
management [7]:

− GridFTP: This component is a GSI-enabled,

efficient, and reliable data movement extension of the
standard FTP protocol. GridFTP supports third-party
control of transfer, parallel transfer, striped transfer,
partial file transfer, automatic negotiation of TCP
buffer/window sizes, and support for reliable and
resumable transfer.

− Replica Location and Management: This

component is responsible for managing complete and
partial copies of data sets. This is done by registering files
and their copies in a Replica Catalog. A file is identified
by its Logical File Name (LFN) that is mapped to real
names at different locations of the file. Replica Location
Service (RLS) is used to registering files and then
creating and deleting its replicas.

● Security: The Globus ToolKit implements the Grid

31

Chapter 2: Analysis of some Grid Architectures

Security Infrastructure (GSI) presented in the next chapter.
This component provides services for authenticating users
and resources, single sign on, and delegation among others.
It is based on standards such as the Secure Socket Layer
(SSL), Public Key Infrastructure (PKI), and the X.509
standard for encoding certificates.

The Globus Project also tries to define new Grid
standards through the Open Grid Services Architecture
(OGSA) [38] framework. The OGSA look at the Grid from a
service point of view. A service is defined as a network-
enabled entity providing some capability needed by the Grid
such as computational resource, storage resource, security and
so on. OGSA is based on Web Services (WS) and eXtensible
Markup Language (XML) standards such as Simple Object
Access Protocol (SOAP), Web Service Definition Language
(WSDL), and WS-Inspection. The OGSA was presented at the
Global Grid Forum (GGF) on 2002 [24] which has set up an
Open Grid Services working group to review, refine, and
document the Grid service architecture.

2.2 Legion

Legion [95] [1] is an object-based meta-systems
software project started in late 1993 at the University of
Virginia. Legion provide its users, working from their
workstations, the illusion of a single virtual computer by

32

Chapter 2: Analysis of some Grid Architectures

combining different resources such as digital libraries,
physical simulations, cameras, linear accelerators, and video
streams. It also supports user groups and collaborations
through the construction of shared work spaces. All
complexities are hidden from the users by Legion's transparent
scheduling, data management, fault tolerance, site autonomy,
and a wide range of security options.

Legion is an open and flexible system that can be
adapted to new and changing users needs. It is designed to
encourage third party development of new or updated
applications, run-time library implementations, and core

components. As shown in Figure 2.2 Legion is a middle ware
that sets on top of the user's resources and operating systems.
It can protect its own resources against other Legion users, so
that administrators can choose appropriate policies for who
uses which resources under what circumstances. To allow

33

Application

Legion Library (method invocation service)

Legion object management services

(Core Object)

Infrastructure

Legion

file

system

Context-space

directory

services

Resource

management

services

. . .

Figure 2.2: The Legion architecture

Chapter 2: Analysis of some Grid Architectures

users to take advantage of a wide range of possible resources,

Legion offers a user-controlled naming system called context

space, so that users can easily create and use objects in far
flung systems. Users can also run applications written in
multiple languages, since Legion supports interoperability
between objects written in multiple languages. The Legion
philosophy can be summarized in the following points:

● Everything is an object: Each hardware or software

resource accessible through the Legion Grid will be
represented by a Legion object. A Legion objects is an
active process that has member functions invocable by other
Legion objects. Legion defines the message format and
high-level protocol for object interaction, but not the
programming language or the communications protocol.

● Classes manage their instances: A class object is an

active Legion object that define and manage other Legion
objects. Class objects are managers and policy makers that
are given system-level responsibilities such as creating new
instances, schedule their execution, activate and deactivate
them, and provide information about their current location
to client objects that wish to communicate with them.
Classes whose instances are themselves classes are called

metaclasses.

● Users can provide their own classes: Users are

34

Chapter 2: Analysis of some Grid Architectures

allowed to define and build their own class objects and even
change the system-level mechanisms that support their
objects. Legion 1.4 (and future Legion systems) contains
default implementations of several useful types of classes
and metaclasses. Users are not forced to use these
implementations if they do not meet their performance,
security, or functionality requirements.

● Core objects implement common services: Legion

defines the interface and basic functionality of a set of core
object types that support basic system services, such as
naming and binding, object creation, activation,
deactivation, and deletion. Core Legion objects provide the
mechanisms that classes use to implement policies
appropriate for their instances. Examples of core objects
include hosts, vaults, contexts, binding agents, and
implementations.

Legion objects are independent, logically address-space-
disjoint active objects that communicate with one another via
non-blocking method calls that may be accepted in any order
by the called object. Each method has a signature that
describes the parameters and return value, if any, of the
method. The complete set of method signatures for an object
fully describes that object's interface, which is determined by
its class. Legion class interfaces can be described in an
Interface Description Language (IDL), several of which will

35

Chapter 2: Analysis of some Grid Architectures

be supported by Legion.

Legion implements a three-level naming system. At the
highest level, users refer to objects using human-readable
strings, called context names. Context objects map context
names to Legion Object IDentifiers (LOIDs), which are
location-independent identifiers that include an RSA public
key. Since they are location independent, LOIDs by
themselves are insufficient for communication; therefore, an
Object Identifier (OID) is mapped to a Legion Object Address
(LOA) for communication. A LOA is a physical address (or set
of addresses in the case of a replicated object) that contains
sufficient information to allow other objects to communicate
with the object (e.g., an <IP address, port number> pair).

Legion will contain too many objects to simultaneously
represent all of them as active processes. Therefore, Legion
requires a strategy for maintaining and managing the
representations of these objects on persistent storage. A
Legion object can be in one of two different states, active or
inert. An inert object is represented by an Object Persistent
Representation (OPR), which is a set of associated bytes that
exists in stable storage somewhere in the Legion system. The
OPR contains state information that enables the object to move
to an active state. An active object runs as a process that is
ready to accept member function invocations; an active
object's state is typically maintained in the address space of the

36

Chapter 2: Analysis of some Grid Architectures

process (although this is not strictly necessary).

Several core object types, as shown in Figure 2.3,

implement the basic system-level mechanisms required by all
Legion objects. Like classes and metaclasses, core objects are
replaceable system components; users (and in some cases
resource controllers) can select or implement appropriate core
objects.

● Host objects: Host objects represent processors in

Legion. One or more host objects run on each computing
resource that is included in Legion. Host objects create and
manage processes for active Legion objects. Classes invoke
the member functions on host objects in order to activate
instances on the computing resources that the hosts
represent. Representing computing resources with Legion

37

Persistence: Maintains

A's persistent state

Naming: Maps context

names to LOIDs

Object

A

A's

Class

A's

Metaclass

A's Vault

Object

A's Host

Object

A's

Implementation

Object

A's Bending

Object

A's Context

Object

Activation: Runs

and maintains A

Contains the

binary for A

Naming: Maps

LOIDs to LOAs

Management: Sets policy and

drives mechanism for A

Figure 2.3: Legion object model and relationships

Chapter 2: Analysis of some Grid Architectures

objects abstracts the heterogeneity that results from different
operating systems having different mechanisms for creating
processes. Further, it provides resource owners with the
ability to manage and control their resources as they see fit.

● Vault objects: Just as a host object represents

computing resources and maintains active Legion objects, a
vault object represents persistent storage, but only for the
purpose of maintaining the state, in OPRs, of the inert
Legion objects that the vault object supports.

● Context objects: Context objects map context names

to LOIDs, allowing users to name objects with arbitrary
high-level string names, and enabling multiple disjoint name
spaces to exist within Legion. All objects have a current
context and a root context, which define parts of the name
space in which context names are evaluated.

● Binding agents: Binding agents are Legion objects

that map LOIDs to LOAs. A <LOID, LOA> pair is called a
binding. Binding agents can cache bindings and organize
themselves in hierarchies and software combining trees, in
order to implement the binding mechanism in a scalable and
efficient manner.

● Implementation objects: Implementation objects

allow other Legion objects to run as processes in the system.
An implementation object typically contains machine code

38

Chapter 2: Analysis of some Grid Architectures

that is executed when a request to create or activate an
object is made; more specifically, an implementation object
is generally maintained as an executable file that a host
object can execute when it receives a request to activate or
create an object. An implementation object (or the name of
an implementation object) is transferred from a class object
to a host object to enable the host to create processes with
the appropriate characteristics.

2.3 UNICORE

The UNICORE [96][40] project – UNiform Interface to
COmputer REsource – is funded by the German Ministry of
Education and Research. Its goal is to provide seamless, secure
and intuitive access to distributed computing resources,
applications and data. It is a vertically integrated Java based
Grid computing environment. It provides the users with easy
to use graphical user interface to create, submit, monitor, and
control jobs. To achieve its goal UNICORE has to [18]:

● Hide the heterogeneity resulting from different
hardware architectures, vendor specific operating systems,
incompatible batch systems, different application
environments, historically grown computer center practices,
naming conventions, file system structures, and security
policies.

● Build security into the UNICORE design from the

39

Chapter 2: Analysis of some Grid Architectures

start. Security is based on the emerging X.509 standard for
certificates authenticating servers, software, and users and
encrypting the communication over the Internet.

● Be usable by scientists and engineers without having
to study vendor or site specific documentation. A Graphical
User Interface (GUI) was developed to assist the user in
creating and managing complex jobs and to integrate
important applications. UNICORE was designed to be
adapted to existing proven practices at the participating
centers.

● The administrative autonomy of participating sites
had to be retained, including the decision of who may use
the resources.

UNICORE has developed a rich set of core functions.
These functions allow users to create and manage complex
batch jobs that can be executed on different systems at
different sites. All complexities are hidden by UNICORE.
These core functions are [18]:

● Job creation and submission: The user can create

complex and interdependent jobs using a graphical
interface. These jobs can be executed on any UNICORE site
without changes to the job definitions. A UNICORE job
consists of a group of jobs and is represented by an Abstract
Job Object (AJO) which is submitted to a user selected site

40

Chapter 2: Analysis of some Grid Architectures

for execution. UNICORE ensures that a successor is
executed only if all predecessors have completed
successfully and all necessary data sets are available at the
target system.

● Job Management: The job management system

gives the user full control over jobs and data through the
graphical user interface. Also detailed log information is
available to analyze error conditions. The job output that is
written to standard output stream (stdout) and standard error
stream (stderr) by the execution systems can be reviewed or
transferred to the client workstation. Jobs may be terminated
and removed from the UNICORE grid by the user.

● Data management: Each job group has a temporary

UNICORE space (Uspace) for storing needed files. During
job creation the user specifies which data sets are to be
imported into or exported from the Uspace or transferred to
a different Uspace. UNICORE performs the necessary data
movement at run time without user intervention.

● Application support: UNICORE supports the

creation of custom plugins to provide GUI to scientific and
engineering application packages without a graphical user
interface.

● Flow control: The job model can be described as a

set of one or more Directed Acyclic Graphs (DAGs).

41

Chapter 2: Analysis of some Grid Architectures

● Meta-computing: UNICORE is extended to the

simultaneous use of two or more systems by one application
through its support for Message Passing Interface (MPI)
libraries. But UNICORE do not attempt to co-schedule
systems because most of available resources do not support
advanced reservation which is a prerequisite for co-
scheduling.

● Single sign-on: Single sign-on is provided through

the X.509V3 certificates that are mapped to local account at
each UNICORE side. The site has full control on weather or
not to grant access to the user based on his unique identifier
- global name - or information in his certificate.

● Support for legacy jobs: Traditional batch

processing is supported by allowing users to include their
old job scripts as part of a UNICORE job. This will simplify
migration but on the other hand does not guarantee
seamlessness.

● Resource management: At the time of the job

submission, UNICORE users have information about the
currently valid resources. So the users can select the target
system and specify the required resources. The UNICORE
client is in a position to verify the formal correctness of jobs
with respect to resources and alert users to correct errors
immediately.

42

Chapter 2: Analysis of some Grid Architectures

The UNICORE architecture is shown in Figure 2.4. It is
a three-tier model consisting of the UNICORE client running
on the users PC, The UNICORE Grid site(s) (Usite) defined by
each participating computer center at the top level that the
clients connect to, and finally each Usite is organized as one or
more Virtual sites (or Vsites) which can represent the
execution and/or storage systems at the computer centers. The

architecture shown in Figure 2.4 is an example of a UNICORE
system consisting of two Usites with a total of three Vsites.

The UNICORE client is a Java application that the user
uses to connect to a Usite gateway. A list of available
UNICORE Gateways can be found as an XML document at

43

Figure 2.4: The UNICORE architecture

User Certificate

Job Preparation Agent

(JPA)

Job Monitor Controller

(JMC)

UNICORE

Client

Preparation

and Control of

jobs

JAO Abstract status

request

Unsafe Internet

(SSL/https)

www.unicore.de

Network Job Supervisor

(NJS)

UNICORE Gateway

NJS
NJS

User Authentication

Site-specific

authorization

Site A Site B

optional firewall

optional firewallSafe Intranet

(TCP/http)User mapping

Resources info

Job Incarnation

Sending jobs to

other gateways

Data transfer

IDB
IDB IDB

UUDB
UUDB

UNICORE Gateway

Target System Interface

(TSI)
TSI TSI TSI

Batch Subsystem Batch SubsystemBatch Subsystem

Incarnated job Status request

Commands Files T3E T3ET90

. . .

. . .

Chapter 2: Analysis of some Grid Architectures

www.unicore.de or configured by the user. The user certificate
is needed to authenticate with the gateway and to sign the
submitted jobs. The jobs are created at the Job Preparation
Agent (JPA) part of the Client. The Job Monitor Controller
(JMC) part of the Client is used to monitor the status and
results of the running jobs. The jobs, status requests, or the
results are formulated in an abstract form using the Abstract
Job Object (AJO) Java classes.

The UNICORE Gateway provides an Internet address
and a port accessible from the outside for SSL connections. It
is a single entry point for all UNICORE connections into a
Usite. A Gateway can be installed inside or outside of a
firewall depending on the site's security requirements.

The UNICORE Vsite consists of the Network Job
Supervisor (NJS) and a Target System Interface (TSI). The
NJS Server manages all submitted UNICORE jobs. It uses the
UNICORE User Data Base (UUDB) to authenticate the user by
looking for a mapping of the user certificate to a valid login.
The NJS incarnates jobs from the abstract AJO definition into
the appropriate concrete command sequence for a given target
execution system, and hands the incarnated tasks and jobs over
to the TSI. The incarnation is based on the specifications in the
Incarnation Data Base (IDB). The NJS also checks the
dependencies between job components, schedule the
components accordingly, stores all job status and result

44

Chapter 2: Analysis of some Grid Architectures

information, and replies to status and result requests from the
client. In case of sub-jobs which are specified to run on a Vsite
at a different Usite, the NJS takes the role of a Client and
submits the sub-job to the remote Gateway.

The UNICORE Target System Interface (TSI) accepts
incarnated job components from the NJS, and passes them to
the local batch systems for execution. In addition, file import
and export tasks are handled by the TSI. Moreover it
implements low level status reporting and control of batch
jobs.

2.4 GridBus

The GridBus project [94][74] is an open source software
toolkit that extensively leverages related software technologies
and provides an abstraction layer to hide idiosyncrasies of
heterogeneous resources and low-level middleware
technologies from application developers. It focuses on
realization of utility computing and market-oriented
computing models scaling from clusters to grids and to peer-
to-peer computing systems. The research and innovation
project is led by the University of Melbourne GRIDS Lab with
support from the Australian Research Council.

The idea of a computational economy helps in creating a
service-oriented computing architecture where service
providers offer paid services associated with a particular

45

Chapter 2: Analysis of some Grid Architectures

application and users, based on their requirements. These
requirements will be optimized by selecting the services they
require and can afford within their budget. Gridbus
emphasizes the end-to-end quality of services driven by
computational economy at various levels – clusters, peer-to-
peer (P2P) networks, and the Grid – for the management of
distributed computational, data, and application services.

The layered architecture depicting the GridBus
components in conjunction with other middleware
technologies – Globus and Unicore that have been reviewed

46

Figure 2.5: The GridBus architecture

GRAM

TomcatLibraSGEPBSCondoreJVM

Windows HP UXOSF1I RI XAI XLinuxSolaris

Grid Resources and Local Services

Alchemi:

.NET Grid

services +
clustering of

desktop PCs

MDS

.NET

GASS

PKI-Based Grid Security Infrastructure (GSI)

Globus
GMD

Grid

Bank

Data

Management
Services

GridscapeProgramming Framework

Grid Brokers and Schedulers Gridbus Service Broker

G-Monitor

Nimrod-G

. . . .

High-level Services & Tools

Natural

Language
Engineering

Grid

Email

Brain

Activity
Analysis

Portfolio

Analysis

High

Energy
Physics

Molecular

Docking

Applications

Chapter 2: Analysis of some Grid Architectures

before and Alchemi – is shown in Figure 2.5. Items in shaded
boxes are pursued by the Gridbus project. Gridbus provides
software technologies that spread across the following
categories [75]:

● Visual Parameter Sweep Application Composer:

This is a Java based Integrated Development Environment
(IDE) for rapid creation of parameter sweep (data
parallel/SPMD) applications. It also allows the rapid
creation and manipulation of the parameters. While being
flexible, it is also simple enough for a non-expert to create a
parameter script, known as a plan file, within minutes. The
composed parameter sweep applications can be deployed on
global Grids using the Gridbus resource broker.

● G-Monitor: This is a web portal for initiating,

monitoring and steering application execution on global
grids. It uses services provided by Grid Service Brokers
(GSBs) such as Nimrod-G and Gridbus Broker to deploy
applications. It allows users to manage their Grid credentials
and provides secure access to remote hosts running brokers.
The users can either upload applications and data at runtime
or select from those already available on the broker host. G-
Monitor provides an easy to use interface for the end-user to
monitor and control jobs running within the Grid
environment.

47

Chapter 2: Analysis of some Grid Architectures

● Gridbus Grid Service Broker: This component

makes scheduling decisions on where to place the jobs on
the Grid depending on the computational resources
characteristics (such as availability, capability, and cost), the
users QoS requirements such as the deadline and budget,
and the proximity of the required data or its replicas to the
computational resources. It also has the capability to locate
and retrieve the required data from multiple data sources
and to redirect the output to storage where it can be
retrieved by processes downstream. It has the ability to
select the best data repositories from multiple sites based on
availability of files and quality of data transfer.

● Grid Market Directory (GMD): serves as a registry

for high-level service publication and discovery in virtual
organizations. It enables service providers to publish the
services which they provide along with the costs associated
with those services. Consumers browse GMD to find
services that meet their requirements. GMD is built over
standard Web service technologies such as SOAP and XML.
Therefore, it can be queried by other programs. To provide
with an additional layer of transparency, a client API has
been provided that could be used by programs to query the
GMD without the developers having to concern themselves
with SOAP details. The Gridbus scheduler interacts with the
GMD to discover the testbed resources and their high-level
attributes such as access price.

48

Chapter 2: Analysis of some Grid Architectures

● GridBank: This is a secure Grid-wide accounting

and (micro) payment handling system. It maintains the users
(consumers and providers) accounts and resource usage
records in a database. GridBank supports protocols that
enable its interaction with the resource brokers of Grid
Service Consumers (GSCs) and the resource traders of Grid
Service Providers (GSPs). It has been primarily designed to
provide services for enabling a Grid computing economy;
however, it can be used in e-commerce applications as well.
The GridBank services can be used in both co-operative and
competitive distributed computing environments.

● Gridscape: It is a tool that enables the rapid creation

of interactive and dynamic testbed portals without any
programming effort. Gridscape primarily aims to provide a
solution for those users who need to be able to create a grid
testbed portal but do not necessarily have the time or
resources to build a system of their own from scratch.

● Alchemi: It is a .NET-based grid computing

framework that provides the runtime machinery and
programming environment required to construct desktop
grids and develop grid applications. It allows flexible
application composition by supporting an object-oriented
grid application programming model in addition to a grid
job model. Cross-platform support is provided via a web
services interface and a flexible execution model that

49

Chapter 2: Analysis of some Grid Architectures

supports dedicated and non-dedicated (voluntary) execution
by grid nodes. Because grid computing software has been
primarily written for Unix-class operating systems, Alchemi
will enable the effective utilization of the computing
resources of the vast majority of desktop computers i.e.
those running variants of the Microsoft Windows operating
system.

● Libra: It is a cluster scheduling system that

guarantees a certain share of the system resources to a user
job such that the job is completed by the deadline specified
by the user provided he has the requisite budget for it. Jobs
whose output is required immediately require a higher
budget than those with a more relaxed deadline. Thus, Libra
delivers utility value to the cluster users and increases their
satisfaction by creating realistic expectations for the job
turnaround times.

● GridSim: This toolkit provides facilities for the

modeling and simulation of resources and network
connectivity with different capabilities, configurations and
domains. It supports primitives for application composition,
information services for resource discovery and interfaces
for assigning application tasks to resources and managing
their execution. It also provides a visual modeler interface
for creating users and resources. These features can be used
to simulate parallel and distributed scheduling systems such

50

Chapter 2: Analysis of some Grid Architectures

as resource brokers or Grid schedulers for evaluating
performance of scheduling algorithms or heuristics.

2.5 Conclusion

As described in this chapter, the need for Grid
computing infrastructures is becoming one of the main
research areas in the field of parallel and distributed
computing. Different Grid projects adopted different
approaches to achieve their ultimate goal of creating a Grid
infrastructure. Their implementations varied to span a wide
variety including toolkits providing a bag of services that the
user can select from, object oriented approaches to Grid
design, Java based Grids for portability, and computational
economy Grids.

In spite of the variance between the implementations of
these projects, they share the same characteristics and
requirements of any Grid environment as presented in the
previous chapter. Also all the analyzed projects included
security as a core component of its architecture. These projects
concentrated, at this early stage of Grid evolution, on basic
security requirements and ignored the importance of intrusion
detection as a second layer of security. This fact motivated us
to design and implement an intrusion detection architecture for
Grid security.

51

C

h
ap

te
r

 3

The Grid Security

Infrastructure

3.1 Security Infrastructure
3.2 Evaluation of the Current Grid Security

Infrastructure
3.3 The Grid Research Project

Chapter 3: The Grid Security Infrastructure

Chapter 3: The Grid Security Infrastructure

This chapter presents and analyzes the Grid security
infrastructure that is implemented in various Grid
environments. Then it presents a research project implemented
using one of the Grid environments that uses the presented
security infrastructure. This research project helped in better
understanding of the Grid environment and security related
issues.

3.1 Security Infrastructure

Security is important to all computer systems to enable
administration and policy enforcement. These policies control
the users of the system by specifying which user can access the
system, what operation is allowed by each user, and protects
the system of being compromised or misused. This is mapped
to the basic security requirements of any system which are
authentication, authorization (access control), integrity,
privacy, and non repudiation [103]. Implementing security
mechanisms in the Grid is important to protect the large
number of resources and users. The problem in implementing
such security mechanisms in the Grid is that grid application
may require access to multiple computational and data sources
that may be geographically distributed and administrated
locally and independently. Grid applications may involve
hundreds of processes running on different resources and need

53

Chapter 3: The Grid Security Infrastructure

to authenticate and communicate with each other securely.
These processes and resources may also join or leave
dynamically which makes it impossible to initialize the
security relationship between them at the application startup.

All these problems complicate the implementation of a
Grid security system and add new security problems not
addresses by existing distributed security mechanisms such as
Kerberos and the secure shell [73]. Also the special Grid
characteristics and the different application scenarios have
added – in addition to the normal security requirements –
special requirements including [37]:

● Single sign-on: Grid applications may take days and

require accessing and authentication with multiple
resources. The user must only be required to authenticate
once at the beginning of the application and then the
application should continue acquiring and releasing
resources seamlessly without further user intervention.

● Protection of credentials: A user credential is a

piece of information – such as passwords or private keys –
that is used to prove his identity during the authentication
process. It is required that the user credential be protected to
ensure security.

● Interoperability with local security solutions: Grid

resources are administrated locally and independently, so it

54

Chapter 3: The Grid Security Infrastructure

is impossible to require the replacement of existing security
mechanisms at each site. The Grid security provides only
interdomain security and must cooperate rather than replace
existing security mechanisms. The access to a resource will
be determined by its local security policy and mechanisms.

● Exportability: Laws that govern the export of

encryption technologies are complex, dynamic, and varies
from country to country. Because the Grid may span
multiple countries, security mechanisms are required to be
exportable by avoiding the need of using bulk encryption.

● Uniform credentials/certification infrastructure: A

common way for expressing identity is required for
interdomain access. So it is recommended to use standards
to encode the credentials of users and resources.

● Support for secure group communication: A Grid

application may consist of many processes working together
to solve a problem. These processes need to communicate
and coordinate with each other as a group in a secure way
not simply as in client server applications.

● Support for multiple implementations: The Grid

security policy should not require special implementation
technology. It should be possible to implement it with
various security technologies.

55

Chapter 3: The Grid Security Infrastructure

A Grid Security Infrastructure (GSI) was first
introduced by foster, et.al. in 2001 [37] it addressed the special

grid requirements. This architecture is shown in Figure 3.1

and briefly described below showing how it satisfies the
requirements of the Grid.

The GSI concentrates on two main issues. The first one
is to provide an authentication mechanism between users, user
processes, and resources. This authentication will enable
different local security policies to be integrated into a single
global framework. The second issue is to enable the
application of local access control mechanisms without

56

Site 2Site 1

U

User Proxy

UP

 Global-to-local

mapping table

 Local Policy

and mechanisms

Process

P

Process

P

Resource Proxy

RP

 Global-to-local

mapping table

Process

P

Process

P

Resource Proxy

RP

 Local Policy

and mechanisms

Figure 3.1: A typical Grid security architecture [37].

Protocol 1:

Creation of a

user proxy

User Long-lived

credentials

Temporary

credentials

Protocol 4:

Creation of local-to-global mapping

Protocol 2:

Allocation of a remote resource

Protocol 3:

Resource

allocation

from a

process

Chapter 3: The Grid Security Infrastructure

changing them. The infrastructure consists of four protocols,
the User Proxy (UP), and the Resource Proxy (RP).

The UP is a process that acts on behalf of the user for a
limited time to manage a computation session. The purpose of
the UP is to enable single sign-on. The UP is created first

through protocol 1 as shown in Figure 3.1. The user first gains
access to the machine on which the UP will be created using
local access control mechanisms. Then the user uses his

credential (CU) to create temporary credential (CUP). Finally

the UP process is created and given its temporary credentials

(CUP) that will be used for further authentications and acting

on behalf of the user.

The temporary credentials consist of a tuple –
containing various information such as the valid interval of
this credential, authorized actions, user ID, and so on – signed
by the user credentials. It was possible to give the user
credentials to the UP to enable single sign-on which is very
simple solution. Alternatively, temporary credentials were
used for two reasons:

● To protect the user credentials. Because giving the
user credentials to the UP and then to processes acting on
behalf of the user increases the probability of user
credentials being hacked and misused.

● To control the UP and the user processes by

57

Chapter 3: The Grid Security Infrastructure

delegating a subset of the user rights – the signed tuple – to
these processes through the temporary credentials and so
reducing security risks.

After the UP is created, the user can leave the

computation – indicated by the curved line in Figure 3.1

separating the user from the rest of the GSI – leaving the UP
handle the required operation on the user behalf.

Interoperability with local security solutions is achieved
through the RP that acts as an agent translating between
interdomain security operations and local intradomain
mechanisms. The UP contacts the RP through protocol 2 as

shown in Figure 3.1 to allocate the resource. First the UP and
the RP authenticate with each other (mutual authentication).
Then the UP sends a signed request to the RP. The RP checks
if this user is allowed – according to local security
mechanisms – to access the resource. If the user is authorized
the user and resource proxies negotiate together to create the

process(es) temporary credential (CP). Finally the RP allocates

the resource and passes (CP) to the newly created process(es).

The process credential (CP) facilitates the secure group

communication by enabling the authentication between the UP
and the processes and between the processes themselves if
they exist in different domains. It also enables a process to
acquire more resources by using protocol 3, as shown in

58

Chapter 3: The Grid Security Infrastructure

Figure 3.1, in which it first mutually authenticate with the UP.
Then it passes a signed request to the UP that – after accepting
the request – allocates the resource through Protocol 2. This
technique may not be scalable because of the dependence on a
single UP but the advantage is its simplicity and fine grained
control over resource allocation by the processes.

Each user in the Grid has a unique global name and a
permanent credential that verify this identity. However, in
most cases the same user will be known by a different local
name at each administrative domain. The RP maps this global
name to a local name which is known by the local security
mechanisms which translates between interdomain and
intradomain security mechanisms. This mapping is simply a
table containing the global name and the local name of the
user. This table may be manually created and filled by the
local administrator of the domain or filled automatically

through Protocol 4 as shown in Figure 3.1. In this protocol the
UP mutually authenticate with the RP and then send to it the
local and global name. Then the user must login to the
resource using its local mechanisms and starts a map
registration process which will also pass the global and local
names to the RP. Finally the RP validates the passed values,
and if they match, it adds the global and local names to the
map table.

This infrastructure relies on authentication and signature

59

Chapter 3: The Grid Security Infrastructure

verification techniques and does not require encryption. It does
not dependent on any specific security mechanisms and can be
implemented by multiple techniques. Standards such as
X.509v3 may be used to encode credentials to support the
uniform credentials/certification infrastructure requirement.

3.2 Evaluation of the Current Grid Security

Infrastructure

One of the currently existing Grid Security

Infrastructures was presented in previous section. The current
implementation of this infrastructure in the Globus ToolKit
[93] is based on the Public Key Infrastructure (PKI) [60].
Although it is an open architecture and could have been
implemented using other approaches such as plain text
passwords or Kerberos [8] among others [37]. This
infrastructure focuses on providing an authentication service
for the Grid and allowing local access control mechanisms at
each site to be applied without changing them.

The example in Figure 3.2 shows the steps of running a
typical Grid application focusing on the interactions of the
Grid Security Infrastructure (GSI) with the user and his/her
application. This example will give better understanding of the
underlying GSI in action, which on top of it the Grid Intrusion
Detection Architecture (GIDA) was designed.

60

Chapter 3: The Grid Security Infrastructure

In this example the user – in the middle of the figure –
tries to execute an application on the available suitable
resources. Each group of resources – clusters, databases, super
computers ... – that are under the same local administration

and control, called an administrative domain, is represented

by a circle. Each administrative domain has its own security
policy that is enforced using any locally selected security
mechanism, e.g., Kerberos, SSH, or plain text passwords, as
shown inside the circles. This local security mechanism gives
the administrative domain a completely independent security
mechanism of other domains. This local control over resources
allows only authorized persons to use them. In this example
we assume that the user is authorized to use all the resources.

61

SSL

Plain Text TLS

SSH

Kerberos

Global Name

Local NameLocal Name

Local Name

Local Name

Local Name

Figure 3.2: Grid applications, a typical example.

2

4

1

35

Chapter 3: The Grid Security Infrastructure

The user must first find and allocate suitable resources
for his/her application among these authorized resources,
either through a broker or a resource manager. To allocate a
resource the user must have a local account at each
administrative domain. This account may be created
specifically for a particular user, a group account, or left
anonymous for public use. Providing single-sign-on, which is
one of the requirements of the GSI, is important so the user
will not have to login at each domain separately using different
mechanisms. Single-sign-on requires each user to have a

Global Name that will be used in identifying that user at all
domains and in each Grid operations. This global name is
proved – at authentication process – by using the user
credentials which is usually a certificate signed by a trusted
certificate authority and a private key. These credentials are
shown in the figure by the dark lock.

After authentication at an administrative domain using

GSI mechanisms the global name is mapped to a Local Name –
the name used locally to identify the user – then according to
the local security policy the user is either authorized or denied
to access the resource. It can be noticed that using this
approach each Grid user has a unique name that identifies all
his operations, and even if the local account is a group account
or anonymous the logging at the Grid operations level is still
possible using the users global names.

62

Chapter 3: The Grid Security Infrastructure

Now, after the user selects some suitable resources, the
user can allocate these required resources – in this example
these suitable resources where at domains labeled 1, 2, and 3
and allocation process is shown by the solid arrows – and run
his application processes that are represented by dark
rectangles inside the domains. These processes are solving the
same problem in parallel so in most cases they need to
communicate with each other – the dashed arrows – to
cooperate and share results. This implies that they need to
authenticate with each other somehow. The processes may
need, while execution, to allocate more resources as in the case
with the process at domain 1 need to allocate resources at
domain 4 and 5, and then run other processes – shown by
dashed rectangles – at these new domains to complete the
application.

One trivial solution to allow these processes to
authenticate, allocate resources, and perform any other tasks
on behalf of the user is to give them the user's credentials.
Although this solution is simple, it has two main drawbacks.
First there will not be any control over the process. It can do
whatever the user can do because it has a copy of the user’s
private key. And the user can not control and limit what the
application is allowed to do, because in a security context this
control is enforced through the credentials. Second and more
importantly, the process normally runs on remote resource,
this means that a copy of the private key will exist at remote

63

Chapter 3: The Grid Security Infrastructure

sites. Sending the user credentials with each process will
increase the probability of stealing and misuse these
credentials because they will not be well protected. Misusing
the credentials means misusing the grid resources! So to
protect the grid resources the user credentials must be well
protected. These are tow major security risks that makes this
solution not applicable and introduced instead the concept of
delegation.

Delegation allows the user to delegate or pass some of
his/her rights to the processes allowing them to act on his/her
behalf. This is done by creating temporary credentials –
represented by the shaded locks – that allows the process to
perform specific tasks for a limited period of time. The user
can place any restrictions he/she wants on these temporary
credentials, such as the period of time that they are valid, the
sites that the application can communicate with and so on.
This approach gives control upon the processes and reduces
the risks of the user's credentials being compromised. Now the
user can leave after he/she has login using his/her credentials
and created the temporary credentials, and then come back
later to check his/her application and collect results.

The objective of the intruder is either to gain access to a
system (Authentication) or to increase the range of privileges
accessible on a system (Authorization) [103]. This requires an
outsider intruder to acquire information that should have been

64

Chapter 3: The Grid Security Infrastructure

protected. In this case this information is in the form of the
user's credentials or private key. If the intruder managed to get
this private key some way then he can login the system and
perform all operations that the legitimate user had privileges to
do.

Users' private keys can be protected in one of two ways
[45]:

● Access Control: The private key is kept in a file

accessible only by the private key owner account. For
increased protection this file may also be encrypted using a
password.

● Smart Cards: The private key may be stored on a

smart card. This provides the best security but requires
special hardware that is currently not widely used.

The Grid Security Infrastructure (GSI) assumes that no
one - other than the owner of the private key - can gain access
to the file containing the private key. Although the previous
two ways are considered secure enough to protect the private
key of the user, there still a small probability that flaws can
occur and an intruder can gain access to this file. Techniques
used to crack password protected systems such as trying
default passwords or exhaustively trying all short passwords is
not valid in GSI because with current technology it is not
feasible to guess the user private key. The most important

65

Chapter 3: The Grid Security Infrastructure

requirement in the GSI as presented above is the single-sign-
on and delegation. This is important because the user
application may require the use of hundreds of resources
located at different domains, and requiring the user to
manually sign on each of these domains is impractical. This is
also important because that the user's application may run for
days or weeks, and we may not expect the user to sit in front of
the computer and manually log on whenever a new resource is
needed. The temporary credentials enhanced the security.
Although if an intruder gain access to this temporary
credential, temporary private key, is less dangerous than
gaining access to the user's private key, an intruder is still able
to do harmful or unauthorized work using this temporary
private key.

Another risk can come from insiders. These are the
legitimate users that misuse their privileges. Protection from
insiders is more difficult because they can not be prevented
using security mechanisms.

3.3 The Grid Research Project

The emerging Grid technologies have changed the way
people think about computation by presenting new paradigms
and application models. To help us better understand the Grid
environment, we decided to join in a research project. The goal
of joining such project is to better understand the Grid

66

Chapter 3: The Grid Security Infrastructure

infrastructure, the nature of Grid applications and
environment, and specially to tackle the Grid security.

This work is a part of a joint research project between
Ain Shams University (ASU) in Egypt and George
Washington University (GWU) in USA to build a system for
signature verification. The target of the project is to create a
hand written signature verification system. This means that the
user of the system will be able to check if a hand written
signature he/she have (on a contract for example) is a genuine
or forged signature.

This work presents a new approach to solve such
problems using Grid approaches to increase performance and
resource utilization while reducing the maintenance costs and
security risks of the system. This is done by proposing a
general architecture of the system, focusing on the advantages
of using the Grid technologies over other techniques. The
limitations of other possible solutions and the advantages of
Grid solutions have make it a good paradigm for future
applications. A testbed linking the two universities was created
and used to test the proposed architecture and prove its
applicability in real applications.

Section 3.3.1 briefly describes the problem of hand
written signature verification. A proposal of different
approaches to solve this problem is presented in section 3.3.2
showing the advantages and drawbacks of each and why the

67

Chapter 3: The Grid Security Infrastructure

grid approach is better. Section 3.3.3 discusses the testbed
used for testing and the results of different experiments.
Finally the general conclusions are presented in section 3.3.4.

3.3.1 The Signature Verification Problem

The problem of handwritten signature verification has
four main components that can be described in the following
points:

1. The Database: There are databases storing

images of genuine signatures. The system can only
verify signatures for persons having their genuine
signatures stored in these databases. For each person
there is one or more signatures set. Each set consist of
a number of genuine signature images of that person.
Each set also has some properties – meta data –
describing its contents such as the number of
signature images, the date these signatures where
signed by the person, the conditions at which the
person signed these signatures, the signature image
resolution, and so on.

2. Suspected Signature: The user of the system

should have a person's signature image that is needed
to be verified by comparing it with the genuine
signature images in one of that person's signatures
sets.

68

Chapter 3: The Grid Security Infrastructure

3. The Analysis Algorithm: The system can

accept one or more algorithm capable of analyzing
suspected signature images and decide whether they
are forged or not. These algorithms may have
different characteristics and requirements such as
complexity, execution time, accuracy, signature
image format, number of valid signature images
needed, and so on.

4. The User's QoS: According to the user's

desired Quality of Service (QoS), the suspected
person signature will be compared to one or more of
his signature sets in the database – with different
attributes and quality – by one or more analysis
algorithm – with different requirements and
accuracies – to achieve the desired user's goals.

3.3.2 The Signature Verification System Architecture

Although the problem sounds simple, it contain many
complex hidden issues and trade-offs and many possible
solutions. But generally these solutions can be classified into
one of the possible three scenarios.

The Old Scenario

This is the simplest – but not the best – solution to this
problem. It is simply to have the whole signature verification

69

Chapter 3: The Grid Security Infrastructure

system as one entity at each user that wants to use it as shown

in Figure 3.3. Going back in time a couple of decades at the
beginning of the computer revolution maybe it would the only
possible solution. In this scenario any user of the system must
have a database management system with a database filled
with genuine signature sets for all possible persons that the
user of the system may need to verify. The user must also have
all the signature analyzing algorithms needed to analyze the
signatures according to his QoS. A computer system capable
of providing the needed computational power whenever it is
needed by the algorithms to analyze the signatures must be
available and dedicated for this purpose. This system must also

70

Figure 3.3: The old scenario.

Chapter 3: The Grid Security Infrastructure

be regularly administrated and maintained by updating the
database with new signature sets, checking for new algorithms
and updated versions, and maintaining and upgrading the
computer system hardware.

This scenario with its architecture and requirements
introduced many problems. The database size may grow to be
very large and hard to maintain by the user of the system when
it is filled with millions of person signature sets. Such system
– with replicating its components at each user – will have a
very high maintenance cost and poor cost/performance ratio.
This scenario contains security problems. The user of the
system must implement security mechanisms to protect this
database and to verify that its content was not compromised by
any undetected attack on the system. The user must also verify
the origin of the signature sets and the algorithms to assure
that they are correct. Most importantly it is unsafe and very
risky and to give a database with all genuine persons
signatures to all users of the system, because there is no way to
guarantee that none of these users will miss use this valuable
information to create professional forged signatures that are
hard to detect.

The Modern Scenario

With the widespread of the Internet and web enabled
applications this problem may be solved in much elegant

71

Chapter 3: The Grid Security Infrastructure

ways. Modern technologies may be used such as web services
and client/server application. In one of the possible scenarios,

as shown in Figure 3.4, the user acquires appropriate
credentials(private keys, password, ...) to verify his identity.
After that, using a web browser, the user browse to one of the
system's home page then authenticate and login using his
credentials. The user uploads the signature image that needs to
be verified. The server analyzes the signature and sends back
the result to the user.

In this scenario all what the user should have is a valid
credential to prove his identity, a web browser, and of course

72

Figure 3.4: The modern scenario.

Chapter 3: The Grid Security Infrastructure

the signature image he wants to verify. This scenario sounds
quite simple but only from the user (client) side. But from the
server side there are several solutions with their problems. It
could be just having multiple servers (mirrors) distributed
around the world to divide the workload among them. Each
server will maintain a complete system with a database of all
valid persons signature sets, all analyzing algorithms, and the
necessary computational power to handle the users requests.
This is simple but has almost the same drawbacks of the old
scenario.

An alternative solution for the server side is to have a
real distributed system with a distributed database of valid
signature sets, for example a database for each country, and
having multiple processing nodes each specialized in one or
more analyzing algorithms. This system will solve almost all
the problems. Each valid signature set is maintained at a single
database which eases the maintenance, reduces security risks,
and reduces the database size. The cost is distributed among
the database and computation servers. Each site will be
responsible only for its part of the system not the whole
system.

But on the other hand this architecture will require the
implementation of a specialized infrastructure (shown by the

circle in the middle of Figure 3.4) that is among others
capable of:

73

Chapter 3: The Grid Security Infrastructure

1. Locating the available signature sets databases.

2. Searching these databases for a person's valid
signatures sets.

3. Locating free analyzing nodes with appropriate
algorithms.

4. Handling possible failure of any of these
system components.

5. Implement appropriate security mechanisms to
control access to databases and analyzing nodes.

6. Provide a mechanism to allocate and start
computation on the analyzing nodes.

Such architecture is very complex and hard to be
specially implemented for a specific application of the hand
written signature verification system.

The Grid and Security

The Grid – from its definition – is used to coordinate
and couple resources that are geographically distributed and
administrated independently to create virtual organization that
enables collaboration and seamless access to computational
resources. Put in another way, the Grid simply implements the
entire required infrastructure discussed in the previous

74

Chapter 3: The Grid Security Infrastructure

scenario (shown by the circle in the middle of Figure 3.4). The
Globus ToolKit 3 [35][93] is one of the software toolkits that
implements the Grid infrastructure. It provides basic services
needed by any Grid enabled application. These services, as
presented in Chapter 1, are resource management [50],
information services [51], data management [98], and

security[37] as shown in Figure 1.2. Security is important for
the success of a Grid environment. The Globus ToolKit
addressed the security issue through the Grid Security
Infrastructure (GSI) that is a component of the toolkit and

supports all other services as in Figure 1.2, It is currently
based on public key infrastructure (PKI) and it requires all
users and resources to have appropriate certificates to join the
Grid environment. GSI also provide basic services such as
encryption, single sign on, mutual authentication, among
others.

The Grid Scenario

Using the Globus ToolKit 3 the scenario – as shown in

Figure 3.5 – will start by the user login using appropriate
credential and creates the user proxy. The user will start the
Globus enabled signature verification application and provide
it with the signature image needed to be verified. The program
will contact the monitoring and discovery service (MDS) – a
part of the Grid information services – to find available valid
signature sets and processing nodes with appropriate analyzing

75

Chapter 3: The Grid Security Infrastructure

algorithms. According to the user QoS the application will
pick one or more available processing node(s) and then send to
them suitable valid signatures set and the suspected signature
image. After processing ends the results are sent back to the
user application and displayed.

In this scenario the user will have valid credentials to
prove his identity, the signature image, the Globus
infrastructure installed, and the Signature verification
application. In this scenario we can notice the following:

1. It is a dynamic environment where valid

76

Figure 3.5: The Grid Scenario.

Chapter 3: The Grid Security Infrastructure

signatures sets can be added or removed and
processing nodes can join or leave as they want. This
environment is shared and coordinated through the
Globus infrastructure.

2. The valid signature sets are protected by being
kept at secured databases and only sent to trusted and
authenticated analyzing nodes based on the choice of
the local system administrators of the signature
database.

3. The coordination process is seamless and all
complexities are hidden by the Globus infrastructure.
These complexities are in security, resource
management, data management, and information
services.

4. Signature algorithms are updated and improved
locally and then discovered globally by MDS without
requiring changing of the user application.

5. Within this large pool of resources the user can
deliver the desired QoS by combining the appropriate
pair of signature set and analyzing algorithm.

6. User authentication and secure signatures
transfer over public insecure networks are done using
the Grid Security Infrastructure GSI [37]

77

Chapter 3: The Grid Security Infrastructure

7. There can be different trust relationships among
users, databases and processing nodes owners. The
Grid Security Infrastructure supports these trust
relationships. Although it is a one global system, each
component (user, database, or processing node) works
only with trusted components. This trust relation is
defined locally by the decisions of the component's
system administrators. For example a database may
deny the request to send signatures sets to a
processing node if it is not trusted. In the Globus
ToolKit 3 this is done now using Public Key
Infrastructure and hierarchical Certificate Authorities

78

Internet

ASU1

GWU
ASU2USA Egypt

Figure 3.6: Layout of available resources used in

implementation.

Chapter 3: The Grid Security Infrastructure

3.3.3 Project Results

To test the proposed Grid scenario a testbed was created

consisting of three nodes as in Figure 3.6. The first one is
called GWU and is located in USA at George Washington
University. The other two nodes are called ASU1 and ASU2
and are located in Egypt at Ain Shams University. GWU
contains both a signatures database and an eight node cluster
for distributed signature analysis. ASU1 consists on only of an
eight node cluster for distributed signature analysis. ASU2
contains only a signatures database. The three nodes where
linked using the Globus ToolKit 3. The distributed hand
written signature verification algorithm [63] is installed on the
clusters at GWU and ASU1. A grid enabled application [65]
was developed that enables the users of the system to locate
available processing nodes with appropriate algorithms, locate
and search the databases for a specific person's signatures sets,
select the best signatures set and processing node for the user,
upload the suspected signature, and finally return the result of
analysis back to the user. The system user can be located
anywhere in the world, all what is needed it appropriate
infrastructure installed, the grid enabled application, and
appropriate credentials to use the system.

The system total execution time was measured with
respect to three parameters: The location of the user, the
location of the signatures database node, and the location of

79

Chapter 3: The Grid Security Infrastructure

the analysis node, each of which can be – in this testbed –
either in Egypt or in USA. According to the user QoS, the
processing is done on the nearest available analyzing node to
the signatures database node. The following scenarios can
occur independently of the user's location:

1. Signatures are available on GWU and GWU is chosen
for analysis.

2. Signatures are available on GWU and ASU1 is
chosen for analysis.

3. Signatures are available on ASU2 and ASU1 is
chosen for analysis.

4. Signatures are available on ASU2 and GWU is
chosen for analysis.

EGYPT
Database

ASU1 ASU2 GWU

P
ro

ce
ss

in
g ASU1 X 0.27 1.27

ASU2 X X X

GWU X 1.31 0.51

Table 3.1: Execution time of experiments (in minutes) when the

user in Egypt.

80

Chapter 3: The Grid Security Infrastructure

USA
Database

ASU1 ASU2 GWU

P
ro

ce
ss

in
g ASU1 X 0.45 1.26

ASU2 X X X

GWU X 1.14 0.25

Table 3.2: Execution time of experiments (in minutes) when the

user in USA.

Table 3.1 and Table 3.2 summarize the results obtained
from running the grid application, the first when the user is in
Egypt, and the second when the user is in USA when the
analysis is completed without any errors. The columns
represent the node on which the signatures set was found and
the rows represent the node on which processing was done. A
cell with value X means that this case is not applicable due to
the assumptions that the signatures do not lie on all nodes and
that not all nodes can do analysis. The average execution time
when the user was in Egypt was found to be 0.84 minutes and
that when the user is in USA was found to be 0.775 minutes.
This difference in the averages is attributed to the connection
speed in Egypt site, as it is based on an ADSL line with upload
to download ratio is 1:4.

Executing the same algorithm on a sequential machine

81

Chapter 3: The Grid Security Infrastructure

took about 34 seconds. The Grid enables the access to more
powerful resources – the cluster in this case – to perform
computations. From this point of view it is fare to compare the
Grid enabled system performance that took 49 seconds in
average to the sequential single machine system performance.
It can be noticed that the delays due to communication was
recovered by faster computation resulting in approximately the
same performance.

3.3.4 Project Conclusions

The Grid infrastructure provided a seamless way to
efficiently link and access different distributed computational
resources. Providing an ideal development environment to
create innovative applications such as the hand written
signature verification system presented here. It enabled the
efficient use of the available resources – databases,
computations, and algorithms – by an intelligent Grid enabled
application that used the underlying infrastructure to
efficiently satisfy the desired user's QoS. The system was also
secure by keeping the genuine signatures sets at secure
databases away from the users and by using the Grid Security
Infrastructure for authenticating users and transferring
signature images. The different tests performed on the system
showed good performance compared with single machine
systems proving the applicability and advantages of using Grid
paradigms for future applications.

82

C

h
ap

te
r

 4

Intrusion

Detection

4.1 Introduction
4.2 The Anatomy of Intrusion Detection Systems
4.3 Network vs. Host Based Intrusion Detection
4.4 Anomaly Detection vs. Misuse Detection
4.5 Centralized vs. Distributed Intrusion Detection
4.6 Other Classifications and Attributes
4.7 Problems of Traditional Intrusion Detection

Systems

Chapter 4: Intrusion Detection

Chapter 4: Intrusion Detection

This chapter reviews the field of intrusion detection by
defining it and showing why it is needed. Then it illustrates the
different techniques and approaches used to detect intruders.

4.1 Introduction

Early efforts in the area of networking and the Internet
concentrated in developing efficient protocols, algorithms and
hardware necessary to link computers with each other. They
did not concern with security issues. After the rapid increase
of the Internet size, security became a major issue to protect
valuable information and resources. So passwords, encryption
and other security techniques arose.

The new emerging security techniques came with three
major drawbacks, witch created the need for intrusion
detection. First drawback is that increasing the security level
places constraints on communication and slows it down and
decreases its usability, on the other hand decreasing the
security level to make the communication more flexible
increases the opportunity for penetration and unauthorized use
of the linked computers. Second is that security systems may
contain software bugs and holes that attackers can use to break
the system, and no one can guarantee that a security system is
one hundred percent free of bugs and holes. Third and most

84

Chapter 4: Intrusion Detection

important is that even if the security level was increased to its
maximum levels and all bugs and holes were fixed, traditional
security systems, some times called first layer of security, can
not protect a system from insiders. An insider is defined as any
legitimate person who is allowed, according to a security
policy, to use the system.

Today's computer systems are vulnerable to both abuse
by insiders and penetration by outsiders. Current security
systems are not enough to protect systems from insiders and
outsiders [103]. Passwords can be cracked, keys can be stolen,
firewalls does not protect the system from insiders and
outsiders can dig under the firewall, security systems contains
bugs and holes that are impossible to fix in a feasible way
were legitimate users can miss use their authority and
privileges. Thus intrusion detection is viewed as a second line

of defense as shown in Figure 4.1. Intrusion detection systems

85

Firewall

Password

Authentication

Authorization

...

...

Intrusion

Detection

Attacks

First Level Second Level

Figure 4.1: Different security levels to protect a computer system

Protected

Computer

System

Chapter 4: Intrusion Detection

are based on the assumption that the normal use of the system
is different from malicious use [68]. They mainly analyze the
auditing file and try to discover any suspicious user behavior,
and take appropriate actions if such user is discovered.

To put it in another way computer security must address
three fundamental needs:

● Prevention

● Detection

● Response

In general it is always better to prevent something bad
from happening. This is what the first layer of security tries to
achieve through fire walls, passwords, keys, encryption, and so
on. If prevention is achieved then there is no need for detection
and response. Unfortunately this is not the case for the reasons
stated before, and it is impossible to achieve 100% prevention
with the current technology. That is why detection and
response is a vital part of any security system.

The objective of the intruder is to gain access to a
system (Authentication) or to increase the range of privileges
accessible on a system (Authorization) [103]. This requires the
intruder to acquire information – keys, passwords, etc. – that
should have been protected.

86

Chapter 4: Intrusion Detection

Intrusion detection may be defined as “the problem of
identifying individuals who are using a computer system
without authorization (i.e., 'crackers') and those who have
legitimate access to the system but are abusing their privileges
(i.e., the 'insider threat')” [55]. Another definition is “the
process of monitoring the events occurring in a computer
system or network and analyzing them for signs of intrusions,
defined as attempts to compromise the confidentiality,
integrity, availability, or bypass the security mechanisms of a
computer or network” [71]. The research field of intrusion
detection was first formalized with the publication of
Anderson's seminal report in 1980 [68]. After that the first
comprehensive model of an intrusion detection system was

87

Figure 4.2: Access control mechanisms

Access Control

Role-based

Authentication

Single

Sign-on

Firewall

Encryption

Chapter 4: Intrusion Detection

introduced in 1987 by Denning [17].

To help in better understanding of what is intrusion

detection all about, the two illustrations, shown in Figure 4.2

and Figure 4.3 form [70], compares computer security with all
its layers with security mechanisms used in daily life to protect
precious things in a building.

The first layer of computer security is basically access
control mechanisms. They are analogous to traditional access

control mechanisms as shown in Figure 4.2. The fence around
the building is just like a firewall allowing only few to pass

88

Figure 4.3: Video cameras, by analogy, typical to

intrusion detection role in computer systems.

Host-based

Intrusion

Detection
Network

Intrusion

Detection

Chapter 4: Intrusion Detection

through. Gates with locks on them are just like passwords.
Inside the building closed rooms are like restricted areas that
only few people who have the right privileges can access.

Thieves can climb the fence, steal keys, break locks, or
even masquerade as a person who is allowed to enter the
building. Authorized persons can even misuse their privileges

to do something wrong. That why, as shown in Figure 4.3

cameras are needed as a second layer to increase security.
They are used to watch what is going on outside and inside the
building to ensure that everything is OK. That is exactly
analogous to the rule of intrusion detection in a computer
system where the building is the protected system. As
analyzed below, cameras outside the building are network
based intrusion detection, while inside cameras are host based
intrusion detection.

4.2 The Anatomy of Intrusion Detection Systems

Intrusion detection systems try to detect, using different
mechanisms and approaches, the difference in behavior caused
by an intruder and take appropriate action to stop the intruder.
To achieve this most intrusion detections employ a common
architecture consisting of three major modules (gray boxes in

Figure 4.4):

● A data gathering module (Audit Collection): This

module gathers data that may contain evidence of intrusion

89

Chapter 4: Intrusion Detection

to be used in intrusion detection decisions. There are many
sources of data that may be collected such as network
activities, host security logs, keyboard input, command
based logs, or application based logs.

● An analysis module (Processing): This module

processes the gathered data to identify intrusive activity.
There are many approaches to analyze the gathered data.

90

Active/Processing

Data

Configuration

Data

Reference

Data

Alarm
Processing

(Detection)

Audit

Storage

Audit

Collection

Monitored
system

Security
Admin.

Security Administrator response to intrusion

Active (automatic) intrusion response

Figure 4.4: Organization of a generalized intrusion

detection system

Chapter 4: Intrusion Detection

Earlier approaches were mainly based on the application of
statistical methods to identify anomalous activity [69].
Many early systems [27][30][52][15] employed this method.
Modern approaches uses a diverse range of classification
methods to identify anomalous activities including, among
others, rule induction [29][66][22], artificial neural
networks [80][47][9], fuzzy set theory [92], classical
machine learning algorithms [101][100], artificial immune
systems [83][82], signal processing methods [61], and
temporal sequence learning [91][2].

● A response module (Alarm): This module handles

all the system alarms and takes decisions and performs
appropriate actions according to the results of the analysis.
This response may be automatic or just a notification to the
security administrator to help in taking right actions in
stopping the intrusion risk.

A general intrusion detection model should, in addition
to the previous components, contain the following components

[26] (white boxes in Figure 4.4):

● Audit Storage: An important issue in any intrusion

detection system is feature selection and data reduction.
Feature selection is important because the inclusion of too
much data will adversely impact the performance of the
system, while the inclusion of too little data will reduce the

91

Chapter 4: Intrusion Detection

overall effectiveness of the system. Audit data must be
stored somewhere so it is important to reduce the size of the
data to save storage space. This storage may be for long
time, months, or temporarily awaiting for processing.

● Configuration Data: This data sets the behavior of

the intrusion detection system. It is configured by the
security administrator to control and tune the operation of
the system. This data may contain information such as
when, where, and how to collect audit data and also how to
respond to intrusion among others.

● Reference Data: To detect deviation from normal

behavior, the analysis module must compare the gathered
audit data to some reference data to detect intrusion. This
reference data may be in the form of signatures of well
known attack and/or profiles of normal behavior depending
on the type of intrusion detection system as presented
below. Profiles are usually updated by the analyzing module
on regular basis when new observed information about
normal behavior is gained. Signatures are usually updated
by the security administrator when new attacks are
discovered and their signatures detected.

● Active/Processing data: The analyzing module

usually needs to store temporary results needed to complete
the detection process. Examples of this data may include

92

Chapter 4: Intrusion Detection

information about partially fulfilled intrusion signatures or
the percentage of matching between detected behavior and
normal profiles at different time periods.

Intrusion detection systems implement the above
components in different ways and using a wide range of
approaches and techniques aiming to select the best
combinations to improve the system performance. This wide
variety led to different approaches to classify intrusion
detection systems. The most significant and used approach is
to classify Intrusion detection techniques either according to
the source of the data used for the analysis into network based
and host based intrusion detection systems [21][39], or
according to the approach taken to analyze the data into
misuse detection and anomaly detection [16].

4.3 Network vs. Host Based Intrusion Detection

The first step in any intrusion detection system is to
collect data about the protected system and the users using it.
This data reflects the status of the system and the operations
that the users are performing. Depending on the way the data
gathering module gets its data, the intrusion detection systems
are classified to either network based intrusion detection or
host based intrusion detection.

Network based intrusion detection systems get their data
by installing a device on the network capable of monitoring all

93

Chapter 4: Intrusion Detection

network traffic and passed packets. They rely on raw network
packets in their analysis. On the other hand, host based
intrusion detection systems use log files created on each host,
containing all the operations performed on the host, as the data
source.

A Network Intrusion Detection System (NIDS) monitors
the packets that traverse a given network link. Such a system
operates by placing the network interface into promiscuous
mode, affording it the advantage of being able to monitor an
entire network while not divulging its existence to potential
attackers. Because the packets that a NIDS is monitoring are
not actually addressed to the host the NIDS resides on, the
system is also impervious to an entire class of attacks such as
the "ping-of-death" attack that can disable a host without ever
triggering a host intrusion detection system. A NIDS is
obviously of little value in detecting attacks that are launched
on a host through an interface other than the network.

Network data has a variety of characteristics that are
available for a NIDS to monitor: most operate by examining
the IP and transport layer headers of individual packets, the
content of these packets, or some combination thereof.
Regardless of which characteristics a system chooses to
monitor, however, the positioning of a NIDS fundamentally
presents a number of challenges to its correct operation.

On a heterogeneous network, a NIDS generally does not

94

Chapter 4: Intrusion Detection

possess intimate knowledge of all of the hosts on the network
and is incapable of determining how a host may interpret
packets with ambiguous characteristics. Without explicit
knowledge of a host system's protocol implementation, a NIDS
is impotent in determining how a sequence of packets will
affect that host if different implementations interpret the same
sequence of packets in different ways [57].

A savvy attacker can exploit this property by sending
packets that are designed to confuse a NIDS. Such attacks are
referred to as insertion and evasion attacks based on whether
they insert additional information into a packet stream that a
NIDS will see and the target host will ignore or if they evade
detection by forging data in such a way that a NIDS cannot
completely analyze a packet stream.

Protocol ambiguities can also present a problem to a
NIDS in the form of crud. Crud appears in a network stream
from a variety of sources including erroneous network
implementations, faulty network links, and network
pathologies that have no connection to intrusion attempts [97].
If a NIDS performs insufficient analysis on a stream
containing crud, it can generate false positives by incorrectly
identifying this crud as being intrusive. While a NIDS
therefore is in a very convenient position whereby it has
complete access to all packets traversing a network link, its
perspicacity is challenged due to ambiguities in network data

95

Chapter 4: Intrusion Detection

and its limited perspective of host system implementations and
network topology.

On the other hand, host intrusion detection refers to the
class of intrusion detection systems that reside on and monitor
an individual host machine. There are a number of system
characteristics that a Host Intrusion Detection System (HIDS)
can make use of in collecting data including:

File System: Changes to a host's file system can be

indicative of the activities that are conducted on that host. In
particular, changes to sensitive or seldom-modified portions
of the file system and irregular patterns of file system
access can provide clues in discovering attacks.

● Network Events: An IDS can intercept all network

communications after they have been processed by the
network stack before they are passed on to user-level
processes. This approach has the advantage of viewing the
data exactly as it will be seen by the end process, but it is
important to note that it will be useless in detecting attacks
that are launched by a user with terminal access or attacks
on the network stack itself.

● System Calls: With some modification of the host's

kernel, an IDS can be positioned in such a way as to observe
all of the system calls that are made. This can provide the
IDS with very rich data indicating the behavior of a

96

Chapter 4: Intrusion Detection

program.

A critical decision in any HIDS is therefore choosing the
appropriate system characteristics to monitor. This decision
involves a number of trade-offs including the content of the
data that is monitored, the volume of data that is captured, and
the extent to which the IDS may modify the operating system
of the host machine.

4.4 Anomaly Detection vs. Misuse Detection

Misuse and anomaly detection are two techniques that
are used to analyze the data about a computer system and its
users, gathered using either host based or network based
techniques, to detect intrusion.

Anomaly detection process involves first characterizing
the behaviors of individuals or systems and then recognizing
behavior that is outside the norm [44], by trying to identify
events that appear to be anomalous with respect to normal
system behavior [16]. One advantage of Anomaly detection
approach is that it does not require any historical knowledge of
abnormal behavior or anomalous records. But the draw back of
this is that intruders can slowly train the system to accept their
malicious behaviors.

Anomaly detection is concerned with identifying events
that appear to be anomalous with respect to normal system

97

Chapter 4: Intrusion Detection

behavior. A wide variety of techniques including statistical
modeling, neural networks, and hidden Markov models have
been explored as different ways to approach the anomaly
detection problem [47][69][80]. Each of these anomaly-based
approaches fundamentally relies upon the same principles:
anomalous activity is indicative of an attempted attack and the
correct set of characteristics can sufficiently differentiate
anomalies from normal system usage. Developing an anomaly
detection system therefore involves first establishing a
baseline model that represents normal system behavior and
against which anomalous events can be distinguished. The
system then analyzes an event by considering it within this
model and classifying it as normal or anomalous based on
whether it falls within a certain threshold of the range of
normal behavior or intruder, respectively.

The most appealing feature of anomaly detection
systems is their ability to identify new and previously unseen
attacks. Because the process of establishing a baseline model
of normal behavior is usually automated, anomaly systems
also do not require expert knowledge of computer attacks. This
approach is not without its handicaps. However, as anomaly
detection may fail to detect even attacks that are very well-
known and understood if these attacks do not differ
significantly from what the system establishes to be normal
behavior. Anomaly based systems are also prone to higher
numbers of false positives, as all anomalous events are

98

Chapter 4: Intrusion Detection

assumed to be intrusive although in reality a variety of other
factors can produce behavior that appears anomalous (e.g.,
implementation errors) [71].

Misuse detection is another approach that involves
identifying patterns of known “bad” behavior, while anomaly
detection looks for patterns of activity that appear to be
abnormal [72]. Misuse detection requires a database
(knowledge base) of historically known attacks. The gathered
data is searched for patterns and signatures of well known
attack types stored in the knowledge base. The drawback here
is that new attacks unknown to the system can not be detected.

The essence of misuse detection centers around using an
expert system to identify intrusions based on a predetermined
knowledge base. As a result, misuse systems are capable of
attaining high levels of accuracy in identifying even very
subtle intrusions that are represented in their expert knowledge
base; similarly, if this expert knowledge base is crafted
carefully, misuse systems produce a minimal number of false
positives [71].

A less fortunate ramification of this architecture results
from the fact that a misuse detection system is incapable of
detecting intrusions that are not represented in its knowledge
base. Subtle variations of known attacks may also evade
analysis if a misuse system is not properly constructed.
Therefore, the efficacy of the system relies heavily on the

99

Chapter 4: Intrusion Detection

thorough and correct construction of this knowledge base, a
task that traditionally requires human domain experts.

4.5 Centralized vs. Distributed Intrusion Detection

Each component of an intrusion detection system may
be either centralized – all functionality performed at a single
location – or distributed. The major difference among
intrusion detection systems is related to the centralization or
distribution of the process of data-collection and/or data-
processing. Usually the underlying monitored system has the
major influence on whether to centralize or distribute a
component.

Small systems, such as few PCs linked with a Local

100

LAN

Figure 4.5: Centralized intrusion detection.

Data Gathering

Module

Data Analysis

Module

Intrusion

Detection

Server

Chapter 4: Intrusion Detection

Area Network (LAN), as shown in Figure 4.5 usually adopt a
pure centralized approach. A powerful intrusion detection
server is used that has the capability of both collecting data
about the entire monitored system (the data gathering module)
and performing all the required analysis on the collected data.
Data reduction, data storage, and alarms among others are also
the responsibility of the central server. Examples of
centralized systems are [6][44][46].

When the size of the monitored system increase in larger
organizations sometimes become hard or even impossible for a
single centralized intrusion detection server to do all the work.
In this case some of the intrusion detection system components
must be distributed. The simplest solution is to distribute the
data gathering module. That will gather the data, do necessary
selection/reduction for the data, and then send it to a

101

LAN

LAN

LAN

LAN

Figure 4.6: Simple distributed intrusion detection.

Data Analysis

Module

Data Gathering

Module
Intrusion

Detection

Server

Chapter 4: Intrusion Detection

centralized analysis server for processing, as shown in Figure

4.6. A more complicated approach is to distribute the

analyzing module, as shown in Figure 4.7. This is usually
done together with the distribution of the data gathering
module. The distributed analyzing modules are usually
organized in a hierarchical manner. Examples of distributed
intrusion detection systems are [41][58][77]. For Grid
computing architecture, either class of distributed intrusion
detection systems is more suitable due to the distributed nature
of the Grid computing architecture.

4.6 Other Classifications and Attributes

There are other attributes that can be used in classifying
intrusion detection systems. These attributes may include:

● Detection Time: Depending on the time needed to

detect the intrusion from its beginning, intrusion detection

102

LAN

LAN

LAN

LAN

Figure 4.7: Hierarchical distributed intrusion detection

Data

Analysis

Module

Data

Gathering

Module
Intrusion

Detection

Servers

...

...

...

...

...

Chapter 4: Intrusion Detection

systems can be either real-time systems where intrusion are
detected after they happen or non-real-time systems that
depend mainly on audit analysis. Sometime they are called
on-line and off-line intrusion detection system respectively.

● Response Type: After an intrusion is detected, there

must be some actions taken to stop it. Depending on the
type of this action in response to the intrusion, systems can
be classified to either passive or active. Passive systems
response by only notifying the security administrator who
should take the appropriate actions to stop the intrusion. On
the other hand, active systems response by performing
appropriate actions depending on the type of intrusion. Such
as, closing a session, suspending an account, shutting down
a devise, or closing a port in the firewall. These actions are
performed automatically without referring to the security
administrator.

● Granularity of Data-Processing: This attribute

contrasts between systems that analyze the data
continuously, as it arrives, and those analyzing data as
batches at some regular time intervals. This is related to the
detection time mentioned above but they are not the same. A
system may process data continuously but with certain delay
making it non-real-time while other system may process
data in small batches at real-time.

103

Chapter 4: Intrusion Detection

● Intrusion Detection System Security: This measures

the ability to withstand attacks against the intrusion
detection system itself. This area is not yet studied well. It is
measured as a value on a high/low scale. Most systems don't
address this issue.

● Degree of Interoperability: This attribute is

concerned with to what degree an intrusion detection system
can work in conjunction with other systems, accept audit
data from other sources, and so on. This is the
interoperability with other systems and not with the same
system running on a different platform.

4.7 Problems of Traditional Intrusion Detection

Systems

Centralized intrusion detection systems architectures
such as [6][44][46] depends on a centralized server that is
capable of monitoring and analyzing the entire network to
detect intruders. These systems have one server with both
DGM and DAM running on it. Centralized intrusion detection
architectures are not suitable for Grid environments because
reasons such as their poor scalability. A computational Grid
size varies from a few numbers of computers in an
organization to span the entire earth. Centralized architectures
can not scale with this huge increase in grid size and the
centralized server will not be able to analyze this huge amount

104

Chapter 4: Intrusion Detection

of data. Another problem happens if this server is attacked or
failed for any reason, then the entire system will be affected
and fails. Another reason is that, in the case of large Grid
environments, it is not possible to find a centralized server that
can monitor all the resources in the grid, because of the
distributed nature of the networks linking its resources. The
fact that the grid consists of resources controlled by different
administrative domains makes another problem because it is
not possible to find a single server that all these administrative
domains can trust, agree to use and depend on it.

Distributed intrusion detection systems such as
[41][58][77] are more suitable for Computational Grids. They
have enhanced the scalability by distributing some of the
components of the system, such as distributing the DGM while
keeping the DAM centralized or in some systems distributed
by taking a hierarchical form with a centralized control at the
top. Distributed systems, although enhanced, are still not
sufficient for Computational Grids. The components which are
left centralized or components near the top of a hierarchy
forms a performance bottle neck and a single point of failure.
Intrusion detection systems designed for Computational Grids
must address the important fact that the grid consists of
different administrative domains that should not necessarily
trust each other, agree to share information and work together
to detect intruders or even believe each other if one of them
found an intruder and warned the other administrative

105

Chapter 4: Intrusion Detection

domains. These complex trust relationships must be addressed
by intrusion detection systems to be suitable for
Computational Grids.

4.8 Conclusion

As described in this chapter, intrusion detection systems
are becoming one of the main research areas in the field of
computer security. The research in intrusion detection field
covers a wide variety of systems, including centralized and
distributed systems. Unfortunately, these systems have some
limitations making them not 100% compatible with the Grid
environment. This mismatch appeared because the capabilities
of intrusion detection systems dose not satisfy some or all of
the Grid characteristics and requirements, making them not
suitable for implementation in Grid environments.

The rapid development of both intrusion detection
systems and Grid computing architectures, motivated us to
merge the two fields by designing and implementing a
proposed intrusion detection model that will fulfill the needs
of Grid computing systems.

106

C

h
ap

te
r

 5

The Proposed Grid

Intrusion Detection

Architecture

5.1 Problem Definition
5.2 The Proposed Grid Intrusion Detection

Architecture
5.3 GIDA Compatibility with the Grid

Chapter 5: The Proposed Grid Intrusion Detection Architecture

Chapter 5: The Proposed Grid Intrusion

Detection Architecture

Currently, the Grid Security Infrastructure (GSI) does
not have any intrusion detection system that can avoid any of
the previously presented security leaks. Hence, computational
Grid environments needs intrusion detection system as a
second line of defense after normal security mechanisms to
protect themselves from intruders that will try to misuse the
valuable resources made available by the Grid to any
legitimate user from any location on earth. This is critical in
the Grid environment because if the attacker masqueraded as a
legitimate user or a user misused his privileges this will result
in a high security risk not just at a single resource but at all the
resources this user can access and use.

Special Grid characteristics and previous intrusion
detection systems architectures were kept in mind while
designing the Grid Intrusion Detection Architecture, or GIDA.
The design was aiming to create an open, extensible, and
general architecture that is compatible with the Grid and its
requirements while tacking advantages of available Grid
services and protocols as possible.

This chapter presents and examines the GIDA in details
and its compatibility with the Grid is illustrated at the end of
this chapter.

108

Chapter 5: The Proposed Grid Intrusion Detection Architecture

5.1 Problem Definition

Intrusion detection systems have many components as

presented in Chapter 4. However two of these components are

essential for GIDA. The First module is the Data Gathering

Module (DGM) that is responsible for collecting data about

the monitored system that may contain useful information that
could give clues about intrusion. The second module is the

Data Analysis Module (DAM) that analyzes the gathered data

trying to detect any intrusion.

Taking into consideration the special features of the
Grid architectures, implementing any of the traditional
intrusion detection models to GSI will have some implications
and incompatibilities. Therefore, these models should be
customized to fit into the GSI new requirements.

A Grid intrusion detection system should protect the
resources from attacks that could happen from the Grid users.
These attacks could happen as a result of these resources
installing the Grid infrastructure software and so joining a grid
community. The Grid intrusion detection should not provide
protection against normal Internet attacks that do not require a
Grid environment, because its role is to protect Grid
environments from Grid attacks. However normal attacks
should be handled locally using local intrusion detection
systems. There may be cooperation between local intrusion

109

Chapter 5: The Proposed Grid Intrusion Detection Architecture

detection systems and the Grid intrusion detection system in
the form of a warning message or signal to warn the Grid
intrusion detection system in the case of a local attack to
prevent it from spreading to other Grid resources.

The Grid intrusion detection system must also be
compatible with the Grid requirements and constraints

presented earlier in Section 1.1. In other words it should be
scalable to cope with growing size Grid environment and suit
different small and large Grid environments. It should support
heterogeneous resources and interoperate rather than replace
existing systems. The Grid intrusion detection system should
handle the dynamic nature of the grid and the fact that the
failure is a rule not exception, so it should not be designed for
a specific Grid organization. The design should keep in mind
that the Grid is not owned by a single organization, so the
detection should be cooperative and not subject to centralized
control. It should also enable the delivery of different QoSs
because each participant in a Grid environment may have
different requirements and security levels. The design should
use standard and open protocols as possible to enable
interoperability and make expansions easy.

5.2 The Proposed Grid Intrusion Detection

Architecture

The Grid Intrusion Detection Architecture GIDA

110

Chapter 5: The Proposed Grid Intrusion Detection Architecture

[62][64] was designed with all the previously mentioned
problems in mind. GIDA is build on top of the Grid
infrastructure [36] including the Grid Security Infrastructure
GSI [37] which provides a uniform security infrastructure for
Computational Grids and interoperates with the diverse
intradomain security solutions. This means that GIDA uses the
services and protocols provided by the Grid to build a new
layer on top of the Grid layers to provide new services for

111

GIS

GIS

IDS

IDS

Figure 5.1: The proposed Grid intrusion detection

architecture

IDS: Intrusion Detection Server

IDA: Intrusion Detection Agent

Chapter 5: The Proposed Grid Intrusion Detection Architecture

intrusion detection.

The proposed GIDA is summarized in Figure 5.1. The
main idea is to distribute the problem of the Grid intrusion
detection among different distributed components that work
together to detect intruders. The Grid environment can be
considered as a virtual environment built on top of the Internet
or any other type of network architectures. These Grid
intrusion detection components will interact only with the Grid
infrastructure, so they will exist in this virtual Grid
environment and detect only Grid intruders. Meanwhile, these
components will take advantage of the services provided by
the Grid environment.

The GIDA has two main categories of components. The
first one, corresponds to the data gathering module (DGM),

called the Intrusion Detection Agent (IDA) which is

responsible for gathering data about the users and resources
from a specific administrative domain. The second component,
corresponds to the data analysis module (DAM), is called the

Intrusion Detection Server (IDS), which is responsible for

analyzing the gathered data and cooperate with other IDSs to
detect intruders. Both of these modules, IDAs and IDSs, are
distributed and not subject to centralized control as shown in

Figure 5.1.

As stated above the Grid consists of resources owned by

112

Chapter 5: The Proposed Grid Intrusion Detection Architecture

different administrative domain, this is represented by the

circles in Figure 5.1, each administrative domain will have an
intrusion detection agent responsible for gathering data that is
specific to this administrative domain and summarizing this
data and converting it to a standard format. In other words this
will deal with the heterogeneity of Computational Grid
resources. Summarizing the gathered data will reduce the
consumed network bandwidth when sending data to be
analyzed but will require preprocessing at the administrative
domain (client).

Each intrusion detection agent (IDA) will register with
one or more intrusion detection server (IDS) this will increase
the reliability, robustness and adaptability of the system. In
the case of the failure of one IDS the administrative domain
can still be protected against intruders if its IDA is registered
with other IDS. Of course there is an overhead of this
increased reliability and robustness in the form of the
increased bandwidth consumption and the time needed by the
IDS to analyze the data, this is due to the increase in the size of
the data being transferred and more processing needed to
analyze them. So there must be a trade off between the
performance and its cost. The registration with multiple IDSs
also allows the delivery of complex QoS if each one of these
IDSs uses different approach to detect intruders with different
properties.

113

Chapter 5: The Proposed Grid Intrusion Detection Architecture

After gathering information, these gathered information
will be transferred from each intrusion detection agent IDA to
all registered intrusion detection servers IDS. The Grid
Information Service (GIS) [51] which is a major component of
most Computational Grids can be used to store this
information. If the GIS is not available or not applicable a
special database can be implemented in the IDS to store the
gathered information for analysis.

The Intrusion Detection Servers (IDS) will analyze the
gathered information from the different IDAs and try to detect
intruders. These IDSs must not be homogeneous. Each IDS
can use a different approach to analyze the gathered data such
as anomaly or misuse detection and each one can be designed
and implemented using either neural network, statistical, data
mining, or other technique for intrusion detection [79]. The
key here is to use standard, open, general-purpose protocols
between the IDSs that allow them to cooperate and work
together.

When an IDS detects an intruder it should warn the
other IDSs which in turn will signal the registered IDAs that
will worn the local security to take an appropriate action.
Because GIDA is build on top of the Grid infrastructure,

GIDA can take advantage of the user's global name. When an

IDS detects an intruder it warns other IDSs using the user's
global name. When an IDS receive a warning it has the choice

114

Chapter 5: The Proposed Grid Intrusion Detection Architecture

whether to accept or deny the warning according to the IDS
QoS and trust relationship to the IDS sending the warning. If
the receiving IDS chooses to accept the warning then the user's
global name is mapped to the local name at each IDA
registered with the IDS that accepted the warning. Using the
local name the account can be disabled and appropriate actions
should be taken. This example shows the benefit of building
on top of the Grid infrastructure because using the global name
of the user enabled interoperability between IDSs which would
be otherwise difficult to implement.

The administrative domains can have local intrusion
detection system that detects local intruders. This local
intrusion detection system can cooperate with GIDA to help it
find the intruders. When an intruder is detected locally, the
IDA is warned which will then signal all the registered IDSs
that are then responsible to warn other IDSs and signal other
registered IDAs to take appropriate actions. In this case the
local intrusion detection system will detect the intrusion based
on the local name of the user that will be converted at the IDA
to the Grid global name of that user. The global name will be
used as in the previous example to warn other IDSs.

5.2.1 The Data Gathering Module

As mentioned before, the DGM is responsible for
gathering data about the monitored system that may contain

115

Chapter 5: The Proposed Grid Intrusion Detection Architecture

useful information to detect intrusion. Taking a closer look at

the DGM as shown in Figure 5.2 will show its main
components. The small circles labeled with “A” are agents that
work for the IDA and are specialized in monitoring a specific
resource or component of the system. Such as system log files,
processes started, requests for processor time and storage pace,
and so on. An agent can also be monitoring the local intrusion
detection system to get data about locally detected intruders.

These agents are system dependent. They are created specially

for each system depending on its hardware and software
platforms. These agents are responsible to deal with the Grid
heterogeneity. They are designed specially for each system but
can be used to get information about that system in a standard

116

I
D
A

A

A

A

Local IDS

User Interface

Figure 5.2: The Data Gathering Module (DGM)

Chapter 5: The Proposed Grid Intrusion Detection Architecture

format.

The Intrusion Detection Agent (IDA) is the main
component of the data gathering module. It uses the agents to
get standard information about the monitored system. This
information is summarized and formatted in a standard format
to be ready for analysis. The IDA is also responsible for
registration with one or more IDSs. The gathered data is then
sent to all registered IDSs.

There is also a user interface for the DGM that is
connected to the IDA and used to monitor and configure the
agents and also to register with IDSs and to check the status of
the system and to see if intruders are detected.

5.2.2 The Data Analysis Module

The Intrusion Detection Server (IDS) corresponds to the
Data Analysis Module (DAM). It has two sub modules that are
the analysis-and-detection module and the cooperation
module. The IDS first receives the data from the registered
IDAs and stores this data in the Grid Information Service
(GIS) or a special database. Then the analysis and detection
module analyzes the gathered data and queries the cooperation
module to obtain results from other analysis and detection
modules of other registered IDSs and uses them all to generate
a final decision about the current users (intruders / normal).

117

Chapter 5: The Proposed Grid Intrusion Detection Architecture

The analysis can be done using any approach based on
the decision of the implementer. The cooperation module
should use standard and open protocols to enable
interoperability. The proposed system has the ability to either
use the Grid Information Service (GIS) protocols to locate and
query other IDSs or to use Peer-to-Peer (P2P) protocols to
locate and query other IDSs. Both approaches are distributed,
scalable, and fault tolerant. In the case of P2P each IDS is
considered as a peer in a community where each peer
contributes with its analysis results in favor of being able to
get other results. The only restriction here is that, an IDS only
exchange information with other trusted IDSs according to a
predefined trust relationship.

The GIDA can be viewed as abstract layers in a

hierarchical manner as shown in Figure 5.3. The First layer is
the specialized agents responsible for data gathering about the
monitored system. The Second layer represents the IDAs. Each
IDA is responsible for one administrative domain, it receives
the data from the agents and prepare them and send them to be
analyzed. In addition it may receive warning signals from
IDSs. The Third layer has the IDSs which are responsible for
the analysis of the gathered data.

Looking at the hierarchy in Figure 5.3 it can be noticed
that there is no head or root for this hierarchy. This is due to
the fact that all components of the GIDA are distributed and

118

Chapter 5: The Proposed Grid Intrusion Detection Architecture

there is no single centralized control module to be placed at
the top. The figure also shows the overlapping of the different

119

IDS

IDS

Figure 5.3: Hierarchical view of the proposed GIDA.

.

.

.

.

.

.

Gathering
Preprocessing

Analysis

Chapter 5: The Proposed Grid Intrusion Detection Architecture

stages of data gathering, preprocessing, and analysis of the
proposed GIDA.

The proposed GIDA is an extensible and open
architecture that can be implemented in various ways. It meets
the characteristics and requirements of Computational Grids,
as elaborated in the next section. The detailed implementation
of the proposed GIDA modules and protocols are illustrated in
the next chapter.

5.3 GIDA Compatibility with the Grid

The GIDA should be compatible with the characteristics
and constraints introduced by the Grid to ensure its successful
implementation in a Grid environment. The GIDA
implementation should be built on top the Grid Services –

introduced in Section 1.1 – as following:

● Resource Management: The agents should use the

log files generated by the resource management services to
gather useful information about user interactions with the
resources. The IDAs and IDSs themselves can be considered
as resources that are managed by the resource management
services. For example an IDA can request registration to an
IDS through a resource management service.

● Information Services: IDAs should use the Grid

information services to find available IDSs, query their

120

Chapter 5: The Proposed Grid Intrusion Detection Architecture

capabilities, and check their status. IDSs should also use
these services to insure that the registered IDAs are still
available and not disconnected. IDSs may also use
information services to locate and query other IDSs.

● Data Management: Data management services

should be used to securely and efficiently transfer data from
IDAs to IDSs and also to transfer results among IDSs.

● Security: The security issues should be managed

using Grid Security Infrastructure (GSI). Each IDA and IDS
should have a certificate that will be used in authentication
between IDAs and IDSs, and also between IDSs themselves.
The agents are considered local because they only work
inside a domain and communicate only with this domain's
IDA, so they do not need certificates. The security services
are used to enforce trust relationships, because
authentication will fail if the two participants do not trust
each other.

The Grid characteristics and constraints were also

introduced in Section 1.1 and in the following the GIDA is
checked to be compatible with them:

● Heterogeneity: The IDA, and its agents, deals with

the heterogeneity of the Grid resources. For each class of
resources – Clusters, Super Computers, Databases, and so
on – special agents and an IDA is built to suit that resource

121

Chapter 5: The Proposed Grid Intrusion Detection Architecture

hardware and software. The IDSs are also heterogeneous so
they can cover the needs of all resources.

● Scalability: The GIDA components are all

distributed. Centralized components were avoided because
they cause problems with scalability. Although distribution
guaranties scalability but it does not ensure performance
and efficiency of the system. This issue will be examined in
the next chapter.

● Dynamicity or Adaptability: In a Grid environment

the failure is the rule not the exception. With a large number
of resources distributed among different administrative
domains, each resource may join or leave in an uncontrolled
manner. To handle this there are multiple IDSs so in the
case of the failure or unavailability of an IDS other IDSs can
do its job. Also to increase the fault tolerance, each IDA can
register with multiple IDSs as presented before.

● Multiple administrative domains and autonomy:

Resources in the Grid are controlled by different
administrative domains and owned by different
organizations. The autonomy of these sites must be
protected. Not all domains agree to work with each other
and share information. The GIDA addresses this problem
through providing different trust relationships among
participants.

122

Chapter 5: The Proposed Grid Intrusion Detection Architecture

● No Centralized Control: There is no centralized

control in GIDA. The decision is made through cooperation
among IDSs and each domain has the choice to accept or
deny a warning signal.

● Using Standard Protocols: The GIDA is built on top

of the Grid and uses standard, open, and general purpose
protocols.

● Deliver None Trivial QoS: The heterogeneous

nature if IDSs that enabled them to implement different
intrusion detection techniques with different properties
together with allowing an IDA to register with multiple
IDSs has enabled each domain to deliver non trivial quality
of service.

The above analysis shows that the design of the GIDA
was made with the Grid and its properties in mind. The
compatibility of the GIDA with the Grid makes it a good
candidate for Grid intrusion detection systems. Following the
GIDA can generate many systems with different
characteristics and performance.

123

C

h
ap

te
r

 6

The Proposed GIDA

Implementation

6.1 Simulating the Computational Grid
6.2 The Intrusion Detection Agent

Implementation
6.3 The Intrusion Detection Server

Implementation

Chapter 6: The proposed GIDA Implementation

Chapter 6: The proposed GIDA

Implementation

This chapter presents a proposed implementation for the
proposed Grid Intrusion Detection Architecture (GIDA)
components. This implementation represents an instance of the
general and open GIDA. This proposed implementation will
use computer simulation to simulate different organizations of
Grid environments including resources, users, and IDAs. The
IDSs in this proposed implementation will be homogeneous
and implemented using Learning Vector Quantization (LVQ)
neural network for data analysis and simple protocols for
cooperation between the IDSs.

The proposed GIDA needs to be tested and verified to
prove its compatibility with the Grid environment and to prove
its applicability in real world. The purpose of this
implementation is testing and evaluating GIDA and give an
insight into its properties, so the implementation should be
simple and use basic and standard techniques to concentrate on
the GIDA properties and to ensure that the focus is not
diverged to complex techniques and fine tunings. The simple
and well known techniques will also enable experts to predict
the effect of changing them – with more efficient and more
advanced techniques – on the GIDA.

125

Chapter 6: The proposed GIDA Implementation

6.1 Simulating the Computational Grid

Computer simulation has always been used as a cost
effective solution for the evaluation, testing, and proving the
effectiveness of new architectures and models before
implementing them in real world applications [4]. Simulation
also allows researchers to perform experiments repetitively
using different combinations and arrangements in a controlled
environment to find the most optimum solution in an effective
way that would otherwise be both cost and time consuming.

Researchers in the field of Computational Grids face
many problems in their research because of the special
characteristics of Computational Grids. Below is a review of
some of the main problems.

Most of the researchers do not have access to real
Computational Grids or testbeds such as [10][76][78][99] to
perform their experiments on it. This is due to the high cost
and technical and organizational challenges needed to build a
real Computational Grid.

Even those who have access to real Computational
Grids face problems. Computational Grids contain expensive
resources such as super computers, large clusters, other
expensive devices such as electronic telescope, and so on.
Dedicating a portion of these resources' time to researchers to
perform their experiments increases research costs and in

126

Chapter 6: The proposed GIDA Implementation

many cases is infeasible and not applicable.

Computational Grid applications can take days or even
weeks to complete and are complex in nature. Experimenting
using real applications will waste lots of researchers' time and
effort because of the long period of time needed to complete
their execution and the time needed to build test applications
to examine different application models and problem solving
approaches.

Even if assuming that both the resources and test
applications are available for the researchers and that the time
and cost constraints are relaxed. It is very difficult to
coordinate and control the experiment and gather information
about it. This is due to the large size of Computational Grids
and the fact that both the resources and users are
geographically distributed and are owned by different
administrative domains which makes the coordination between
them very complex, creating a controlled environment very
difficult because of their dynamic nature, and repeating the
experiment and testing different combinations and different
resource arrangements and scenarios with varying
specifications and loads considered impossible. Testing the
scalability is another problem which is limited by the size of
the Computational Grid available to the researchers.

Because of the above problems most of the researchers
have turned to simulate Computational Grids. Tools for

127

Chapter 6: The proposed GIDA Implementation

simulating Computational Grids have been developed and
used in research including for example: GirdSim [59],
SimGrid [25], ChickSim [12], Brics [28], and MicroGrid [49].
Researchers use this simulated Computational Grid to test their
algorithms, models, and architectures. After they are well
established and tested, they are implemented on real
Computational Grids and retested only in the final phase. This
reduces the time, cost, effort, and accelerates the research and
give better results.

6.2 The Intrusion Detection Agent Implementation

The Grid Intrusion Detection Architecture (GIDA) can
be divided into two main modules: the Intrusion Detection
Agent (IDA) and the Intrusion Detection Server (IDS). For the
purpose of validating and testing the GIDA, the IDAs and the
Grid environment where simulated. This helps in overcoming
problems similar to those presented in the previous section.
The IDS is then tested using the data generated from the
simulation.

Unfortunately most of the available Grid simulation
tools are designed to solve problems related to resource
management and scheduling ignoring security related
requirements such as authentication, authorization, users'
behavior, and managing trust relationships between different
administrative domains. For these reasons a new Grid

128

Chapter 6: The proposed GIDA Implementation

simulation toolkit was developed that addresses security
requirements which will be used to test the proposed Grid
Intrusion Detection Architecture.

6.2.1 The Simulation Problem Definition

Testing and validating the proposed Grid Intrusion
Detection Architecture requires performing experiments on a
variety of resources and users arrangements with varying
parameters including:

● Increasing the number of users and resources to test
the scalability of the architecture by measuring its ability to
detect intruders with this increase in grid size.

● Comparing between standard distributed intrusion
detection systems having a single analyzing and detection
module (one IDS) and the proposed architecture with
increasing number of IDSs (decreasing the scope of each
IDS).

● The effect of overlapping the scopes of the IDS (each
resource can register with one or more IDS) and the ability
of the architecture to detect intruders. In addition, study the
effect of this overlapping with different degrees on the
robustness and fault tolerance of the proposed architecture
in case of one or more IDS have been compromised.

● The effect of trust relationships between different

129

Chapter 6: The proposed GIDA Implementation

administrative domains on the cooperation between
different IDSs to detect intruders.

Performing these experiments on a real Computational
Grid has many problems including:

● Controlling the number of users and resources to test
the scalability.

● Log files containing data about users' actions can
contain important data and sometimes are protected and not
available to researchers.

● Most of the administrative domains will not agree to
change their security policy and trust relationships to allow
different experiments.

● Real Computational Grids are not controlled
environment because of its dynamic nature, distributed large
number of user and resources, and owned by different
administrative domains. Because of this an experiment can
not be repeated to test the effect of changing some
parameters.

For these problems and others presented in the previous
section, simulation becomes a good solution that overcomes
these challenges and accelerates the research.

The simulation environment will allow performing the

130

Chapter 6: The proposed GIDA Implementation

required experiments. As summarized in Figure 6.1 the
simulated users will send requests to the available resources
based on each user behavior. Intruders are also simulated and
will also send requests to resources. The simulated resources
will receive the users' requests and report them to the
registered IDSs. The IDSs here are just dummy IDSs that do
not perform any analysis but only dump the received data in a
log file for later process by the real IDS. Each experiment will
generate a dataset consisting of one or more log files. These

131

IDS IDS

Log Log

Users Intruders

Intrusion

Detection

Servers

Generated

Log Files

Figure 6.1: The simulated Grid and the IDA

.

Resources

. . .

. . .

. . .

Requests

Chapter 6: The proposed GIDA Implementation

datasets are then used the process of testing the IDSs.

6.2.2 The Proposed Grid and IDA Simulator

The simulation environment consists of a set
U={u

1
, u

2
, u

3
,  u

n
} of users, a set I={i

1
, i

2
, i

3
,  i

m
} of

intruders, a set R={r
1
, r

2
, r

3
,  r

k
} of resources, a set

S={s
1

, s
2

, s
3

,  s
p
} of services provided by the resources,

and a set D={d
1
, d

2
, d

3
,  d

q
} of IDSs. In general the two

inequalities should be true: qkn and mn . The value of
p is related only to the number of services available in the

simulated Grid environment. Each resource ri will have a set
S

ri

⊆S of available services, a set D
r i

⊆D of registered IDSs,

and a set U
r i

⊆U of authorized users. Each user u j will have

a set R
u j

⊆R of resources that this user will use, and a set
S

u j

⊆S of services that are provided by these R
u j

resources.

Each user u
j
∈ U will pick a service s

k
∈ Su j

and find a

resource r
i
∈ R

u j
that have s

k
∈ S

r i
and sends a request for the

service s k to it. This will be repeated during the simulation.

An intruder i
l
∈ I has the capability of requesting a service

s k from the resource ri masquerading as the user u j . Each

resource r i that receive a request from a user u j will

generate a record similar to the one shown in Figure 6.2 that
contains the user global name, service name, resource name,
time of request, start time, end time, amount requested if

132

Chapter 6: The proposed GIDA Implementation

applicable, the unit used to measure the specified amount, and
any other useful information. Then the generated record will
be sent to all registered IDSs. Each IDS (dummy IDS) will
receive records from resources in its scope and write it to a log
file. After the simulation ends these log files will represent the
dataset for the simulated experiment.

One major problem is how to simulate the user
behavior. That is when and what service will a user pick to
execute on which resource, in a way that is similar to users in
real world where each user has his own unique behavior and

habits. To do this each user u j will have one or more profile.

Each profile will consist of the following:

● The period of day (start time and end time) in which
this profile is valid. For example there may be a profile for
the morning another for the evening and so on.

● A general category of the profile. Such as
administrator, programmer, scientist, and so on. This
requires the services in the set S to be also classified to

133

User Service Resource t
rewuest

 t
start

 t
end

 Amount Unit ...

Optional Fields

Figure 6.2: The log file record format

Chapter 6: The proposed GIDA Implementation

similar categories.

● The average frequency or average number of request
per unit time for this profile.

● An array A filled and shuffled with pairs (a, b) where
a ∈ Ru j

, and b ∈ Su j
and belongs to the profile's category.

Values  and , which are the main parameters of normal

distribution, are set for each array. These values are used to
select a pair, using normally distributed random number,
from the array to represent a user's request.

● A rate at which the profile will change to reflect
changes in user behavior. Changes will be made by adding,

removing, and swapping pairs from the array A, and by

changing the values of  and .

According to the current time t during the simulation the

valid profile p of each user (one having t between its start time
and end time) will be used to pick a resource and a service (by
picking an element of the array using normal distribution) at a
frequency equals to the profile average frequency, and the user
behavior will be changing during the simulation time.

A trust relationship tree similar to the one shown in

Figure 6.3 is required to add trust management to the
simulation system. This tree is similar to the relationship that
exists between certificate authorities in systems that uses the

134

Chapter 6: The proposed GIDA Implementation

Public Key Infrastructure PKI such as the Grid Security
Infrastructure GSI [37]. Each entity in the simulation (users,
resources, and IDSs) will have a trust level represented by one
of the letters from the trust relationship tree. Each IDA can
register with IDSs with the same level or above it in the trust
tree; otherwise the registration will be refused. Similarly a user
can request a service from resources with the same level or

higher in the trust tree. For example in Figure 6.3 a user with
level J can request a service from a resource in level F or B,
but not form a resource at level E or C. An IDA at level F can
register with an IDS at level B but not with IDSs at level E or
J. Trust relationships will also appear when talking about the
cooperation between IDSs below.

135

B C

D E F G H

I J

Figure 6.3: A trust relationship tree

Chapter 6: The proposed GIDA Implementation

6.3 The Intrusion Detection Server Implementation

This component will analyze the data generated from
the simulation with the goal of detecting intruders trying to
compromise and misuse a Computational Grid. As shown in

Figure 6.4 the log file generated from the simulation step will
be provided to the appropriate IDS. The IDSs will analyze this
data using the analysis and detection module and cooperate
with other IDSs using the cooperation module to detect the
intruders.

The implementation of these two IDS components is
described in the following subsections.

136

IDS

IDS IDS

Peer-to-peer Network

or

GIS

Log

Log

Log

Figure 6.4: The analysis and detection module first

utilize the simulated data, then cooperate through the

cooperation module.

Chapter 6: The proposed GIDA Implementation

6.3.1 The Analysis and Detection Module

Intrusion detection systems are based on the assumption
that the normal system use differs from malicious use [68].
Intrusion detection systems try to detect, using different
mechanisms and approaches, this difference in behavior
caused by an intruder and take appropriate action to stop the
intruder. Intrusion detection techniques can be classified either
according to the source of the data used for the analysis or
according to the approach taken to analyze the data. In the first
case it is classified into network based and host based intrusion
detection systems [39][21]. In the second case it is classified
into misuse detection and anomaly detection [16].

Network intrusion detection systems get their data by

installing a device on the network capable of monitoring all

network traffic and the passing packets. They rely on raw
network packets in their analysis. On the other hand host based

intrusion detection systems use log files created on each host,

containing all the operations performed on the host, as the data
source. In the context of Computational Grids the network
intrusion detection has many disadvantages and problems. The
following points summarize these disadvantages and
problems:

● It is impossible to have a device installed on the grid
capable of monitoring all the passing packets because of the
large scale and distributed nature of the networks involved.

137

Chapter 6: The proposed GIDA Implementation

Even if this device is distributed on the network, moving the
raw network packets to the IDS is not efficient so it must be
preprocessed and summarized at each administrative
domain before being sent to the IDS. This may add
undesired overheads and complications to the systems.

● Because of security requirements in the grid most of
the raw packets used are encrypted and this cause problems
in network based intrusion detection.

● Analysis at a low level such as raw network packets
makes higher level information, such as the global name of
the user, not available or hard to discover.

● Network based intrusion detection systems sometimes
analyze the raw network packets to guess what is the user is
trying to do. While this information is already available in
log files.

For these reasons it is recommended to implement the
GIDA using host based intrusion detection. The data gathering
module as presented before is responsible for gathering the
data from the log files on each host (or administrative domain)
and transferring it to the IDS. Because of these reasons areas

labeled (1) and (2) in Table 6.1 that use network based
approach will not be used.

Misuse and anomaly detection are two techniques that

138

Chapter 6: The proposed GIDA Implementation

are used to analyze the gathered data to detect intruders.
Misuse detection technique search the gathered data for

patterns and signatures of well known attack types stored in a

knowledge base [16] on the other hand anomaly detection

technique tries to identify events that appear to be anomalous

with respect to normal system behavior [16]. Currently the

misuse detection technique can not be used in the context of
the Computational Grids because the Computational Grids are
still new and under research, signatures and patterns of attacks
are not available and the creation of a knowledge base of well

known attacks is currently impossible. In Table 6.1 areas
labeled with (1) and (3) which uses misuse detection
techniques are not used in the context of Computational Grids.

From the previous analysis it is recommended to use

139

Misuse Anomaly

Table 6.1: Different approaches to intrusion detection

Network

Based

Host Based

(1) ✘ (2) ✘

(3) ✘ (4) ✔

Chapter 6: The proposed GIDA Implementation

host based anomaly detection intrusion detection technique to
implement the GIDA because it is suitable for Computational

Grids, area labeled (4) in Table 6.1, it was also used to
implement the Grid Intrusion Detection Architecture GIDA in
this chapter.

Because the GIDA is an open architecture, the analyzing
and detection module can be implemented using various
techniques. Such as neural networks, statistical analysis, data
mining, and so on. It is possible also to be implemented using
different technique on different IDSs in the same
Computational Grid. The implementation described in this
chapter assumes homogeneous IDSs all using anomaly
detection implemented with neural networks. The neural
network used is the Learning Vector Quantization (LVQ).
Properties of LVQ and reasons of choosing it are presented
below.

6.3.2 The Learning Vector Quantization

Learning Vector Quantization (LVQ) [85] is a neurally
inspired, nearest neighbor classifier based on Kohonen's work
with self-organization [86][87][88]. Quantization can be
defined as mapping a broad range of input values to a smaller
number of output values. In LVQ, the input values can be
thought of as the decision boundaries between a set of classes,
and the output values are a predetermined number of nodes or

140

Chapter 6: The proposed GIDA Implementation

reference vectors. The strategy behind LVQ is to effectively
train the reference vectors to define the Bayes Optimal
decision boundaries between the classes. Correctly positioning
the reference vectors in LVQ is accomplished in a supervised
manner by presenting a training pattern to an input vector and
adjusting the position of selected reference vectors in
accordance with a set of learning rules, as will be described
later in this section.

The training algorithms associated with LVQ attempt to
adjust the position of the reference vectors so that each input
pattern has a reference vector of the right category as its
nearest neighbor. Classification, subsequently, is carried out
using a nearest-neighbor method. Kohonen argues [88] that,
asymptotically, the reference vectors approach the centroids of
their resulting Voronoi tessellation. A Voronoi tessellation is a
partition of ℜd into disjoint polytopes such that all training

patterns within a polytope have the same reference vector as
their nearest neighbor. Thus, the goal of LVQ is to
approximate the boundaries of the Voronoi polytopes,
therefore approximating the decision surfaces of a Bayesian
classifier. Reference [3] provides a rigorous mathematical
description of the LVQ process and proves convergence of the
algorithm under certain asymptotic conditions.

There are several versions of LVQ reported in the
literature [89]. While each LVQ algorithm attempts to

141

Chapter 6: The proposed GIDA Implementation

approximate the Bayes decision surfaces between classes, the
learning rules associated with each LVQ algorithm are slightly
different. In this initial research, the LVQ algorithm referred to
as OLVQ1 was used. OLVQ1 is an enhancement of the
original LVQ1 algorithm which is described below.

The LVQ1 Algorithm

Assume that a number of “codebook vectors” mi (free

parameter vectors) – here representing the legitimate users
behavior – are placed into the input space – all possible
behaviors – to approximate various domains of the input
vector x by their quantized values. Usually several codebook
vectors are assigned to each class – single user – of x values,
and x is then decided to belong to the same class to which

the nearest mi belongs. Let

c = min
i
{∥x−mi∥} (1)

define the nearest mi to x , denoted by mc .

Values for x that approximately minimize the
misclassification errors in the above nearest-neighbor
classification can be found as asymptotic values in the
following learning process. Let x t  be a sample of input and

let the mit represent sequences of the mi in the discrete-

time domain. Starting with properly defined initial values, the

142

Chapter 6: The proposed GIDA Implementation

following define the basic LVQ1 process:

mc t1 = mc t    t[x t −mc t ]

if x and mc belong to the same

class,

mc t1 = mc t  −  t[x t −mc t ]

if x and mc belong to different

classes,

mit1 = mi t for i≠c .

Here 0t 1 , and t  may be constant or
decreasing monotonically with time. In the above basic LVQ1
in is recommended that  should initially be smaller than 0.1.

The optimized-learning-rate LVQ1 (OLVQ1)

The basic LVQ1 algorithm is now modified in such a

way that an individual learning rate it  is assigned to each
mi . The discrete-time learning process will be as follows.

Let c be defined by Equation (1). Then:

mc t1 = mc t    c t [x t−mc t ]

if x is classified correctly,

mc t1 = mc t  −  c t [x t−mc t ] (2)

143

Chapter 6: The proposed GIDA Implementation

if the classification of x is incorrect,

mit1 = mi t for i≠c .

The optimal values of it  are determined by the recursion:

c t  =
c t−1

1  s t c t−1

Where s t  =1 if the classification is correct and s t  =−1
if the classification was wrong.

6.3.3 Using LVQ for implementing IDSs

The LVQ neural network was used to implement the
analysis and detection module part of all the IDSs as shown in

Figure 6.5.

The LVQ was used for the following main reasons:

● The LVQ is similar to the SOM neural network and
both are widely used for classification. LVQ is used in this
context to classify user's behavior to either legitimate or
intruder based on the previous user behaviors that were used
to train the LVQ neural network. LVQ was also used in
other intrusion detection systems such as [44].

● In the Grid environment LVQ take advantage over
SOM because it is supervised and uses the available global
user names as class labels during classification process. This

144

Chapter 6: The proposed GIDA Implementation

supervision helps improving the classification process.

● It is important to note this methodology does note
require the generation of masquerader data. Training does
not require the inclusion of malicious records. The system is
trained based-on legitimate user data, and then measures the
deviation of subsequent users from these profiles. Thus, the
problem of negative data is obviated.

145

Preprocessin

g

Trained LVQ

Decision

Cooperation Module

Log

Respon

se

Figure 6.5: The analyzing and detection module

Analyzing and detection

module

Chapter 6: The proposed GIDA Implementation

Before applying the data in the log files – generated
from the simulation – to the LVQ it must be first reprocessed

Figure 6.5. Preprocessing is done by grouping user's actions in
the log files in windows. Each window will contain actions of
the same user. The number of actions within a window can be
specified by a fixed number of actions or by a specified period
of time or both. The global user name is used as a label for the

window. Each window represents an input vector used to train

the LVQ and the label is used in the supervised learning
process.

After training the LVQ is ready for detection. User's
actions from the testing log file is also grouped in windows
and applied to the neural network that will try to classify it to
either normal or intruder. The decision and response are made
based on this classification and the results of other IDSs
classifications that are known through the cooperation module.

A challenge that all developers of anomaly detection
based intrusion detection classifiers must address is feature
selection/data reduction. Clearly, the inclusion of too much
data will adversely impact the performance of the system,
while the inclusion of too little data will reduce the overall
effectiveness of the system. In addition, most anomaly
detection approaches must address the problem of conceptual
drift [43]. In this domain the problem of conceptual drift
manifests itself in that a user s behavior changes over time. An

146

Chapter 6: The proposed GIDA Implementation

effective anomaly-based intrusion detection system should
adapt to this change while still recognizing intrusive actions
and not adapting to those.

Because the behavior of the users change slightly over
time, the system after a period of time will give a high rate of
false positive alarms (normal users classified as intruders). To
overcome this problem the neural network must be retrained.
The retraining can be manual based on the decision of the
system administrator or automatic at a fixed period of time.

6.3.4 The Cooperation Module

Each IDS has a scope. This scope is defined by the
administrative domains (resources) that chose to register with

this IDS as was shown in Figure 5.1. The analyzing and
detection module will make its decisions about users based on
the data available in its scope. Because other information that
exists outside its scope is invisible and not available for use.
This will produce poor results because other important events
may occur in the scope of other IDSs. Here arises the
important rule of the cooperation module. It is responsible for
distributing the intrusion detection problem among IDSs.
Instead of having one IDS, there will be several IDSs each
responsible for a portion of the Grid environment. The
cooperation module will be responsible for sharing the results
obtained at each IDS among the other IDSs. This sharing will

147

Chapter 6: The proposed GIDA Implementation

be achieved through a protocol that defines how will an IDS
query and share its results with other IDSs.

This sharing can be either implemented using peer-to-
peer techniques [19] or by using the Grid Information System
(GIS) to share the results. Both techniques are distributed,
does not rely on a central server and it supports the dynamic
nature of Computational Grids.

The protocol used in this implementation is simple.
Each IDS has a subset of users that are in its scope. For each
user, the IDS will query other IDSs (peers) for their results of
this user. Then the received results will be used together with
the local result to decide whether the user is intruder or
normal. The decision is made based on the number of miss
classifications in a certain period of time crossing a
predetermined threshold value. When an intruder is detected at
an IDS, a warning will be sent to other IDSs to take
appropriate actions.

This protocol can be enhanced by adding weights to the
received results from other IDSs based on the characteristics
of the sending IDS. This weight can be calculated for each user
based on the length of history used to train the LVQ, the
number of the users' records, and the scope of the IDSs among
others.

The trust relationships between different entities add a

148

Chapter 6: The proposed GIDA Implementation

constraint on the protocol described above. As shown in

Figure 6.3. An IDS can request from another IDS only if it has
a trust level equal to or lower than the trust level of the
requested IDS with respect to the trust relationship tree.

149

C

h
ap

te
r

 7

Experimental

Results

7.1 Evaluation Parameters and Test Approach
7.2 Data preprocessing
7.3 Number of IDSs
7.4 Number of users
7.5 Number of resources
7.6 Number of intruders

Chapter 7: Experimental Results

Chapter 7: Experimental Results

The analysis of the results from different test cases is
important to give better understanding of the GIDA and the
factors affecting its performance. This understanding will also
help to fine tune an implementation of the GIDA to best fit a
specific Grid environment.

This Chapter starts with listing the measurement
parameters that will be used to evaluate the performance of the
Presented GIDA implementation. Then shows and examines
the values obtained for these parameters in different test cases
each trying to illustrate different aspects of the GIDA
implementation.

7.1 Evaluation Parameters and Test Approach

The performance of the proposed GIDA implementation
is measured by the following five main parameters:

● False positive percentage: This parameter reflects

the percentage of normal Grid users, which are miss
classified by the GIDA implementation as intruders, from
the total number of legitimate users in a specific Grid
environment.

● False negative percentage: This parameter reflects

the percentage of intruders that are miss classified by the

151

Chapter 7: Experimental Results

system as normal users from the total number of intruders in
an environment.

● Training time: This measures the time (in minutes)

needed to train the LVQ neural network. The software
package used in the experiments is the LVQ_PAK version
3.1 [90] running on a PC with Pentium VI 2.8GHz processor
and 512MB RAM. The Linux distribution called “Fedora
Core 1” was used as the operating system.

● Detection duration: This measures the time duration

(in minutes) needed by the GIDA implementation to detect
that there is an intrusion occurring. It is the duration from
the start of the attack until it was detected.

● Recognition percentage: This is measured after

training the LVQ neural network with test data to check
how the accuracy level of the LVQ to correctly classify and
recognize users with the absence of intruders. Ideally this
should be 100% but because similarity and overlapping of
the users' behaviors, some users are miss classified.

The value of these parameters is affected by the
environment and conditions in which the system is running. In

this variable environment there are controllable issues such as

the data preprocessing applied to raw data before using it to

train the LVQ and the number of IDSs that exist in a certain

152

Chapter 7: Experimental Results

Grid environment. On the other hand there are uncontrollable

issues in a Grid environment such as the number of users,

number of resources, and number of intruders. The

designers and administrators of a deployed GIDA
implementation in a certain Grid environment must adapt the
controllable issues to best fit the uncontrollable issues to give
the best possible performance. The remainder of this chapter
presents different experiments each concentrating on the effect
of one issue of the environment on the performance of the
presented GIDA implementation. The results from these
experiments will both help in proving the applicability and
suitability of GIDA to Grid environment and help
administrators of GIDA implementations to fine tune and
control its performance.

7.2 Data Preprocessing

The records in the log files are preprocessed (Figure

6.5) before applying them to the LVQ neural network. This
preprocessing is done by grouping several records or events
for the same user in a single victor that will be later applied to
the input neurons of the LVQ. A window manages the process
of grouping records together. Records for the same user that
lies in the same window are grouped together. The records
inside a window are selected depending on the type of the
window used in the preprocessing. The window can take

several forms (Figure 7.1) depending on how it is controlled.

153

Chapter 7: Experimental Results

It can be one of the following:

● A window can be controlled by a fixed number of
records in each window (Type 1). For example if the size of
the window is ten, then each ten records for the same user
are grouped together.

● A window can be controlled by a fixed time period
for the window regardless of the number of records in this
period (Type 2). For example if the window has a fixed
period of five minutes then all the user's records that
happened in these five minutes are grouped together.

154

Figure 7.1: Different possible types of windows

Type 1: Fixed number of records/events.

Type 3: Fixed number of events with time limit.

Type 4: Fixed events with time limit ignoring incomplete.

Type 2: Fixed time period window.

Type 5: Fixed events with time limit fixing incomplete.

Chapter 7: Experimental Results

● Another possibility is to have a mix of the two
previous types which will create a hybrid window with both
size and time limits. In this case the number of records is
determined depending on which limit is reached first (Type
3). For example a window may have a fixed size of ten
records and a period of five minutes. In this case if ten
records are generated in less than five minutes then they are
grouped together and new window starts, on the other hand
if five minutes passes while having less than ten records
then they are also grouped and new window starts.

● The hybrid approach can have a problem when a
window has a few number of records. Because these
windows will not have enough information to reflect user
behaviors. This problem can be fixed either by ignoring
incomplete windows (Type 4), or by fixing incomplete
windows by overlapping it with the previous window and
adding some of its records (Type 5) so it will have enough
information about the user.

The results in Figure 7.2 are for fixed size window

(Type 1) starting from 5 records to 40 records. Figure 7.3

shows the results for fixed duration window (Type 2) starting
from 100 seconds to 2400 seconds. The hybrid window (Type

5) results are shown in Figures 7.4, 7.5, and 7.6 for different
combinations of size and duration. Note that in the hybrid
approach increasing the window duration will make it similar

155

Chapter 7: Experimental Results

to Type 1, while increasing the window size will make it
similar to Type 2.

Generally the experiments in Figures 7.2 to 7.6 test the
effect of increasing the number of records in the window on
the system performance. This increase in the number of
records in the window may happen because of increasing its
size, duration, or both depending on the type of window used.
The following general behavior was conducted from these
experiments as a result of increasing the window capacity:

● The false positive percentage is reduced as a result of
increasing the window capacity. This is normal as more
records in a window means that it will contain more
information about the user and reduces the probability of
miss classification.

● On the other hand, this increase in the capacity
minimized the effect of malicious records because they are
grouped with many legitimate records. This resulted in an
increase in the false negative percentage which is not
desired.

● Increasing the capacity means that completing the
window will need longer time. This resulted in increasing
the detection duration time which is not desired because the
LVQ must wait until the window is complete before it can
tell wither it match its user's behavior or not.

156

Chapter 7: Experimental Results

157

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

False Positive

Window Size

P
er

ce
nt

ag
e

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

False Negative

Window Size

P
er

ce
nt

ag
e

0 10 20 30 40

0

40

80

120

160

200

240

280

320

360

Training Time

Window Size

M
in

ut
es

0 10 20 30 40

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

Window Size

M
in

ut
es

1 IDS

4 IDSs

Legend

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

Recognition

Window Size

P
er

ce
nt

ag
e

Figure 7.2: The effect of

increasing the capacity of

the fixed window type

(a) (b)

(e)

(d)(c)

Chapter 7: Experimental Results

158

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

False Positive

Window Length (Sec.)

P
er

ce
nt

ag
e

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

False Negative

Window Length (Sec.)

P
er

ce
nt

ag
e

0 500 1000 1500 2000 2500

0

40

80

120

160

200

240

280

320

360

Training Time

Window Length (Sec.)

M
in

ut
es

0 500 1000 1500 2000 2500

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

Window Length (Sec.)

M
in

ut
es

1 IDS

4 IDSs

Legend

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

Recognition

Window Length (Sec.)

P
er

ce
nt

ag
e

Figure 7.3: The effect of

increasing the capacity of

the fixed time period

window type

(a) (b)

(e)

(d)(c)

Chapter 7: Experimental Results

159

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

False Positive

Window Length at Size 10 (Sec.)

P
er

ce
nt

ag
e

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

False Negative

Window Length at Size 10 (Sec.)

P
er

ce
nt

ag
e

0 500 1000 1500 2000 2500

0

40

80

120

160

200

240

280

320

360

Training Time

Window Length at Size 10 (Sec.)

M
in

ut
es

0 500 1000 1500 2000 2500

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

Window Length at Size 10 (Sec.)

M
in

ut
es

1 IDS

4 IDSs

Legend

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

Recognition

Window Length at Size 10 (Sec.)

P
er

ce
nt

ag
e

Figure 7.4: The effect of

increasing the capacity of

the hybrid window type at

size 10

(a) (b)

(e)

(d)(c)

Chapter 7: Experimental Results

160

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

False Positive

Window Length at Size 20 (Sec.)

P
er

ce
nt

ag
e

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

False Negative

Window Length at Size 20 (Sec.)

P
er

ce
nt

ag
e

0 500 1000 1500 2000 2500

0

40

80

120

160

200

240

280

320

360

Training Time

Window Length at Size 20 (Sec.)

M
in

ut
es

0 500 1000 1500 2000 2500

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

Window Length at Size 20 (Sec.)

M
in

ut
es

1 IDS

4 IDSs

Legend

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

Recognition

Window Length at Size 20 (Sec.)

P
er

ce
nt

ag
e

Figure 7.5: The effect of

increasing the capacity of

the hybrid window type at

size 20

(a) (b)

(e)

(d)(c)

Chapter 7: Experimental Results

161

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

False Positive

Window Length at Size 30 (Sec.)

P
er

ce
nt

ag
e

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

False Negative

Window Length at Size 30 (Sec.)

P
er

ce
nt

ag
e

0 500 1000 1500 2000 2500

0

40

80

120

160

200

240

280

320

360

Training Time

Window Length at Size 30 (Sec.)

M
in

ut
es

0 500 1000 1500 2000 2500

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

Window Length at Size 30 (Sec.)

M
in

ut
es

1 IDS

4 IDSs

Legend

0 500 1000 1500 2000 2500

0

10

20

30

40

50

60

70

80

90

100

Recognition

Window Length at Size 30 (Sec.)

P
er

ce
nt

ag
e

Figure 7.6: The effect of

increasing the capacity of

the hybrid window type at

size 30

(a) (b)

(e)

(d)(c)

Chapter 7: Experimental Results

● Increasing the capacity of the window means that
there will be less number of total windows or victors that
will be used in training the LVQ. This resulted in reducing
the training time.

● More capacity means more information about the user
and better recognition. So the recognition of the LVQ
increased by increasing the capacity.

The increase of window capacity had positive and
negative effect on different parameters so there must be an
optimization to keep these parameters at the desired value.
Increasing the number of IDSs resulted in fewer records
available for each IDS which means that Type 1 windows will
span large period of time while Type 2 window will have
small capacity compared with having only one IDS. Both of
these two extremes have disadvantages as presented. The
hybrid window (Type 5) gave better results because it kept the
number if records in the window at the desired value even
when using multiple IDSs and it also kept the detection
duration stable.

For Example, increasing the number of IDSs from one
IDS to four IDSs has different effect on the false negative
percentage depending on the window type. The Type 1 fixed
window with 10 records has decreased it from 47% to 7%. The
Type 2 window with 900 seconds duration has decreased it
from 70% to 20%. While the Type 5 Hybrid window with 10

162

Chapter 7: Experimental Results

records and 900 seconds duration has the best effect by
reducing it from 37% to 0%. This difference shows the
advantage of using the Hybrid window in a distributed
environment for the data preprocessing.

7.3 Number of IDSs

This is one of the most important issues examined
because it shows the scalability of the system and proves the
possibility of distributing the intrusion detection problem
among multiple IDSs. The experiments show the effect of
increasing the number of IDSs from 1 to 24 for Grid

environments having 50, 200, and 350 users (Figure 7.7). The
following results were conducted from the experiments:

● Increasing the number of IDSs increased the

percentage of false positive (Figure 7.7.a). This is because
less information is available to each IDS about the user
behavior that makes it more prone to errors. This is not
desired but it is less critical than an increasing in false
negative percentage, because false positive does not means
intrusion but it is only annoying because legitimate users'
access to resources may be denied if they are falsely
detected as intruders.

● Meanwhile increasing the number of IDSs decreases

the percentage of false negative (Figure 7.7.b), because
among the few and narrow user actions monitored at an

163

Chapter 7: Experimental Results

164

0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

False Positive

IDSs

P
er

ce
nt

ag
e

0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

False Negative

IDSs

P
er

ce
nt

ag
e

0 5 10 15 20 25

0

200

400

600

800

1000

1200

1400

1600

1800

Training Time

IDSs

M
in

ut
es

0 5 10 15 20 25

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

IDSs

M
in

ut
es

50 Users

200 Users

Legend

350 Users

0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

Recognition

IDSs

P
er

ce
nt

ag
e

Figure 7.7: The effect of

increasing the number of

the Intrusion Detection

Servers

(a) (b)

(e)

(d)(c)

Chapter 7: Experimental Results

IDS, detecting a deviation form them is easier than detecting
deviation from many diverse actions. This is a very
important issue because false negative is critical because it
means that an intrusion is not detected, and in this case it
gives great advantage to distributed IDSs over a centralized
IDS.

● Increasing the number of IDSs has a great effect on

reducing the training time (Figure 7.7.c). This is because
dividing the training data set among multiple IDSs reduces
the number of input vectors used for training in the complex
LVQ algorithm. This is also an advantage of the distributed
system over the centralized one and shows great scalability.
The size of possible input data size is bounded by the
available memory on the computer used for training. So
after a certain size distributing the problem will be the only
solution.

● The increase of the number of IDSs only slightly

decreased the LVQ recognition percentage (Figure 7.7.e).
This reduction is reflected in the increase of the false
positive percentage. The reason for this reduction in
recognition is the smaller size of data used in training. This
reduction is small compared with the advantages gained in
training time and false negative percentage.

● The detection duration was kept at an average of 25

minutes (Figure 7.7.d). This is achieved because of using

165

Chapter 7: Experimental Results

the hybrid window (Type 5) approach.

These results show that distributed intrusion detection is
applicable in Grid environments and also gave better results
than centralized system in all critical cases. This trade of
between false positive and false negative percentages exists in
all intrusion detection systems. The number of IDSs must be
carefully chosen to deliver the desired values of false positive
and negative percentages.

For example, in the experiments with 200 users,
doubling the number of IDSs by increasing their number form
two to four affected the false positive percentage by increasing

its value by 8.6% from 0.8% to 9.4% respectively. The good
news is that this increase in the number of IDSs stronger effect
on the false negative percentage by decreasing its value by

16.7% from 20% to 3.3% which is more important parameter
for intrusion detection. Also the training time decreased by
61% from 142 to 55 minutes. Doubling the number of IDSs
form 2 to 4 has a weak effect on the detection duration and the
recognition rate of the LVQ. The detection duration has only

decreased by 2 minutes from 32 minutes to 30 minutes. This is
because the detection duration is mostly affected by the
properties of the window used as introduced in the previous
section. The recognition rate has only decreased by 5.3% from
98% to 92.7%.

166

Chapter 7: Experimental Results

7.4 Number of users

This is another important issue that measures the
scalability of the system in accepting larger number of users.
The experiments start with 50 users up to 400 users for Grid

environments with 1, 4, and 8 IDSs (Figure 7.8). The
following was conducted from the experiments:

● Increasing the number of users slightly increased the

false positive percentage (Figure 7.8.a). This is not desired
but not very critical.

● The false negative percentage was reduced with the
increase of the number of users and distribution gave even

better results (Figure 7.8.b). This result support scalability
of the system.

● Centralized systems with one IDS was not scalable as
training time increased exponentially, multiple IDSs kept

training time low and gave much better results (Figure

7.8.c) that also supports the scalability. This is because of

the complexity of the LVQ algorithm which is O(#nodes2)

and because more users need more nodes to keep accuracy
high.

● The detection duration was kept at an average of 25

minutes (Figure 7.8.d). This is also achieved because of
using the hybrid window (Type 5).

167

Chapter 7: Experimental Results

168

0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

70

80

90

100

False Positive

Users

P
er

ce
nt

ag
e

0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

70

80

90

100

False Negative

Users

P
er

ce
nt

ag
e

0 50 100 150 200 250 300 350 400

0

200

400

600

800

1000

1200

1400

1600

1800

Training Time

Users

M
in

ut
es

0 50 100 150 200 250 300 350 400

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

Users

M
in

ut
es

0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

70

80

90

100

Recognition

Users

P
er

ce
nt

ag
e

1 IDS

4 IDSs

Legend

8 IDSs

Figure 7.8: The effect of

increasing the number of

users

(a) (b)

(e)

(d)(c)

Chapter 7: Experimental Results

● The recognition percentage was slightly reduced with
the increase of the number of users.

These results showed that the GIDA is scalable and can
support a growing number of users, and also showed the
limitation of centralized systems for facing growing Grid
environments.

For example, in the experiments with four IDSs,
doubling the number of users from 100 to 200 users increased

the false positive percentage only by 3.3% from 96% to 92.7%
but fortunately meanwhile decreased the false negative

percentage by 30% from 33.3% to 3.3%. Doubling the number

of users has increased the training time by 800% from 6.9
minutes to 55.2 minutes! This shows the importance of
increasing the number of IDSs in supporting scalability. The
recognition percentage and the detection duration parameters
were slightly affected by the doubling of the number of users.
The recognition percentage decreased from 95.9% to 92.7%.
The detection duration decreased from 42 minutes to 30
minutes.

7.5 Number of resources

The effect of the number of resources on the system is a
bit tricky, because it indirectly affects the performance of the
system unlike the number of users or number of IDSs. The
following experiments study the effect of increasing the

169

Chapter 7: Experimental Results

number of resources in a Grid environment form 20 to 160

resources or administrative domains (Figure 7.9):

● Increasing resources reduced the false positive

percentage dramatically (Figure 7.9.a). This is because the
users have wider variety of resources to choose from to
perform their tasks. This gave them better distinct behavior
depending on which resource did a particular user chose.
This is a great advantage and can be used to cure the
increase in the false positive percentages when increasing
the number of users or number of IDSs. Although this
parameter is not controllable, but it is likely to naturally
increase the number of resources when increasing the size
of a grid environment and support the scalability.

● The increase in the number of resources has very
slightly increased false negative percentage compared with

the decrease in the false positive percentage (Figure 7.9.b).

● The training time also reflects the advantage and
scalability of distributed approach over the centralized one

(Figure 7.9.c).

● The detection duration kept stable around 25 minutes

(Figure 7.9.d).

● The increase of the number of resources has increased

the LVQ recognition percentage (Figure 7.9.e). This is

170

Chapter 7: Experimental Results

171

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

False Positive

Resources

P
er

ce
nt

ag
e

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

False Negative

Resources

P
er

ce
nt

ag
e

0 20 40 60 80 100 120 140 160

0

80

160

240

320

400

480

560

640

Training Time

Resources

M
in

ut
es

0 20 40 60 80 100 120 140 160

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

Resources

M
in

ut
es

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

Recognition

Resources

P
er

ce
nt

ag
e

1 IDS

4 IDSs

Legend

8 IDSs

Figure 7.9: The effect of

increasing the number of

resources

(a) (b)

(e)

(d)(c)

Chapter 7: Experimental Results

reflected on the reduction of the false positive percentage.

The increase of the number of resources has positive
effect on the system performance and can help overcome
problems of increasing the number of users and/or IDSs. This
is an advantage because this support scalability of GIDA to
manage an increasing number of resources. Unfortunately the
number of resources in not controllable and it is forced by the
protected Grid environment.

For example, in the experiments with four IDSs,
increasing the number of resources from 60 to 120 has a strong
effect on the false positive percentage by decreasing it by

22.1% from 22.7% to 0.6%. This is a great advantage as the
increase in the false negative percentage was only from 6.7%
to 13.3% and the increase in the training time was only from
34 minutes 86 minutes. The detection duration and the
recognition percentage parameters were slightly affected by
the doubling of the number of resources. The detection
duration increased from 26 minutes to 31 minutes. The
recognition percentage increased from 87.5% to 97.4%.

7.6 Number of intruders

The effect of increasing the number of intruders
attacking the system was tested in the following experiments.

The number of attackers was increased from 5 to 40 (Figure

7.10). Increasing the number of intruders only slightly

172

Chapter 7: Experimental Results

increased the percentage of the false negative (Figure 7.10.b).
This increase did not affect the other system parameters.

For example, in the experiments with four IDSs,
increasing the number of intruders from 10 to 20 has only
affected the false negative percentage by increasing it from
3.3% to 11.7%. Other parameters were almost not affected.
False positive percentage decreased only from 9.4% to 8%.
The detection duration decreased only from 30 minutes to 28
minutes. Recognition percentage almost remained the same by
increasing from 92.7% to 93%. Also the training time almost
remained the same by decreasing from 55.2 minutes to 54.8
minutes.

173

Chapter 7: Experimental Results

174

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

False Positive

Intruders

P
er

ce
nt

ag
e

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

False Negative

Intruders

P
er

ce
nt

ag
e

0 10 20 30 40

0

40

80

120

160

200

240

280

320

360

Training Time

Intruders

M
in

ut
es

0 10 20 30 40

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

Intruders

M
in

ut
es

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

Recognition

Intruders

P
er

ce
nt

ag
e

Figure7.10: The effect of

increasing the number of

intruders

(a) (b)

(e)

(d)(c)

1 IDS

4 IDSs

Legend

8 IDSs

C

h
ap

te
r

 8

Conclusions and

Future Work

8.1 The Grid Environment
8.2 The Grid Intrusion Detection Architecture
8.3 The Grid Simulator
8.4 Results Summary
8.5 Future Work

Chapter 8: Conclusions and Future Work

Chapter 8: Conclusions and Future Work

This chapter presents the final conclusions gained from
the study of intrusion detection in Grid environment through
this thesis. It also suggests future directions to expand and
further investigate this work.

8.1 The Grid Environment

Security is an important issue for the future of the Grid.
As Grid technologies improve and real Grids start to appear,
security will be more critical to protect the Grid resources in
large collaborations and commercial applications. The study

present in Chapter 1 and Chapter 2 for the Grid architecture
and some Grid projects showed that security is a vital issue for
the success of any Grid environment and was addressed by all
studied Grid projects. This is mainly because the Grid
technologies provide easy and seamless access to resources
that is almost always critical and important so can attract many
people who may want to misuse and abuse the system. These
misusers may either be insiders or outsiders.

Unfortunately all the projects concentrated on providing
basic security services such as authentication, authorization,
single sign on, encryption and so on. But they did not address
the possible attack of the insiders who are legitimate users but
can misuse their privileges, or possible penetration from the

176

Chapter 8: Conclusions and Future Work

outsiders because of system bugs or security holes. These
problems are the concerns of the intrusion detection field. The
intrusion detection techniques, in spite of their importance as a
second line of defense, were not applied to Grid environments
or addressed by various Grid project and considered a
contribution of this research.

8.2 The Grid Intrusion Detection Architecture

The study of the current intrusion detection system

presented in Chapter 4 showed that these systems are not
suitable and directly applicable to Grid environments because
they do not address the special characteristics and
requirements of this new Grid environment. A Grid Intrusion
Detection Architecture (GIDA) was presented that was
designed to be suitable and applicable in Grid environments.
The GIDA design was found to support heterogeneity,
scalability, adaptability and multiple administrative domains
which are the basic characteristics of Grid environment. GIDA
is also not subject to centralized control, uses standard, open,
general-purpose protocols, and can deliver nontrivial qualities
of service which are the basic requirement of Grid systems.

The general conclusion in this part is that GIDA is an
open, flexible, and Grid compatible architecture that can be
used as a guide line to design many Grid intrusion detection
systems that have various properties and performance.

177

Chapter 8: Conclusions and Future Work

8.3 The Grid Simulator

Simulation is important and has many advantages in
studying new systems. There are many simulators for Grid
environments that are used in research. But unfortunately these
simulators were mainly designed to test resource scheduling
and management not security and intrusion detection. A new
simulator was implemented – inspired by available Grid
simulators – to address issues related to security and intrusion
detection. The simulator was used to simulate different Grid
environments and generate data that was later analyzed by a
prototype implementation of a simple IDS. This simulator may
be used by other researchers to test their implementations of
the GIDA or even in designing a new architecture.

8.4 Results Summary

The implementation of GIDA proved the applicability of
such architecture in Grid environments through the results

presented in Chapter 7. The distributed system with multiple
IDSs was shown to be scalable and much better that
centralized system with one IDS. The training time was
sharply reduced when the problem was divided among IDSs
and also the false negative percentage was reduced. The
system also showed scalability to accept growing number of
users. The number of resources reduced the false negative
percentage. A good selection of number of IDSs and resources

178

Chapter 8: Conclusions and Future Work

in a Grid environment can help in improving Intrusion
detection performance. The hybrid approach for the window,
used in preprocessing, was shown to best suit different
environments by keeping enough information in each window
for neural network to correctly classify the users and also to
keep detection duration at acceptable levels.

The main issues affecting the system have been
presented to help in deciding the value of different parameters
to increase the performance of the system in different Grid
environments. This work also helped in better understanding
the problem of intrusion detection in Grid environments and in
building future systems. Also in fine tuning Grid intrusion
detection systems.

8.5 Future Work

This work could be continued in many directions such
as completing missing parts, improving the current system,
and trying different approaches and mechanisms. To begin
with, the proposed architecture itself can be improved by
adding more components, details, standards, and guide lines
based on experience with the current architecture to provide
the best support to the designers of Grid Intrusion Detection
Systems.

From the point of view of the proposed prototype
implementation it is possible to try different algorithms for the

179

Chapter 8: Conclusions and Future Work

LVQ neural network and try to fine tune it with different
values for its parameters. It is also suggested to try other
neural networks and even other approaches than neural
networks. After this step a heterogeneous system should be
created with different techniques of intrusion detection used in
the IDSs. After the application of the Grid techniques in real
life problem it is suggested to create a knowledge base with
signatures of known Grid attacks to enable the use of misuse
intrusion detection along with the anomaly intrusion detection
technique presented in this work to create a complete intrusion
detection system.

Study of the effect of different trust relationships
between participants must be studied to understand their effect
on the system. Also the overlapping of the scopes of different
IDSs will affect the system performance and reliability and
should be analyzed.

The cooperation protocol must also be revisited and
improved after the use of heterogeneous IDSs, complex trust
relationships, and IDSs scope overlapping. This is because
these issues increase the complexity of the system and thus the
complexity of the cooperation between the IDSs. Also these
two issues will raise a question about their effect on different
QoSs and how these QoSs can be selected and measured.

The simulator presented in this work is also subject to
improvements to support other problems than security to

180

Chapter 8: Conclusions and Future Work

increase its usability. Trust relationships should be added and
its performance enhanced and evaluated.

Finally these systems should be implemented and tested
on real grids because this is the only way to prove their
success in protecting Grid environments and increasing the
security level.

181

Published Work

Published Work

Published Work

[1] M. Tolba, I. Taha, and A. Al-Shishtawy, “An

Intrusion Detection Architecture for Computational

Grids”. First International Conference on Intelligent

Computing and Information Systems, June 2002.

[2] M. Tolba, M. Abdel-Wahab, I. Taha, and A. Al-

Shishtawy, “A Secure Grid Enabled Signature

Verification System”. Second International

Conference on Intelligent Computing and Information
Systems, Cairo, Egypt, March 2005.

[3] M. Tolba, M. Abdel-Wahab, I. Taha, and A. Al-

Shishtawy, “Distributed Intrusion Detection System

for Computational Grids”. Second International

Conference on Intelligent Computing and Information
Systems, Cairo, Egypt, March 2005.

[4] M. Tolba, M. Abdel-Wahab, I. Taha, and A. Al-

Shishtawy, “GIDA: Toward Enabling Grid

Intrusion Detection Systems”. Cluster Computing

and Grid 2005, Cardiff, UK, 9 - 12 May 2005.

http://dsg.port.ac.uk/events/conferences/ccgrid05/wip/s
chedule/Paper20.pdf

183

Chapter 8: Conclusions and Future Work

[5] M. Tolba, M. Abdel-Wahab, I. Taha, and A. Al-

Shishtawy, “Intrusion Detection System for the

Grid”. The 2005 International Conference on Grid

Computing and Applications (GCA'05). Las Vegas,
Nevada, USA, 20 - 23 June 2005.

184

References

References

References

[1] A. Grimshaw, and W. Wulf, The Legion Vision of a

Worldwide Virtual Computer. Communications of the

ACM 1997; 40(1)

[2] A. Kosoresow, and S. Hofmeyr, Intrusion Detection via

System Call Traces. IEEE Software, vol. 14, pp. 24-42,

1997.

[3] A. LaVigna, Nonparametric Classification Using

Learning Vector Quantization. Ph. D. Thesis,

University of Maryland, 1989.

[4] A. Law, and W. Kelton, Simulation Modeling and

Analysis. 3rd Edition, Mc. Graw Hill, 2000

[5] A. Oram, (ed.), Peer-to-Peer: Harnessing the Power of

Disruptive Technologies. O'Reilly, 2001

[6] A. Seleznyov, V. Terziyan, and S. Puuronen, Temporal-

Probabilistic Network Approach for Anomaly

Intrusion Detection. 12th Annual Computer Security

Incident Handling Conference, Chicago, USA, 2000.

[7] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D.

Quesnel, and S. Tuecke, Secure, Efficient Data

186

References

Transport and Replica Management for High-

Performance Data-Intensive Computing. IEEE Mass

Storage Conference, San Diego, CA, USA, 2001.

[8] B. C. Neuman and T. Ts'o, Kerberos: An

Authentication Service for Computer Networks. IEEE

Communications Magazine, 32(9):33-28, September
1994.

[9] B. Rhodes, J. Mahaffey, and J.Cannady, Multiple Self-

Organizing Maps for Intrusion Detection. Presented at

Proceedings of the 23rd National Information Systems
Security Conference, Baltimore, MD, 2000.

[10] B. Segal, Grid Computing: The European Data Grid

Project. IEEE Nuclear Science Symposium and Medical

Imaging Conference, Lyon, France, October 2000.

[11] C. Shirky, What Is P2P... And What Isn't.

http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-
whatisp2p.html

[12] ChicSim: The Chicago Grid Simulator.

http://people.cs.uchicago.edu/~krangana/ChicSim.html/

[13] Computer Science and National Research Council

Telecommunications Board. Realizing the Information

Future. The Internet and Beyond. National Academy

187

References

Press, 1994. 19.

http://www.nap.edu/readingroom/books/rtif/.

[14] D. Anderson, S. Bowyer, J. Cobb, D. Gedye, W. T.

Sullivan, and D. Werthimer, A New Major Seti Project

Based on Project Serendip Data and 100,000 Personal

Computers. In Astronomical and Biochemical Origins

and the Search for Life in the Universe, Proc. of the Fifth
Intl. Conf. on Bioastronomy, 1997.

[15] D. Anderson, T. F. Lunt, H. Javitz, A. Tamura, and A.

Valdes, Detecting Unusual Program Behavior Using

the Statistical Components of NIDES. SRI

International, Menlo Park, CA, Tech Report SRI-CSL-95-
06, May 1995.

[16] D. Brown, B. Suckow, and T. Wang, A Survey of

Intrusion Detection Systems. CSE 221: Fall 2001

Projects, Department of Computer Science, University of
California,San Diego, USA, 2001.

[17] D. Denning, An Intrusion-Detection Model. IEEE

Transactions on Software Engineering, vol. 13, pp. 222-
232, 1987.

[18] D. Erwin, Unicore Plus Final Report. (2003)

http://www.unicore.org/forum/documents.htm.

188

References

[19] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J.

Pruyne, B. Richard, S. Rollins, and Z. Xu, Peer-to-peer

computing. Technical Report HPL-2002-57, HP Lab,

2002.

[20] E. Adar, and B. Huberman, Free Riding on Gnutella.

First Monday, 5 (10). 2000.

[21] E. Spafford, and D. Zamboni, Data collection

mechanisms for intrusion detection systems. CERIAS

Technical Report 2000-08, CERIAS, Purdue University,
1315 Recitation Building, West Lafayette, IN, June 2000.

[22] G. Helmer, J. Wong, A. Vasant Honavar, and L. Mille,

Intelligent Agents for Intrusion Detection and

Countermeasures. Presented at IEEE Information

Technology Conference, Syracuse, NY, 1998.

[23] G. Pfister, In Search of Clusters. Prentice Hall PTR,

ISBN: 0138997098; 2nd edition, January 1998.

[24] Global Grid Forum Home Page. 2002.

http://www.gridforum.org/

[25] H. Casanova, Simgrid: A Toolkit for the Simulation of

Application Scheduling. Proceedings of the First

IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2001), May 15-18,

189

References

2001, Brisbane, Australia.

[26] H. Debar, An Introduction to Intrusion-Detection

Systems. IBM Research, Zurich Research Laboratory,

Ruschlikon, Switzerland, 2000.

[27] H. Javitz, and A. Valdes, The SRI IDES Statistical

Anomaly Detector. Presented at Proceedings of the IEEE

Symposium on Research in Security and Privacy,
Oakland, CA, 1991.

[28] H. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K.

Taura, and A. Chien, The MicroGrid: a Scientific Tool

for Modeling Computational Grids. Proceedings of

IEEE Supercomputing (SC 2000), Nov. 4-10, 2000,
Dallas, USA.

[29] H. Teng, K. Chen, and S. C. Lu, Adaptive Realtime

Anomaly Detection Using Inductively Generated

Sequential Patterns. Presented at Proceedings of the

IEEE Symposium on Research in Security and Privacy,
Los Alamitos, CA, 1990.

[30] H. Vaccaro, and G. Liepins, Detection of Anomalous

Computer Session Activity. Presented at Proceedings of

the IEEE Symposium on Research in Security and
Privacy, Location TBD, 1989

190

References

[31] I. Foster, Grid Today. Daily News and Information for

the Global Grid Community. July 22, 2002: VOL. 1 NO.
6.

http://news.tgc.com/msgget.jsp?mid=286185&xsl=story.xsl

[32] I. Foster, The Grid: A New Infrastructure for 21st

Century Science. Physics Today, 55 (2). 42-47. 2002.

[33] I. Foster, and A. Iamnitchi, On Death, Taxes and the

Convergence of Peer-to-Peer and Grid Computing.

http://people.cs.uchicago.edu/ anda/papers/foster grid vs
p2p.pdf, 2002.

[34] I. Foster, and C. Kesselman (Eds), The Grid: Blueprint

for a New Computing Infrastructure. Morgan

Kaufmann, 1999.

[35] I. Foster, and C. Kesselman, The Globus Project: A

Status Report. Proc. IPPS/SPDP '98 Heterogeneous

Computing Workshop, pp. 4-18, 1998.

[36] I. Foster, C. Kesselman, and S. Tuecke, The Anatomy of

the Grid. Enabling Scalable Virtual Organizations.

International Journal of Supercomputer Applications,
2001.

[37] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, A

191

References

security architecture for computational grids. In Fifth

ACM Conference on Computers and Communications
Security, November 1998, 83-91.

[38] I. Foster, C. Kesselman, J. Nick and S. Tuecke, The

Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration.

Globus Project, 2002.
www.globus.org/research/papers/ogsa.pdf.

[39] Internet Security Systems, Network- vs. Host-based

Intrusion Detection: A Guide to Intrusion Detection

Technology. Technical Whitepaper.

http://documents.iss.net/whitepapers/nvh_ids.pdf/ (2003).

[40] J. Almond, and D. Snelling, UNICORE: Uniform access

to supercomputing as an element of electronic

commerce. Future Generation Computer Systems 1999,

15:539 548.

[41] J. Balasubramaniyan, J. Garcia-Fernandez, D. Isacoff, E.

Spafford, and D. Zamboni, An Architecture for

Intrusion Detection using Autonomous Agents.

Department of Computer Sciences, Purdue University,
Coast TR 98-05; 1998.

[42] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S.

192

References

Tuecke, GASS: A Data Movement and Access Service

for Wide Area Computing Systems. Sixth Workshop on

I/O in Parallel and Distributed Systems, Atlanta, GA,
USA, May 5, 1999.

[43] J. C. Schlimmer, Concept Acquisition Through

Representational Adjustment. In Department of

Information and Computer Science. Irvine: University of
California, 1987

[44] J. Marin, D. Ragsdale, and J. Surdu, A Hybrid Approach

to Profile Creation and Intrusion Detection. in

Proceedings of DARPA Information Survivability
Conference and Exposition, Anaheim, CA, 12-14 June
2001.

[45] J. Novotny, S. Tuecke, V. Welch, An Online Credential

Repository for the Grid: MyProxy. 10th IEEE Symp.

On High Performance Distributed Computing, 2001.

[46] J. Ryan, M. Lin, and R. Miikkulainen, Intrusion

Detection with Neural Networks. AI Approaches to

Fraud Detection and Risk Management. Papers from

the 1997 AAAI Workshop (Providence, Rhode Island),
pp. 72-79. Menlo Park, CA: AAAI.

[47] J. Ryan, M. Lin, and R. Miikkulainen, Intrusion

193

References

Detection with Neural Networks. Presented at

Proceedings of the 10th Advances in Neural Information
Processing Systems Conference, Denver, CO, 1998.

[48] JXTA Home Page. http://www.jxta.org/

[49] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S.

Sekiguchi, and U. Nagashima, Performance Evaluation

Model for Scheduling in a Global Computing System.

The International Journal of High Performance
Computing Applications, vol. 14, No. 3, pp. 268-279,
2000.

[50] K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W.

Smith, and S. Tuecke, A resource management

architecture for metacomputing systems. Technical

report, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Ill., 1997.

[51] K. Czajkowski, S. Fitzgerald, I. Foster, and C.

Kesselman, Grid Information Services for Distributed

Resource Sharing. Proc. 10 th IEEE Symp. On High

Performance Distributed Computing, 2001.

[52] L. Lankewicz, and M. Benard, Real-time Anomaly

Detection Using a Nonparametric Pattern Recognition

Approach. Presented at Proceedings of the of 7th

Computer Security Applications conf., San Antonio, TX,

194

References

1991

[53] M. Baker, R. Buyya, and D. Laforenza, Grids and Grid

technologies for wide-area distributed computing.

Software Practice and Experience, 2002

[54] M. Baker, R. Buyya, and D. Laforenza, The Grid:

International Efforts in Global Computing.

Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet
(SSGRR'2000), Italy, 2000.

[55] M. Biswanath, T. Heberlein, and K. Levitt, Network

Intrusion Detection. IEEE Network, 8, PP. 26-41,

May/June, 1994.

[56] M. Chetty, and R. Buyya, Weaving Computational

Grids: How Analogous are they with Electrical Grids?

Journal of Computing in Science and Engineering (CiSE)
2001; (July-August).

[57] M. Handley, V. Paxson, and C. Kreibich, Network

Intrusion Detection: Evasion, Traffic Normalization,

and End-to-End Protocol Semantics. 10th USENIX

Security Symposium, Washington, D.C., 13-17 August
2001.

[58] M. Huang, and T. Wicks, A Large-scale Distributed

195

References

Intrusion Detection Framework Based on Attack

Strategy Analysis. Web proceedings of the First

International Workshop on Recent Advances in Intrusion
Detection (RAID'98).

[59] M. Murshed, R. Buyya, and D. Abramson, GridSim: A

Grid Simulation Toolkit for Resource Management

and Scheduling in Large-Scale Grid Computing

Environments. 17th IEEE International Symposium on

Parallel and Distributed Processing (IPDPS 2002), April
15-19, 2002, Fort Lauderdale, FL, USA.

[60] M. Thompson, A. Essiari, S. Mudumbai, Certificate-

based Authorization Policy in a PKI Environment.

ACM Transactions on Infomation and System Security
(TISSEC), Volume 6, Issue 4, pp: 566-588, November
2003.

[61] M. Thottan, and C. Ji, Proactive Anomaly Detection

Using Distributed Intelligent Agents. IEEE Network,

vol. 12, pp. 21-27, 1998.

[62] M. Tolba, I. Taha, and A. Al-Shishtawy, An Intrusion

Detection Architecture for Computational Grids. First

International Conference on Intelligent Computing and
Information Systems, June 2002.

196

References

[63] M. Tolba, I. Taha, M. Al Shandawely, Building a Grid-

Enabled Distributed System to Solve Signature

Verification Problem Based on Improving QoS.

Second International Conference on Intelligent

Computing and Information Systems, Cairo, Egypt,
March 2005.

[64] M. Tolba, M. Abdel-Wahab, I. Taha, and A. Al-

Shishtawy, Distributed Intrusion Detection System for

Computational Grids. Second International Conference

on Intelligent Computing and Information Systems,
March 2005.

[65] M. Tolba, M. Abdel-Wahab, I. Taha, A. Anbar, Fault

Tolerant Scheduling for Grid Enabled Signature

Verification System. Second International Conference

on Intelligent Computing and Information Systems, Cairo,
Egypt, March 2005.

[66] N. Habra, B. L. Charlier, A. Mounji, and I. Mathieu,

ASAX: Software Architecture and Rule-based

Language for Universal Audit Trail Analysis.

Presented at Proceedings of the European Symposium on
Research in Computer Security, Brighton, England, 1992.

[67] Napster Home Page. http://www.napster.com/, 2001.

197

References

[68] P. Anderson, Computer Security Threat Monitoring

and Surveillance. Technical report, James P. Anderson

Company, Fort Washington, Pennsylvania, April 1980.

[69] P. Helman, and G. Liepins, Statistical Foundations of

Audit Trail Analysis for the Detection of Computer

Misuse. IEEE Transactions on Software Engineering, vol.

19, pp. 886-901, 1993.

[70] P. Proctor. Practical Intrusion Detection Handbook.

Prentice Hall PTR. 1st edition August-2000

[71] R. Bace, and P. Mell, NIST Special Publication on

Intrusion Detection Systems. 16 August 2001.

[72] R. Bace, Intrusion Detection. MacMillan Technical

Publishing 2000.

[73] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke,

J. Volmer, and V. Welch, A National-Scale

Authentication Infrastructure. IEEE Computer, Vol 33,

No 12, pp 60-66, 2000.

[74] R. Buyya, The Gridbus Toolkit: Enabling Grid

computing and business. http://www.gridbus.org.

[75] R. Buyya and S. Venugopal, The Gridbus Toolkit for

Service Oriented Grid and Utility Computing: An

198

References

Overview and Status Report. Proceedings of the First

IEEE International Workshop on Grid Economics and
Business Models (GECON 2004, April 23, 2004, Seoul,
Korea), 19-36pp, ISBN 0-7803-8525-X, IEEE Press, New
Jersey, USA

[76] R. Buyya, K. Branson, J. Giddy, and D. Abramson, The

Virtual Laboratory: Enabling On-Demand Drug

Design with the World Wide Grid. Proceedings of the

IEEE International Symposium on Cluster Computing
and the Grid, May 21-24, 2002.

[77] R. Gopalakrishna, A framework for distributed

intrusion detection using interest driven cooperating

agents. Paper for Qualifier II examination, Department of

Computer Sciences, Purdue University, May 2001.

[78] R. Stevens, P. Woodward, T. DeFanti, and C. Catlett,

From the I-WAY to the National Technology Grid.

Communications of the ACM, 40(11):51--60, November
1997.

[79] S. Badr, Security Architecture for Internet Protocols.

Ph.D. dissertation, Military Technical Collage, Cairo,
Egypt, 2002.

[80] S. C. Lee, and D. V. Heinbuch, Training a

Neuralnetwork Based Intrusion Detector to Recognize

199

References

Novel Attacks. Presented at IEEE Workshop Information

Assurance and Security, West Point, NY, 2000.

[81] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,

W. Smith, and S. Tuecke, A Directory Service for

Configuring High-Performance Distributed

Computations. Proc. 6th IEEE Symposium on High-

Performance Distributed Computing, Portland, OR, US,
1997

[82] S. Forrest, S. A. Hofmeyr, and A. Somayaji, Computer

Immunology. Communications of the ACM, vol. 40, pp.

88-96, 1997.

[83] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.

Longstaff, A Sense of Self for Unix Processes. Presented

at Proceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, CA, 1996.

[84] T. Howes, M. Smith, and G. Good, Understanding and

deploying LDAP Directory services. MTP edition 12

Wahl, M., Howes, T, Kill, S., "Lightweight Directory
Access Protocol (v3)", RFC 2251, December 1998.

[85] T. Kohonen, Learning Vector Quantization. In M.

Arbib, editor, The Handbook of Brain Theory and Neural
Networks. pages 537--540. MIT Press, 1995.

200

References

[86] T. Kohonen, Learning Vector Quantization for Pattern

Recognition. Technical Report, TKK-F-A601, University

of Technology, Helsinki, 1986.

[87] T. Kohonen, Self-Organization and Associative

Memory. Springer-Verlag, Berlin, 1987.

[88] T. Kohonen, The Self-Organizing Map. in Lau, C. (ed.)

Neural Networks: Theoretical Foundations and Analysis.
IEEE Press, NY, 1992.

[89] T. Kohonen, G. Barna, and R. Chrisley, Statistical

Pattern Recognition with Neural Networks:

Benchmarking Studies. IEEE International Conference

on Neural Networks, San Diego, CA, pp. 61-68, 1988.

[90] T. Kohonen, J. Hynninen, J. Kangas, K. Laaksonen, and J.

Torkkola. Lvq pak, The Learning Vector Quantization

Program Package.

http://www.cis.hut.fi/research/lvq_pak, 1995.

[91] T. Lane, and C. E. Brodley, Temporal Sequence

Learning and Data Reduction for Anomaly Detection.

ACM Transactions on Information and System Security,
vol. 2, pp. 295-331, 1999.

[92] T. Y. Lin, Anomaly Detection - A Soft Computing

Approach. Presented at New Security Paradigms

201

References

Workshop, Little Compton, Rhode Island, 1994.

[93] The Globus Project™ Home Page.

http://www.globus.org/

[94] The GridBus Home Page. http://www.gridbus.org/

[95] The Legion Home Page. http://legion.virginia.edu/

[96] The UNICORE Home Page. http://www.unicore.org/

[97] V. Paxson, Bro: A System for Detecting Network

Intruders in Real-Time. Computer Networks, 31, pp.

2435-2463, Dec. 1999.

[98] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C.

Salisbury, and S. Tuecke, The Data Grid: Towards an

Architecture for the Distributed Management and

Analysis of Large Scientific Datasets. The Journal of

Network and Computer Applications, 2001.

[99] W. Johnston, D. Gannon, and B. Nitzberg, Information

Power Grid Implementation Plan: Research,

Development, and Testbeds for High Performance,

Widely Distributed Collaborative, Computing and

Information Systems Supporting Science and

Engineering. Technical report, NASA Ames Research

Center, http://www.nas.nasa.gov/IPG, 1999.

202

References

[100]W. Lee, and S. J. Stolfo, A Framework for

Constructing Features and Models for Intrusion

Detection Systems. ACM Transactions on Information

and System Security, Vol. 3, November, 2000

[101]W. Lee, R. Nimbalkar, K. Yee, S.Patil, P. Desai, T. Tran,

and S. Stolfo, A Data Mining and CIDF Based

Approach for Detecting Novel and Distributed

Intrusions. in Recent Advances in Intrusion Detection

(RAID 2000), Third International Workshop, Toulouse,
France, October 2-4, 2000, vol. Vol. 1907, H. Debar, L.
Mé, and S. F. Wu, Eds. Berlin: Springer-Verlag, 2000,
pp. 49-65.

[102]W. Roush, A. Goho, E. Scigliano, D. Talbot, M.
Waldrop, G. Huang, P. Fairley, E. Jonietz, and H. Brody,

10 Emerging Technologies That Will Change The

World. Technology Review, MIT, 106:33--49, Feb 2003.

[103]W. Stallings, Network and Internetwork Security -

Principles and Practice. Prentice Hall, 1995.

203

ملخص الرسالة

 يعتففبر توفيففر القدرة الحسففابية الكافيففة لحففل المشاكففل المختلفففة بقدرة
 وكفاءة عاليفففة هفففي الهدف السفففاسي للعامليفففن ففففي أي مجال يتطلب العمفففل بدقفففة
 وتوفيففففر الوقففففت و المال. ظهففففر مجال البيئات الحسففففابية الشبكيففففة ليسففففد الفجوة
 الموجودة بيفففن التكنولوجيفففا المتاحفففة و الطلب المتزايفففد للقدرة الحسفففابية. توففففر
 الشبكة الحسابية بيئة حسابية قوية وذلك عن طريق ربط الموارد الموزعة لتمكين
 التجميفففع و المشاركفففة بسفففهولة وذلك لخلق مورد حسفففابي أكثفففر قوة. والجديفففر
 بالذكفر أن مصفطلح الموزع هنفا ل يشيفر فقفط إلى الماكفن الجغرافيفة بفل أيضفا

إلى الدارة التي قد تغطي المنظمات المتعددة.

 إلى جانفب أهميفة القضايفا المنيفة المختلففة التفي طُرقفت مفع بدايفة مجال
 البيئات الحسفابية الشبكيفة يعتفبر كشفف التطففل مفن أهفم العناصفر لي نظام أمنفي
 حديفث لنفه يُعتفبر خفط دفاع ثانفي ضفد الثغرات المنيفة و أيضفا ضفد المسفتخدمين

الذين يسيؤون إستخدام حقوقهم.

 تتعرض هذه الرسفالة لدراسفة مشكلة كشفف التطففل ففي البيئات الحسابية
 الشبكيففة باعتبارهففا احففد القضايففا المنيففة المهمففة. يقدم البحففث طرازا مرنففا مبنيففا
 على التعاون و توزيففع العمففل لكشففف التطفففل فففي البيئات الحسففابية الشبكيففة. هذا
 العمففل مبنففي على أسفاس دراسفة مشاريففع البيئات الحسففابية الشبكيففة و نظفم كشفف
 التطفففل الحاليففة لتصففميم طراز يتناسففب مففع البيئة الحسففابية الشبكيففة المتاحففة و

يستفيد منها.

 وقففففد تففففم تنفيففففذ نموذج للطراز المقترح مففففن أجففففل الجازة و المراجعففففة

 لكتسفففاب معلومات أكثفففر و خفففبرة ففففي حفففل مشكلة كشفففف التطففففل ففففي سفففياق
 البيئات الحسفابية الشبكيفة. يعمفل النموذج المقترح بطريقفة كشفف تطففل موزعفة

 Learningو متجانسفففة و التفففي تسفففتخدم الشبكات العصفففبية المعروففففة بأسفففم)
Vector Quantization .للتصنيف وذلك لكتشاف التطفل إذا حدث)

 قد تم استخدام نظم النمذجة و المحاكاة لفحص هذا النموذج في عدة
 بيئات حسفففابية شبكيفففة ذات تنظيمات و طرازات مختلففففة مفففن خلل محاكاة هذة
 البيئات باسففففتخدام برنامففففج لمحاكاة البيئة الشبكيففففة. وقففففد تففففم تطويففففر برامففففج
 المحاكاة هذه لتتناسففففب مففففع دراسففففة المففففن و كشففففف التطفففففل. اظهرت النتائج
 إمكانيفة تطبيق النّظام المقترح ففي البيئات الحسفابية الشبكيفة و متفوقفا علي نظم
 مركزية غير موزعة. وقد تم أيضا دراسة العناصر المختلفة التي قد تؤثر على
 أداء نظام كشفف التطففل المقترح. فقفد أدت زيادة عدد المسفتخدمين و أيضفا عدد

 False Negativeخادمات كشففف التطفففل إلى نقصففان نسففبة الخطففأ السففلبي)
Percentageالذي يعتفبر مفن أهفم عناصفر تقييفم جودة أنظمفة التطففل. وقفد)

 دعمفففت هذه النتائج إثبات إمكانيفففة تطفففبيق النظام ففففي البيئات الحسفففابية الشبكيفففة.
 وممفففا زاد هذا الدعفففم أن زيادة عدد الموارد، وهفففو طفففبيعي مفففع زيادة حجفففم البيئة

 False Positiveالحسفابية الشبكيفة ، أدي إلى نقصفان نسفبة الخطفأ اليجابفي)
Percentageوقفد أدى ذلك إلى التغلب على زيادة طفيففة طرأت على هذه .)

النسبة بسبب زيادة عدد المستخدمين و خادمات كشف التطفل.

جامعة عين شمس
كلية الحاسبات والمعلومات

قسم الحسابات العلمية

مشكلة السرية في بيئة حسابية شبكية ديناميكية مفتوحة وغير متجانسة

رسالة مقدمة لستيفاء الحصول علي درجة الماجستير
في الحاسبات والمعلومات

إعداد
أحمد محمد عبد الغفور الششتاوي

بكالوريوس الحاسبات والمعلومات
معيد بقسم الحسابات العلمية

جامعة عين شمس

تحت اشراف

السـتاذ الدكتـور/ محمد فهمي طلبة
أستاذ بقسم الحسابات العلمية

نائب رئيس الجامعة لشؤون التعليم والطلب
جامعة عين شمس

السـتاذ الدكتـور/ محمد سعيد عبد الوهاب
أستاذ بقسم الحسابات العلمية

العميد السابق لكلية الحاسبات والمعلومات
المشرف على قسم نظم المعلومات

جامعة عين شمس

الدكتـور/ إسماعيل عبد الحميد طه
أستاذ مساعد بالكلية الفنية العسكرية بالقاهرة

٢٠٠٦القاهرة

	Chapter 1: Introduction
	1.1 General Knowledge about the Field of Grid
	1.2 Peer to Peer Computing
	1.3 Problem Motivation
	1.4 Objectives and Scope of Work
	1.5 Thesis Organization

	Chapter 2: Analysis of some Grid Architectures
	2.1 Globus
	2.2 Legion
	2.3 UNICORE
	2.4 GridBus
	2.5 Conclusion

	Chapter 3: The Grid Security Infrastructure
	3.1 Security Infrastructure
	3.2 Evaluation of the Current Grid Security Infrastructure
	3.3 The Grid Research Project
	3.3.1 The Signature Verification Problem
	3.3.2 The Signature Verification System Architecture
	3.3.3 Project Results
	3.3.4 Project Conclusions

	Chapter 4: Intrusion Detection
	4.1 Introduction
	4.2 The Anatomy of Intrusion Detection Systems
	4.3 Network vs. Host Based Intrusion Detection
	4.4 Anomaly Detection vs. Misuse Detection
	4.5 Centralized vs. Distributed Intrusion Detection
	4.6 Other Classifications and Attributes
	4.7 Problems of Traditional Intrusion Detection Systems
	4.8 Conclusion

	Chapter 5: The Proposed Grid Intrusion Detection Architecture
	5.1 Problem Definition
	5.2 The Proposed Grid Intrusion Detection Architecture
	5.2.1 The Data Gathering Module
	5.2.2 The Data Analysis Module

	5.3 GIDA Compatibility with the Grid

	Chapter 6: The proposed GIDA Implementation
	6.1 Simulating the Computational Grid
	6.2 The Intrusion Detection Agent Implementation
	6.2.1 The Simulation Problem Definition
	6.2.2 The Proposed Grid and IDA Simulator

	6.3 The Intrusion Detection Server Implementation
	6.3.1 The Analysis and Detection Module
	6.3.2 The Learning Vector Quantization
	6.3.3 Using LVQ for implementing IDSs
	6.3.4 The Cooperation Module

	Chapter 7: Experimental Results
	7.1 Evaluation Parameters and Test Approach
	7.2 Data Preprocessing
	7.3 Number of IDSs
	7.4 Number of users
	7.5 Number of resources
	7.6 Number of intruders

	Chapter 8: Conclusions and Future Work
	8.1 The Grid Environment
	8.2 The Grid Intrusion Detection Architecture
	8.3 The Grid Simulator
	8.4 Results Summary
	8.5 Future Work

