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Abstract

With  the  rapid  advance  in  science,  engineering,  and 
business;  people  seek  more  computational  power  and 
resources to solve their problems more efficiently in terms of 
accuracy, time, and money. The field of Grid computing was 
born  to  fill  the  gap  between  available  technology  and 
increasing  demand  for  computational  power.  The  Grid 
provides  a powerful  computational  environment  by coupling 
distributed  resources  to  enable  seamless  aggregation  and 
sharing to create more powerful resource. The term distributed 
here does not refer only to geographical locations but also to 
administration that may span multiple organizations.

Security  issues  were  addressed  from the  beginning  of 
the Grid computing because of their importance to the success 
of such field. Intrusion detection is an important component of 
any  modern  security  system  because  it  is  considered  as  a 
second line of defense against bugs and security holes as well 
as providing protection against insiders.

This thesis studies the problem of intrusion detection in 
Grid  environments  since  it  is  considered  as  an  important 
security  issue.  It  introduces  flexible  cooperative  distributed 
intrusion detection architecture for computational Grids. This 
work is based on the study of latest Grid projects and intrusion 
detection  systems  to  deliver  an  architecture  that  suits  and 
benefits form the underlying computational Grid environment.

xi



A  prototype  implementation  of  the  proposed 
architecture for the purposes of validation and verification is 
also  introduces.  The presented  prototype  uses  homogeneous 
distributed  intrusion  detection  servers  that  use  the  Learning 
Vector  Quantization (LVQ) neural  network  for  classification 
to detect intrusion cases if occurred. 

The  introduced  prototype  was  tested  against  various 
Grid  environments  with  different  organizations  and 
architectures  through a Grid environment  simulator  that  was 
developed to suit the study of security and intrusion detection. 
The  test  results  showed  the  applicability  of  the  proposed 
system  in  Grid  environments  and  also  showed  distinct 
advances versus centralized systems. The thesis also presents 
the different parameters that may affect the proposed intrusion 
detection system showing and explaining their effects on the 
overall system performance.
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Chapter 1: Introduction

Chapter 1: Introduction

This  chapter  introduces  the  concept  of  the  Grid  and 
presents how  this  field  emerged.  It  describes  the  main 
components and the special characteristics of a working Grid 
environment  that  distinguishes  it  from  other  distributed  or 
peer-to-peer systems. The chapter continues by introducing the 
motivation,  objectives,  and  scope  of  work  presented  in  this 
thesis.

1.1 General Knowledge about the Field of Grid

The Grid concept began to appear in the mid 1990s [34], 
it started as a project to link supercomputers at different sites 
[54] to solve state-of-the-art science, engineering, and business 
problems  that  did  not  fit  on  a  single  supercomputer  either 
because the problem size was large or  because it  required  a 
combination of different hardware and software that could not 
be combined in a single supercomputer. Because of the rapid 
advances in computers, high speed networks, and the Internet, 
this  project  grew  far  beyond  its  initial  plans  and  goals  to 
become what is now known as the Grid.

The Grid was inspired from the analogous advances in 
the electrical grids [56]. It is believed that the real revolution, 
which  leads  to  the  current  advances in  this  area,  was  not 
because  the  invention  of  electricity,  but  because  of  the 
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Chapter 1: Introduction

construction of electrical power grids that grow in size rapidly 
to  become  international.  After  building  the  required 
infrastructure  –  generators,  wiring,  wall  plugs,  etc...  –  the 
consumers  of  electrical  energy  could  satisfy  their  needs, 
because the deployed electrical grid will provide a consistent, 
dependable, reliable, pervasive, and relatively cheap source of 
electricity.  Otherwise  consumers  of  electricity  will  have  to 
build  their  own  generators  (which  the  case  nowadays  for 
computational  power)  and  this  is  in  most  cases  infeasible 
because of the high costs, decrease of reliability and in some 
cases not possible because for example some generators have 
to be placed in special locations at waterfalls or wind.

Research in different fields in science and engineering is 
faster than the advances in the computer technology, this lead 
to sophisticated computational problems that can not be solved 
with the current  available computational  power. Solutions to 
this gap can be classified into three categories [23]:

● Work  Harder: researchers  in  Information 

Technology (IT) and Information Science (IS) areas try to 
improve computer architecture and design to allow them to 
solve  larger  and  more  sophisticated  computational 
problems. Today workstations are more powerful than early 
supercomputers.

● Work Smarter: researchers  in IT & IS areas try to 
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improve  the  algorithms  used  to  solve  computational 
problems  so  they  will  work  efficiently  on  the  available 
computer  technology.  They  also  should  seek  to  find  new 
approaches and models to solve computational problems.

● Get Help: researchers in IT & IS areas try to solve 

large and sophisticated problems by allowing more than one 
computer to work together to solve one problem by dividing 
and distributing the task among available computers.

Distributed  computing,  cluster  computing,  and  Grid 
computing  are  among  research  areas  that  fit  into  the  last 
category  of  narrowing  down  the  gap  between  current 
computational  requirements  and  demands  and  available 
computing power. However, Grid computing is distinguished 
from conventional distributed computing by its focus on large-
scale  resource  sharing,  innovative  applications,  and in  some 
cases,  high-performance  orientation  [36].  The  Grid  is  also 
distinguished from cluster computing by its lack of centralized 
control and single policy, its heterogeneous resources, and the 
fact that the state of the Grid system is not well known at any 
point of time.

Grid environments will pool the available resources to 
create  a virtual  supercomputer  or  Virtual  Organizations  [36] 
by  coupling  of  these resources.  These  Virtual  Organizations 
are  similar  to  the  temporary  alliance  between enterprises  or 
organizations  that  share  their  resources  and  experiences  to 
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improve business [53]. A resource in the Grid is anything that 
can be allocated including processor time, memory, secondary 
storage,  databases,  network  bandwidth,  special  devices  and 
sensors. The resources may be heterogeneous, geographically 
distributed,  and  owned  by  different  enterprises  or 
organizations.  These  pooled  resources  coupled  by  the  Grid 
will enable solving problems that were not possible otherwise. 
It will  also narrow the gap between the demands of science, 
engineering  and  business  for  computational  power  and  the 

available technology.  The Grid, as shown in  Figure 1.1,  has 
evolved in a way similar to the Internet, the difference is that 
the Internet is sharing of information while the Grid is sharing 
of computational power.

The  Grid  is  needed  for  many  reasons  including  for 
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example:

● Some resources that are needed to solve problems can 
not  be  efficiently  duplicated  such  as  an  expensive 
supercomputer or an electrical telescope that must be placed 
at  a  specific  geographical  position.  The  Grid  will  enable 
remote access to such resources.

● Some problems need heterogeneous resources that are 
not available in the same machine, such as a combination of 
parallel and vector machines, to be solved efficiently. The 
Grid will enable such scenarios.

● Resources  needed  to  solve  a  problem  may  be 
geographically  distributed  in  different  countries.  The Grid 
will couple such resources in a seamless manner.

Grid  Research  aims  to  develop  the  necessary 
infrastructures that will make access to computational  power 
as easy and reliable as access to electrical power, and create a 
seamless,  integrated  computational  and  collaborative 
environment  to solve innovative applications  [53].  This  new 
field  was  known  by  several  names  such  as  metacomputing, 
scalable  computing,  global  computing  and  more  recently  as 
the  Grid  or  Grid  Computing.  The  Grid  was  defined  as 
"coordinated  resource  sharing  and  problem  solving  in  a 
dynamic, multi-institutional virtual organizations" [36]. It has 
many  special  characteristics,  requirements,  and  components 
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that distinguished it from other similar fields. It also enabled 
new application models that are more suitable to their nature.

The Grid includes special characteristics such as:

● Multiple  administrative  domains  and  autonomy: 

Resources  in  the  Grid  are  controlled  by  different 
administrative  domains  and  owned  by  different 
organizations.  The  autonomy  of  each  domain  must  be 
protected, and the Grid infrastructure must  cooperate with 
rather than replace the local policies at each domain [53].

● Heterogeneity:  The  resource  pool  in  the  Grid 

contains a collection of different  resources that may range 
from  electronic  sensors  and  Personal  Digital  Assistants 
(PDAs)  to  supercomputers  and  large  databases.  These 
resources have different technologies and are controlled by 
different operating systems and software. The Grid should 
couple these resources seamlessly [53]. 

● Scalability: A Grid environment can grow from few 

computers  to span the entire  earth,  the Grid infrastructure 
must  be  able  to  handle  all  resources  and be  scalable  and 
flexible.  The  applications  must  be  designed  to  handle 
possible  degradation  in  performance  when  using  large 
number  of  resources  by  designing  the  applications  to  be 
latency tolerant [53].
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● Dynamicity or Adaptability: In the Grid the failure 

is the rule. Among all the resources in a grid environment, 
the probability of one component failure is high. The Grid 
must deal with such failures and allow resources to join or 
leave a grid environment as they want [53].

With  these  characteristics  in  mind,  a  working  grid 
environment  infrastructure must  provide some basic services 

as  shown  in  Figure  1.2.  On  top  of  this  infrastructure, 
developers should build their grid enabled applications.

The basic services of such Grid environments are:

● Resource Management: These services are required 

to  manage the resources  available  in  a Grid environment. 
The  services  span  both  basic  services,  such  as  resource 
allocation, up to more advanced services such as scheduling, 
co-allocation,  advanced  reservation,  and  payment 
management.  The  resource  management  should  provide 
solutions  to  problems  such  as  site  autonomy,  resource 
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heterogeneity, policy extensibility, and on-line control [50].

● Information  Service: These  are  responsible  of 

providing  all  required  information  about  the  Grid 
environment such as a directory service for easy search of 
available  resources,  naming  service  to  provide  uniform 
name  space,  monitoring  and  discovery  services  for 
monitoring resources and jobs running and discovering new 
resources. Thus allowing careful selection and configuration 
not  only  of  computers,  networks,  and other  resources  but 
also  of  the protocols  and algorithms  used  by applications 
[81].

● Data Management: Innovative applications  usually 

need to  deal  with large amounts  of  data  in  most  cases  at 
remote  sites.  Thus  large  data  collections  are  emerging  as 
important community resources. The volume of interesting 
data  is  already  measured  in  terabytes  and  will  soon  total 
petabytes.  The  Grid  infrastructure  must  handle  this  data 
efficiently  such  as  providing  parallel  transfer,  replica 
management,  processing  subsets  of  huge  datasets,  and 
manage distributed data [98].

● Security: Considered the heart of the Grid, it  spans 

all the services in the Grid. It must provide services such as 
secure  communication  and single  sign on.  Security  in  the 
Grid  is  complicated  by  the  need  to  establish  secure 
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relationships  between  a  large  number  of  dynamically 
created  parties and  across  a  range  of  administrative 
domains, each with its own local security policy [37].

To provide these services, the Grid infrastructure must 
develop  the  necessary  Software  Development  Kits  (SDKs), 
Application  Programming  Interfaces  (APIs),  and  protocols 
[36].  The  infrastructure  must  be  open  and  build  on  top  of 
available  standards  such  as  the  Transmission  Control 
Protocol/Internet  Protocol  (TCP/IP)  and  the  Lightweight 
Directory Access Protocol (LDAP), and it should not require 
the replacement of existing site policies, operating systems, or 
network  protocols.  It  must  not  enforce  programming 
paradigm,  language,  or  tools.  It  should  also  protect  site 
autonomy,  not  compromise  existing  security,  and  be  fault 
tolerant  with no single  point  of  failure  [53].  To fulfill  these 
requirements, the hour glass model represents a good example 
for both the Grid and the Internet [13]. Its narrow neck maps to 
a small set of core protocols that are used to build a larger set 
of protocols and applications at the top, and this small set can 
be mapped on different underlying technologies at the bottom. 
The Grid infrastructure consists of four major layers as shown 

in Figure 1.3 [36][54]. These major layers are:

● The  Fabric  Layer: This  layer  consists  of  all  the 

resources  that  will  be  shared  by  the  Grid.  This  includes 
physical  resources  such  as  computers  and  scientific 
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instruments,  and  virtual  resources  such  as  clusters  and 
distributed  file  systems.  Each  resource  may  include  local 
protocols and management systems that are independent on 
the Grid. These Resources, according to their nature, must 
provide appropriate capabilities upon which upper services 
will  be  built  such  as  program  execution  and  monitoring, 
access to files and sub files, and reservation services.

● The Connectivity Layer: Protocols in this layer are 

responsible for providing communication and authentication 
services.   This  will  enable  the  exchange  of  data  between 
fabric layer resources and secure mechanism to verify the 
identity of communicating parties. Communication services 
include  transport,  routing,  and  naming.  Security  services 
include single sign on, delegation, and integration with local 
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Chapter 1: Introduction

security services.

● The Resource Layer: This  layer  is  concerned with 

accessing  to  single  resource  in  the  fabric  layer.  This 
includes management protocols such as resource allocation, 
monitoring,  controlling,  and  payment  mechanisms.  And 
information  protocols  to  get  information  about  resource 
structure,  and status.  Connectivity  and resource layers  are 
considered the core protocols – the tight neck of the hour 
glass – so they should be few and precisely specified. These 
core protocols are mapped on a large number of resources in 
the fabric layer and the upper level protocols will use them 
to build a wide variety of Grid enabled applications.

● The Collective  Layer: This  is  build  on  top  of  the 

resource  layer.  It  is  used  to  provide  coupling  and 
coordinated  access  to  a  collection  of  resources  and  not 
associated  with  any  single  resource.  This  includes 
Directories  for  information  about  available  resources,  co-
allocation,  monitoring,  diagnosing,  workload management, 
data  replication,  and  so  on.  Compared  to  Resource  layer 
which  is  generic,  this  layer  spans  a  wide  spectrum  from 
general purpose to highly application specific services that 
are build on top of the few generic resource layer services.

● The Application Layer: This layer contains the Grid 

enabled  science,  engineering  and  business  applications. 
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These  applications  can  be  built  on  top  of  either  the 
connectivity,  resource,  or  collection  layers  or  any 
combination of them.

The  wide  spread  of  Grid  new  concepts  and 
methodologies in the past few years made a confusion about 
which system is a Grid and which is not. There was a strong 
need  for  a  way  to  identify  Grid  systems.  A  three  point 
checklist was introduced to classify Grid systems [31]:

● A Grid system should  coordinate  resources  that  are 
not subject to centralized control. So a scheduler deployed 
on  a  Local  Area  Network  (LAN)  is  not  a  Grid  system 
because  of  the  scheduler  central  control  nature.   Grid 
systems  integrate  users  and  resources  at  different 
administrating  domains  and  address  communication, 
security, payment and all services presented before.

● A Grid  system should  use  standard,  open,  general-
purpose  protocols  and  interfaces.  Otherwise  it  is  an 
application  specific  system.  The  Grid  core  middle  ware 
reviewed before must  use standard,  open,  general-purpose 
protocols.

● A Grid system should  deliver nontrivial Qualities of 
Service (QoS).  A Grid coordinates its  resources to deliver 
various  qualities  of  service,  such  as  response  time, 
throughput,  availability,  and/or  co-allocation  to  adapt 
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complex user demands,  so that the utility of the combined 
system is significantly greater than the sum of its parts.

Below are some of the major application classes that are 
enabled by the grid, and for which the grid will be used for 
[34]:

● Distributed  Supercomputing: Uses  the  grid  to 

couple  supercomputers  to  solve  problems that  can  not  be 
solved  on  a  single  supercomputer  such  as  distributed 
interactive simulations.

● High-Throughput  Computing: Uses  the  grid  to 

schedule a large number of loosely coupled or independent 
tasks  on  idle  workstations.  The  nature  of  tasks  led  to 
different  types  of  problems  and  problem  solving 
methodologies  such  as  parametric  studies  and  hard 
cryptographic problems.

● On-Demand Computing: Uses the grid to satisfy the 

short  term  requirements  of  applications  for  a  specific 
resource that can not be available locally in a cost effective 
manner.  This  differs  from  distributed  supercomputing  in 
that it is driven by cost-performance constraints not absolute 
performance.  For  example  computer-enhanced  Magnetic 
Resonance Imaging (MIR) uses supercomputers to achieve 
real-time image processing.
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● Data-intensive  Computing: Uses  the  grid  to 

synthesize new information form data that is maintained in 
geographically distributed repositories, digital libraries, and 
databases. These applications are both computationally and 
communication  intensive.  For  example  future  high-energy 
physical experiments will generate terabytes per day.

● Collaborative  Computing: Uses  the grid  to  enable 

and enhance human-to-human interactions. Applications are 
concerned  with  enabling  the  shared  use  of  computational 
resources such as data archives and simulations.

1.2 Peer to Peer Computing

Peer-to-Peer (P2P) [5] is a new computing paradigm that 
employ  distributed  resources  –  computing  power  (cycles)  , 
data (storage and content), network bandwidth, and presence 
(computers,  human,  and  other  resources)  –  available  at  the 
edge of the Internet to perform a critical function – distributed 
computing,  data/content  sharing,  communication 
collaboration, and so on – in a decentralized manner[11][19]. 
The Grid and P2P technologies are two different  approaches 
for distributed computing that are close to each other and have 
the same ultimate goal of the pooling and coordinated use of 
large sets of distributed resources. The difference is that each 
of these technologies started – aiming to achieve the ultimate 
goal – from different points of interests, this is because of the 
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different  communities,  design requirements,  and applications 
targeted  by  both  technologies.  It  is  expected  for  these 
technologies to converge in the future [33]. The remainder of 
this section briefly reviews P2P and contrasts the differences 
between it and the Grid technologies based on real systems not 
theoretical assumptions and goals.

P2P  started  to  take  enormous  interest  with  the 
appearance  of  Napster  music  sharing  [67].  After  that,  many 
P2P applications and infrastructures appeared such as Gnutilla 
[20],  SETI@home [14],  and  JXTA [48]  among  others.  The 
main design goals of P2P include [19]:

● Cost  sharing/reduction: In  client/server  model  the 

server  that  served  many  clients  was  responsible  for  the 
majority of the system's cost that may grow very large with 
the system. P2P systems share the cost of ownership among 
the  peers.  For  example  file  sharing  systems  divide  the 
storage space needed by the shared files among peers.

● Improved scalability/reliability: The lack of central 

server  helps  improving  system  scalability  and  reliability. 
But  this  requires  new  innovative  algorithms  for  resource 
discovery and search that is a hot topic with many research 
projects.

● Resource  aggregation  and  interoperability: Each 

node in a P2P network provide a small amount of needed 
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resource – such as storage space or processor cycles – that 
must be integrated into a large system to enable applications 
that benefits from huge amounts of these resource to solve 
the larger problems.

● Increased autonomy: This  means  that  all  data  and 

work  of  the  user  of  a  P2P  system  be  performed  locally 
without relaying on any centralized server. 

● Anonymity/privacy: A peer in the network may not 

want  anyone  or  any  service  provider  to  know  about  his 
environment in the system. This is related to autonomy. It is 
difficult  to  keep  anonymity  with  the  existence  of  central 
server because a server may identify its clients with at least 
their IP address. In P2P systems users may avoid having to 
provide any information about themselves to anyone else.

● Dynamism: The computing environment of any P2P 

system  is  highly  dynamic.  With  resources  joining  and 
leaving  dynamically  and  unpredictably.  P2P  applications 
must support this highly dynamic nature.

● Enabling  ad-hoc  communication  and 

collaboration: This is related to dynamism. Ad-hoc refers 

to environments were members come and go based perhaps 
on their current  physical location or current  interests. P2P 
applications must take into account changes in the group of 
participants.
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In  addition  to  these  goals  P2P  system  must  address 
issues  such  as  self  organization,  performance,  security, 
transparency, usability, fault resilience, and interoperability.

P2P targets  resources  on  the  edge of  the  Internet  that 
considered in the past to be dump useless clients but now – 
with the advance in technologies and lower cost – grew to be 
interesting.  Resources  on  the  edge  of  the  Internet  have 
unstable connectivity and unpredictable IP addresses. Because 
resources may connect or disconnect unpredictably and obtain 
IP address dynamically from ISPs. This is completely different 
from Internet servers having stable always on connection with 
fixed IP Address. This means that P2P must operate outside 
the Domain Name Server (DNS) system and have significant 
or  total  autonomy from central  servers.  P2P should  also  be 
able to handle a large number (millions) of resources around 
the Internet owned by anonymous users. On the other hand the 
Grid started as a project to link super computers and expanded 
to  scientific  collaborations.  This  environment  is  more  stable 
with  well  known  moderate  size  (thousands)  resources  with 
high  availability  and  more  professional  administration  than 
P2P and stronger trust relationship between resource owners.

The Grid couples more powerful and diverse resources 
with better connectivity than P2P resources. Grid resources – 
such  as  databases,  scientific  instruments,  clusters,  and 
supercomputers  –  have  in  general  more  value  and  are 
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administrated in a more organized way according to some well 
known policies.  In  contrast  P2P deals  with  nonuniform and 
highly variable  behavior.  The majority  of  P2P resources  are 
normal home computers.

Grid  technologies  are  used  to  solve a  wide  variety  of 
scientific  problems  according  to  the  requirements  of  the 
scientific collaborations sharing their resources. On the other 
hand, P2P systems are more specialized to solve a particular 
specific resource sharing problem such as file sharing. More 
work has been spent in the Grid on infrastructure that provides 
the required basic services presented in the previous sections 
and this infrastructure assumes at least  limited level  of trust 
and did not address the situation of the absence of trust which 
is  the  case  in  P2P  computing  dealing  with  anonymous 
resources.  The Grid infrastructure  is  based on open,  general 
purpose and standard protocols which helps the integration of 
diverse  grid  infrastructure.  In  contrast  each  P2P application 
defines its own protocol that solves a specific problem of that 
application.

According to I. Foster, and A. Iamnitchi it is concluded 
that [33]:

● Both P2P and Grid computing are concerned with the 
same general problem, namely, the organization of resource 
sharing within virtual communities.
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● Both take the same general approach to solving this 
problem.  Namely  the  creation  of  overlay  structures  that 
coexist  with,  but  need not  correspond  in  structure  to,  the 
underlying organizational structures.

● Each has made genuine technical advances, but each 
also  has  crucial  limitations,  which  summarized  as  Grid 
computing  addresses  infrastructure  but  not  yet  failure, 
whereas P2P addresses failure but not yet infrastructure.

● The  complementary  nature  of  the  strengths  and 
weakness of the two approaches suggests that the interests 
of the two communities are likely to grow closer over time.

1.3 Problem Motivation

Grid  computing  is  a  new and  fast  growing  field  that 
came to fill the gap between the increasing need for processing 
power  and available  technologies  [34].  This  new field,  Grid 
computing,  is  considered  as  one  of  the top ten technologies 
that  will  change  the  future  [102].  The  name  came  from an 
analogy to the electrical power grid, to show the ultimate goal 
of  the  Grid  computing  field  which  is  making  access  to 
computational  power  as  easy  as  the  access  to  electricity. 
Security  was  the  heart  of  Grid  computing  from  its  early 
beginnings because designers of its infrastructure knew that it 
will  not  succeed without  efficient  security  and that  securing 
the  Grid  will  be  hard  to  add  later  [37].  The  importance  of 
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security came from the power of this new Grid environment 
that  will  enable seamless access to powerful  resources.  This 
turns the Grid to an attractive target for many attackers who 
may want to misuse the Grid powerful resources.

The Grid computing field is still under research, and so 
are  the  security  mechanisms  that  are  used  to  protect  Grid 
environments.  Both  research  domains,  Grid  computing  and 
Grid security mechanisms, are growing and evolving through 
time which motivates the research. Security mechanisms had 
started  with  simple  password  based  systems  and evolved  to 
Public  Key  Infrastructure  (PKI)  based  systems.  With  many 
requirements and services needed by both networks and Grid 
users,  other  security  mechanisms  had  also  evolved  such  as 
authentication,  authorization,  single  sign  on,  and  encryption 
[37].

Intrusion  detection  is  considered  as  a  second  line  of 
defense  and  it  is  needed  to  detect  attackers  when  first  line 
security mechanisms fail to prevent these attacks. In addition 
intrusion detection provides protection against legitimate users 
of the system that is not possible with security  mechanisms. 
Unfortunately intrusion detection mechanisms have not  been 
addresses yet by researchers in the field of Grid security. This 
motivates  the  research  work  presented  in  this  thesis  and 
encouraged the researcher to also study and get an insight into 
the  problem  of  intrusion  detection  in  Grid  environments  to 
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build a Grid enabled intrusion detection system for the purpose 
of improving the security of future Grids.

1.4 Objectives and Scope of Work

The  main  objective  of  this  thesis  is  to  design  and 
develop a Grid enabled intrusion detection system as a second 
line security mechanism that can prevent Grid resources from 
different attack types.

Based on this main objective the scope of this research 
work can be stated in some directions as follows:

● Study and analyze the current Grid architectures and 
projects  to understand and synthesis  the requirements  and 
constraints  of  this  field  in  order  to  underlying  and 
identifying the capabilities of current security mechanisms.

● Study and comprehend the current intrusion detection 
systems  while  keeping  the  Grid  constraints  in  mind  to 
identify  how  these  intrusion  detection  systems  are 
compatible  with  Grid  environments  and  to  specify  their 
limitations, capabilities, and suitableness.

● Propose  a  Grid  Intrusion  Detection  Architecture 
based  on  the  findings  in  the Grid  and Intrusion  detection 
fields. The proposed architecture should be compatible with 
various  Grid  environments  and  should  comprehensively 
address their needs.
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● Design  and  develop  a  prototype  implementation  of 
the proposed Grid Intrusion detection architecture to prove 
its  applicability  in  grid  environment  and  to  test  its 
performance  in  various  Grid  environments  through 
computer simulation.

● Analyze  the  obtained  experimental  results  from the 
various  experiments  to  check  the  applicability  of  the 
proposed  system  and  to  determine  the  effect  of  different 
parameters on the overall system performance.

1.5 Thesis Organization

This  thesis  has  four  main  parts.  The  first  part  is  a 
literature review of the Grid field. This part includes chapter 1 
and chapter 2. Chapter one presents the literature review of the 
Grid computing field and introduces different Grid computing 
infrastructures  showing  their  components,  services,  layers, 
requirements,  and constraints.  Chapter  two picks four of the 
most  famous current  Grid computing  projects  and illustrates 
them  by  depicting  their  architectures,  basic  components, 
vision, and how they meet the basic Grid requirements.

The second part  presents  security  issues related to the 
Grid  and  intrusion  detection.  Chapter  Three  focuses  on  the 
Grid  security  issues  and  it  depicts  different  Grid  Security 
Infrastructures and identifies their capabilities and limitations. 
It  ends  by  presenting  a  Grid  research  project  between  Ain 
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Shams University in Egypt and George Washington University 
in USA to build  a Grid enabled application.  The aim of the 
application is to help us, through hands on practice, to better 
understand  the  new Grid  environments  specially  its  security 
mechanism. The latest research work in the field of intrusion 
detection  is  introduced  in  chapter  four.  It  presents  different 
approaches and classifications of intrusion detection systems 
and  identifies  the  advantages  and  disadvantages  of  each 
presented approach.

The third part, chapter five, presents the proposed Grid 
Intrusion Detection Architecture and its different modules that 
are based on the survey of the previous chapters. The proposed 
architecture  was  designed  with  almost  all  the  Grid 
characteristics and requirements in mind to make it compatible 
with  Grid  environments.  The  components  of  the  proposed 
system and their functionalities and features are illustrated in 
this chapter.

The forth part includes chapter six and seven. Chapter 
six presents  an implementation of the proposed architecture. 
The  presented  implementation  is  based  on  homogeneous 
intrusion  detection  servers  that  employ  neural  networks 
techniques  using  the  Learning  Vector  Quantization  (LVQ) 
neural  network.  The  Grid  environment  was  simulated  to 
facilitate  testing  in  different  environments  with  different 
characteristics. A computer simulator was developed to enable 
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the testing of different  security related issues. Chapter seven 
examines  the  experimental  results  obtained  from  various 
simulated  experiments  of  different  Grid  environments.  It 
presents  the  effect  of  different  parameters  on  the  conducted 
experiments  against  the proposed GIDA performance.  These 
results  provided  a  deep  insight  on  better  understanding  the 
problem  of  intrusion  detection  in  Grid  environments  by 
underlying  the  conditions  affecting  their  performance. 
Moreover, the obtained results may be exploited in designing 
more  enhanced  and  fine  tuned  future  intrusion  detection 
systems.

The  final  conclusion  of  this  research  is  presented  in 
Chapter  eight  along  with  possible  future  directions  and 
expansions of the presented research.

25



 
C

h
ap

te
r

 2

Analysis of some 

Grid Architectures

2.1 Globus
2.2 Legion
2.3 UNICORE
2.4 GridBus
2.5 Conclusions



Chapter 2: Analysis of some Grid Architectures

Chapter 2: Analysis of some Grid 

Architectures

This  chapter  introduces  four  of  the  Grid  projects, 
namely,  Globus,  GridBus,  Legion,  and UNICORE. Showing 
their architectures, basic components, and how they meet the 
basic Grid requirements presented in Chapter 1.

2.1 Globus

The Globus project [93] is a US R&D project aiming to 
put standards  for  the  Grid  infrastructure  and to  develop  the 
open source Globus ToolKit that facilitates the construction of 
Grids and Grid applications.

The Globus ToolKit is used by many Grid Communities 
as  a  technology  base  [35].  It  is  a  community  based,  open 
architecture, open source set of services and software libraries 
that support Grid and Grid applications [32]. It is packaged as 
a set of components that can be used either independently or 
together  to  develop  Grid  enabled  applications.  These 
components  provide  the  basic  services  needed  by  Grid 
applications and can be grouped into four basic categories  – 
resource management, information services, data management, 

and security – as shown in  Figure 1.2. The ToolKit adopts a 

layered  architecture,  as  shown  in  Figure  1.3, and  for  each 
component  it  defines  the  needed  protocols  and  application 
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programming interfaces (APIs).  It allows sharing of resources 
– computing power, scientific instruments,  databases, and so 
on – across corporate, institutional and geographic boundaries 
seamlessly while keeping local autonomy. The Globus ToolKit 

components, as shown in Figure 2.1, are:

● Resource  Management: This  main  component  is 

responsible  for  providing  services  for  resource  allocation, 
job  submission  and  monitoring,  and  result  gathering.  It 
consists of two components:

− Globus Resource Allocation Manager (GRAM): 

GRAM  [50]  is  responsible  for  remote  execution  and 
status  reporting.  A user  can execute a job on a remote 
host by contacting the gatekeeper – a GRAM component 
– on that host. The gatekeeper will mutually authenticate 
with the user  – the UP acting on his behalf – and then 
checks  the  Grid  map  file  –  a  file  containing  mapping 
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between global user name and local account or ID – to 
see if the user is authorized to use the resource. If the user 
is  authenticated  and  authorized  the  gatekeeper  receives 
the job details through the Globus Resource Specification 
Language  (RSL)  and  then  starts  a  job  monitor  that 
initiates and monitor the job execution.

− Globus  Access  to  Secondary  Storage  (GASS): 

GASS [42] is used for accessing remote files. It is used 
for staging-in executables and input files before starting 
the  job  and  retrieving  outputs  after  finishing  the  job. 
GASS can also  be  used  for  redirecting  standard  output 
and standard error streams of a job. GASS is GSI enabled 
and uses  Secure Hyper Text Transfer Protocol (SHTTP) 
based streams.

● Information  Services: This  main  component  is 

responsible  for  delivering  static  and  dynamic  information 
about  the available  resources.  In the Globus  ToolKit  they 
are  called  the  Monitoring  and  Discovery  Service  (MDS) 
[51]. The information is represented as a hierarchy of entries 
with  zero  or  more  attribute-value  pairs  based  on  the 
Lightweight Directory Access Protocol (LDAP) [84]. MDS 
has three-tier structure:

− The Information Providers (IP): They are at the 

bottom of the structure. Each resource should have one or 
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more  information  provider  that  is  responsible  for 
gathering data about a specific system attribute or status. 
There are standard information providers with the Globus 
ToolKit that provide generic information such as the CPU 
type, memory size, free disk space, and operating system. 
The resource  administrators  could implement  their  own 
information provider  to gather any needed properties of 
the resource. After gathering the needed data it should be 
converted  into  standard  format  (LDAP)  and  then 
published  into  the  GRIS  described  below  to  make  it 
available to every one.

− The Grid Resource Information Service (GRIS): 

There  could  be  multiple  information  providers  on  each 
resource but only one GRIS. The GRID receives the data 
published by the information providers  and responds to 
queries  about the resource attributes.  For dynamic data, 
the  GRIS  updates  its  database  based  on  a  time-to-live 
value by querying the relevant information provider.

− The  Grid  Information  Index  Service  (GIIS): 

They  are  at  the  top  of  the  structure.  A  GIIS  receives 
resource  information  from  other  GRISs  and  GIISs 
registered  with  them.  The  GIIS  indexes  the  received 
aggregated information about the resources and facilitates 
efficient searches for multiple resources by querying one 
GIIS.
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● Data  Management: Innovative  scientific 

applications demand efficient access to large data sets that 
are growing in size and sometimes in distribution. The data 
management  components  are  responsible  for  providing 
utilities and libraries for transmitting, storing and managing 
massive  data  sets  efficiently  and  securely.  In  the  Globus 
ToolKit  there  are  two  main  components  for  data 
management [7]:

− GridFTP: This  component  is  a  GSI-enabled, 

efficient,  and  reliable  data  movement  extension  of  the 
standard  FTP  protocol.  GridFTP  supports  third-party 
control  of  transfer,  parallel  transfer,  striped  transfer, 
partial  file  transfer,  automatic  negotiation  of  TCP 
buffer/window  sizes,  and  support  for  reliable  and 
resumable transfer.

− Replica  Location  and  Management: This 

component  is  responsible  for  managing  complete  and 
partial copies of data sets. This is done by registering files 
and their copies in a Replica Catalog. A file is identified 
by its  Logical  File  Name (LFN) that  is  mapped to  real 
names at different locations of the file. Replica Location 
Service  (RLS)  is  used  to  registering  files  and  then 
creating and deleting its replicas. 

● Security: The Globus  ToolKit  implements  the Grid 
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Security Infrastructure (GSI) presented in the next chapter. 
This  component  provides  services for  authenticating users 
and resources, single sign on, and delegation among others. 
It  is  based on standards  such as the Secure Socket  Layer 
(SSL),  Public  Key  Infrastructure  (PKI),  and  the  X.509 
standard for encoding certificates.

The  Globus  Project  also  tries  to  define  new  Grid 
standards  through  the  Open  Grid  Services  Architecture 
(OGSA) [38] framework. The OGSA look at the Grid from a 
service  point  of  view.  A  service  is  defined  as  a  network-
enabled entity providing some capability needed by the Grid 
such as computational resource, storage resource, security and 
so on. OGSA is based on Web Services (WS) and eXtensible 
Markup  Language  (XML)  standards  such  as  Simple  Object 
Access  Protocol  (SOAP),  Web Service  Definition  Language 
(WSDL), and WS-Inspection. The OGSA was presented at the 
Global Grid Forum (GGF) on 2002 [24] which has set up an 
Open  Grid  Services  working  group  to  review,  refine,  and 
document the Grid service architecture.

2.2 Legion

Legion  [95]  [1]  is  an  object-based  meta-systems 
software  project  started  in  late  1993  at  the  University  of 
Virginia.  Legion  provide  its  users,  working  from  their 
workstations,  the  illusion  of  a  single  virtual  computer  by 

32



Chapter 2: Analysis of some Grid Architectures

combining  different  resources  such  as  digital  libraries, 
physical  simulations,  cameras,  linear  accelerators,  and video 
streams.  It  also  supports  user  groups  and  collaborations 
through  the  construction  of  shared  work  spaces.  All 
complexities are hidden from the users by Legion's transparent 
scheduling, data management, fault tolerance, site autonomy, 
and a wide range of security options.

Legion  is  an  open  and  flexible  system  that  can  be 
adapted  to  new and changing  users  needs.  It  is  designed to 
encourage  third  party  development  of  new  or  updated 
applications,  run-time  library  implementations,  and  core 

components. As shown in Figure 2.2 Legion is a middle ware 
that sets on top of the user's resources and operating systems. 
It can protect its own resources against other Legion users, so 
that  administrators  can  choose  appropriate  policies  for  who 
uses  which  resources  under  what  circumstances.  To  allow 
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users to take advantage of a wide range of possible resources, 

Legion offers a user-controlled naming system called  context  

space,  so  that  users  can easily  create  and use objects  in  far 
flung  systems.  Users  can  also  run  applications  written  in 
multiple  languages,  since  Legion  supports  interoperability 
between  objects  written  in  multiple  languages.  The  Legion 
philosophy can be summarized in the following points:

● Everything is an object: Each hardware or software 

resource  accessible  through  the  Legion  Grid  will  be 
represented  by  a  Legion  object.  A  Legion  objects  is  an 
active process that has member functions invocable by other 
Legion  objects.  Legion  defines  the  message  format  and 
high-level  protocol  for  object  interaction,  but  not  the 
programming language or the communications protocol.

● Classes manage their instances: A class object is an 

active Legion object that define and manage other Legion 
objects. Class objects are managers and policy makers that 
are given system-level responsibilities such as creating new 
instances, schedule their execution,  activate and deactivate 
them, and provide information about their current location 
to  client  objects  that  wish  to  communicate  with  them. 
Classes  whose  instances  are  themselves  classes  are  called 

metaclasses.

● Users  can  provide  their  own  classes: Users  are 
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allowed to define and build their own class objects and even 
change  the  system-level  mechanisms  that  support  their 
objects.  Legion  1.4  (and  future  Legion  systems)  contains 
default  implementations  of  several  useful  types of  classes 
and  metaclasses.  Users  are  not  forced  to  use  these 
implementations  if  they  do  not  meet  their  performance, 
security, or functionality requirements.

● Core objects implement common services: Legion 

defines the interface and basic functionality of a set of core 
object  types  that  support  basic  system  services,  such  as 
naming  and  binding,  object  creation,  activation, 
deactivation, and deletion. Core Legion objects provide the 
mechanisms  that  classes  use  to  implement  policies 
appropriate  for  their  instances.  Examples  of  core  objects 
include  hosts,  vaults,  contexts,  binding  agents,  and 
implementations.

Legion objects are independent, logically address-space-
disjoint active objects that communicate with one another via 
non-blocking method calls that may be accepted in any order 
by  the  called  object.  Each  method  has  a  signature  that 
describes  the  parameters  and  return  value,  if  any,  of  the 
method. The complete set of method signatures for an object 
fully describes that object's interface, which is determined by 
its  class.  Legion  class  interfaces  can  be  described  in  an 
Interface Description  Language (IDL),  several  of  which will 
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be supported by Legion.

Legion implements a three-level naming system. At the 
highest  level,  users  refer  to  objects  using  human-readable 
strings,  called  context  names.  Context  objects  map  context 
names  to  Legion  Object  IDentifiers  (LOIDs),  which  are 
location-independent  identifiers  that  include  an  RSA public 
key.  Since  they  are  location  independent,  LOIDs  by 
themselves  are  insufficient  for  communication;  therefore,  an 
Object Identifier (OID) is mapped to a Legion Object Address 
(LOA) for communication. A LOA is a physical address (or set 
of addresses in the case of a replicated object) that contains 
sufficient information to allow other  objects to communicate 
with the object (e.g., an <IP address, port number> pair).

Legion will contain too many objects to simultaneously 
represent  all  of  them as active processes.  Therefore,  Legion 
requires  a  strategy  for  maintaining  and  managing  the 
representations  of  these  objects  on  persistent  storage.  A 
Legion object can be in one of two different states, active or 
inert.  An inert  object  is  represented  by  an  Object  Persistent 
Representation (OPR), which is a set of associated bytes that 
exists in stable storage somewhere in the Legion system. The 
OPR contains state information that enables the object to move 
to an active state.  An active object  runs as a process that  is 
ready  to  accept  member  function  invocations;  an  active 
object's state is typically maintained in the address space of the 
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process (although this is not strictly necessary). 

Several  core  object  types,  as  shown  in  Figure  2.3, 

implement the basic system-level mechanisms required by all 
Legion objects. Like classes and metaclasses, core objects are 
replaceable  system  components;  users  (and  in  some  cases 
resource controllers) can select or implement appropriate core 
objects.

● Host  objects: Host  objects  represent  processors  in 

Legion.  One or  more host  objects  run on each computing 
resource that is included in Legion. Host objects create and 
manage processes for active Legion objects. Classes invoke 
the member  functions  on host  objects  in  order  to  activate 
instances  on  the  computing  resources  that  the  hosts 
represent.  Representing  computing  resources  with  Legion 
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objects abstracts the heterogeneity that results from different 
operating systems having different mechanisms for creating 
processes.  Further,  it  provides  resource  owners  with  the 
ability to manage and control their resources as they see fit.

● Vault  objects: Just  as  a  host  object  represents 

computing resources and maintains active Legion objects, a 
vault  object  represents  persistent  storage,  but  only for  the 
purpose  of  maintaining  the  state,  in  OPRs,  of  the  inert 
Legion objects that the vault object supports.

● Context objects: Context objects map context names 

to  LOIDs,  allowing  users  to  name  objects  with  arbitrary 
high-level string names, and enabling multiple disjoint name 
spaces  to  exist  within  Legion.  All  objects  have  a  current 
context and a root context, which define parts of the name 
space in which context names are evaluated.

● Binding agents: Binding agents  are  Legion  objects 

that map LOIDs to LOAs. A <LOID, LOA> pair is called a 
binding.  Binding  agents  can  cache  bindings  and  organize 
themselves in hierarchies and software combining trees, in 
order to implement the binding mechanism in a scalable and 
efficient manner.

● Implementation  objects: Implementation  objects 

allow other Legion objects to run as processes in the system. 
An implementation object typically contains machine code 
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that  is  executed  when  a  request  to  create  or  activate  an 
object is made; more specifically, an implementation object 
is  generally  maintained  as  an  executable  file  that  a  host 
object can execute when it receives a request to activate or 
create an object. An implementation object (or the name of 
an implementation object) is transferred from a class object 
to a host object to enable the host to create processes with 
the appropriate characteristics.

2.3 UNICORE

The UNICORE [96][40] project – UNiform Interface to 
COmputer REsource – is funded by the German Ministry of 
Education and Research. Its goal is to provide seamless, secure 
and  intuitive  access  to  distributed  computing  resources, 
applications and data. It is a vertically integrated Java based 
Grid computing environment. It provides the users with easy 
to use graphical user interface to create, submit, monitor, and 
control jobs. To achieve its goal UNICORE has to [18]:

● Hide  the  heterogeneity  resulting  from  different 
hardware  architectures,  vendor  specific  operating systems, 
incompatible  batch  systems,  different  application 
environments, historically grown computer center practices, 
naming  conventions,  file  system  structures,  and  security 
policies. 

● Build  security  into  the  UNICORE design  from  the 
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start. Security is based on the emerging X.509 standard for 
certificates  authenticating servers,  software,  and users  and 
encrypting the communication over the Internet.

● Be usable by scientists and engineers without having 
to study vendor or site specific documentation. A Graphical 
User  Interface  (GUI)  was  developed  to  assist  the  user  in 
creating  and  managing  complex  jobs  and  to  integrate 
important  applications.  UNICORE  was  designed  to  be 
adapted  to  existing  proven  practices  at  the  participating 
centers.

● The  administrative  autonomy  of  participating  sites 
had to be retained, including the decision of who may use 
the resources.

UNICORE has developed a rich set of core functions. 
These  functions  allow users  to  create  and  manage  complex 
batch  jobs  that  can  be  executed  on  different  systems  at 
different  sites.  All  complexities  are  hidden  by  UNICORE. 
These core functions are [18]:

● Job creation and submission: The user  can  create 

complex  and  interdependent  jobs  using  a  graphical 
interface. These jobs can be executed on any UNICORE site 
without  changes  to  the  job  definitions.  A  UNICORE job 
consists of a group of jobs and is represented by an Abstract 
Job Object (AJO) which is submitted to a user selected site 
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for  execution.  UNICORE  ensures  that  a  successor  is 
executed  only  if  all  predecessors  have  completed 
successfully and all necessary data sets are available at the 
target system.

● Job  Management: The  job  management  system 

gives the user  full  control  over  jobs and data  through the 
graphical  user  interface.  Also  detailed  log  information  is 
available to analyze error conditions. The job output that is 
written to standard output stream (stdout) and standard error 
stream (stderr) by the execution systems can be reviewed or 
transferred to the client workstation. Jobs may be terminated 
and removed from the UNICORE grid by the user.

● Data management: Each job group has a temporary 

UNICORE space (Uspace) for storing needed files. During 
job  creation  the  user  specifies  which  data  sets  are  to  be 
imported into or exported from the Uspace or transferred to 
a different Uspace. UNICORE performs the necessary data 
movement at run time without user intervention.

● Application  support: UNICORE  supports  the 

creation of custom plugins to provide GUI to scientific and 
engineering  application  packages  without  a graphical  user 
interface.

● Flow control: The job model can be described as a 

set of one or more Directed Acyclic Graphs (DAGs).
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● Meta-computing: UNICORE  is  extended  to  the 

simultaneous use of two or more systems by one application 
through  its  support  for  Message  Passing  Interface  (MPI) 
libraries.  But  UNICORE  do  not  attempt  to  co-schedule 
systems because most of available resources do not support 
advanced  reservation  which  is  a  prerequisite  for  co-
scheduling.

● Single  sign-on: Single  sign-on  is  provided  through 

the X.509V3 certificates that are mapped to local account at 
each UNICORE side. The site has full control on weather or 
not to grant access to the user based on his unique identifier 
- global name - or information in his certificate.

● Support  for  legacy  jobs: Traditional  batch 

processing is supported by allowing users  to include their 
old job scripts as part of a UNICORE job. This will simplify 
migration  but  on  the  other  hand  does  not  guarantee 
seamlessness.

● Resource  management: At  the  time  of  the  job 

submission,  UNICORE users  have  information  about  the 
currently valid resources. So the users can select the target 
system and specify the required resources. The UNICORE 
client is in a position to verify the formal correctness of jobs 
with  respect  to  resources  and alert  users  to  correct  errors 
immediately.
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The UNICORE architecture is shown in Figure 2.4. It is 
a three-tier model consisting of the UNICORE client running 
on the users PC, The UNICORE Grid site(s) (Usite) defined by 
each  participating  computer  center  at  the  top  level  that  the 
clients connect to, and finally each Usite is organized as one or 
more  Virtual  sites  (or  Vsites)  which  can  represent  the 
execution and/or storage systems at the computer centers. The 

architecture shown in Figure 2.4 is an example of a UNICORE 
system consisting of two Usites with a total of three Vsites.

The UNICORE client is a Java application that the user 
uses  to  connect  to  a  Usite  gateway.  A  list  of  available 
UNICORE Gateways can be found as an XML document at 
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www.unicore.de or configured by the user. The user certificate 
is  needed  to  authenticate  with  the  gateway  and  to  sign  the 
submitted  jobs.  The  jobs  are  created  at  the  Job  Preparation 
Agent  (JPA) part  of  the Client.  The Job Monitor  Controller 
(JMC)  part  of  the  Client  is  used  to  monitor  the  status  and 
results  of the running jobs.  The jobs,  status requests,  or  the 
results are formulated in an abstract form using the Abstract 
Job Object (AJO) Java classes.

The UNICORE Gateway  provides  an  Internet  address 
and a port accessible from the outside for SSL connections. It 
is  a single  entry  point  for  all  UNICORE connections  into  a 
Usite.  A  Gateway  can  be  installed  inside  or  outside  of  a 
firewall depending on the site's security requirements.

The  UNICORE  Vsite  consists  of  the  Network  Job 
Supervisor  (NJS)  and  a  Target  System Interface  (TSI).  The 
NJS Server manages all submitted UNICORE jobs. It uses the 
UNICORE User Data Base (UUDB) to authenticate the user by 
looking for a mapping of the user certificate to a valid login. 
The NJS incarnates jobs from the abstract AJO definition into 
the appropriate concrete command sequence for a given target 
execution system, and hands the incarnated tasks and jobs over 
to the TSI. The incarnation is based on the specifications in the 
Incarnation  Data  Base  (IDB).  The  NJS  also  checks  the 
dependencies  between  job  components,  schedule  the 
components  accordingly,  stores  all  job  status  and  result 
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information, and replies to status and result requests from the 
client. In case of sub-jobs which are specified to run on a Vsite 
at  a  different  Usite,  the  NJS takes  the  role  of  a  Client  and 
submits the sub-job to the remote Gateway.

The UNICORE Target  System Interface  (TSI)  accepts 
incarnated job components from the NJS, and passes them to 
the local batch systems for execution. In addition, file import 
and  export  tasks  are  handled  by  the  TSI.  Moreover  it 
implements  low  level  status  reporting  and  control  of  batch 
jobs.

2.4 GridBus

The GridBus project [94][74] is an open source software 
toolkit that extensively leverages related software technologies 
and  provides  an  abstraction  layer  to  hide  idiosyncrasies  of 
heterogeneous  resources  and  low-level  middleware 
technologies  from  application  developers.  It  focuses  on 
realization  of  utility  computing  and  market-oriented 
computing models scaling from clusters to grids and to peer-
to-peer  computing  systems.  The  research  and  innovation 
project is led by the University of Melbourne GRIDS Lab with 
support from the Australian Research Council.

The idea of a computational economy helps in creating a 
service-oriented  computing  architecture  where  service 
providers  offer  paid  services  associated  with  a  particular 
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application  and  users,  based  on  their  requirements.  These 
requirements will be optimized by selecting the services they 
require  and  can  afford  within  their  budget.  Gridbus 
emphasizes  the  end-to-end  quality  of  services  driven  by 
computational  economy at  various  levels  – clusters,  peer-to-
peer (P2P) networks,  and the Grid – for the management of 
distributed computational, data, and application services.

The  layered  architecture  depicting  the  GridBus 
components  in  conjunction  with  other  middleware 
technologies  – Globus and Unicore that  have been reviewed 
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before and Alchemi – is shown in Figure 2.5. Items in shaded 
boxes  are  pursued by the Gridbus  project.  Gridbus  provides 
software  technologies  that  spread  across  the  following 
categories [75]:

● Visual  Parameter  Sweep  Application  Composer: 

This is a Java based Integrated Development Environment 
(IDE)  for  rapid  creation  of  parameter  sweep  (data 
parallel/SPMD)  applications.  It  also  allows  the  rapid 
creation  and manipulation  of  the parameters.  While  being 
flexible, it is also simple enough for a non-expert to create a 
parameter script, known as a plan file, within minutes. The 
composed parameter sweep applications can be deployed on 
global Grids using the Gridbus resource broker.

● G-Monitor: This  is  a  web  portal  for  initiating, 

monitoring  and  steering  application  execution  on  global 
grids.  It  uses  services  provided  by  Grid  Service  Brokers 
(GSBs)  such as  Nimrod-G and Gridbus  Broker  to  deploy 
applications. It allows users to manage their Grid credentials 
and provides secure access to remote hosts running brokers. 
The users can either upload applications and data at runtime 
or select from those already available on the broker host. G-
Monitor provides an easy to use interface for the end-user to 
monitor  and  control  jobs  running  within  the  Grid 
environment.
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● Gridbus  Grid  Service  Broker: This  component 

makes scheduling decisions on where to place the jobs on 
the  Grid  depending  on  the  computational  resources 
characteristics (such as availability, capability, and cost), the 
users  QoS requirements  such as  the  deadline  and budget, 
and the proximity of the required data or its replicas to the 
computational resources. It also has the capability to locate 
and retrieve  the  required  data  from multiple  data  sources 
and  to  redirect  the  output  to  storage  where  it  can  be 
retrieved  by  processes  downstream.  It  has  the  ability  to 
select the best data repositories from multiple sites based on 
availability of files and quality of data transfer.

● Grid Market Directory (GMD): serves as a registry 

for  high-level  service publication and discovery  in virtual 
organizations.  It  enables  service  providers  to  publish  the 
services which they provide along with the costs associated 
with  those  services.  Consumers  browse  GMD  to  find 
services  that  meet  their  requirements.  GMD is  built  over 
standard Web service technologies such as SOAP and XML. 
Therefore, it can be queried by other programs. To provide 
with an additional  layer  of  transparency,  a client  API has 
been provided that could be used by programs to query the 
GMD without the developers having to concern themselves 
with SOAP details. The Gridbus scheduler interacts with the 
GMD to discover the testbed resources and their high-level 
attributes such as access price.

48



Chapter 2: Analysis of some Grid Architectures

● GridBank: This  is  a  secure  Grid-wide  accounting 

and (micro) payment handling system. It maintains the users 
(consumers  and  providers)  accounts  and  resource  usage 
records  in  a  database.  GridBank  supports  protocols  that 
enable  its  interaction  with  the  resource  brokers  of  Grid 
Service Consumers (GSCs) and the resource traders of Grid 
Service Providers (GSPs). It has been primarily designed to 
provide services for  enabling a Grid computing economy; 
however, it can be used in e-commerce applications as well. 
The GridBank services can be used in both co-operative and 
competitive distributed computing environments.

● Gridscape: It is a tool that enables the rapid creation 

of  interactive  and  dynamic  testbed  portals  without  any 
programming effort. Gridscape primarily aims to provide a 
solution for those users who need to be able to create a grid 
testbed  portal  but  do  not  necessarily  have  the  time  or 
resources to build a system of their own from scratch.

● Alchemi: It  is  a  .NET-based  grid  computing 

framework  that  provides  the  runtime  machinery  and 
programming  environment  required  to  construct  desktop 
grids  and  develop  grid  applications.  It  allows  flexible 
application  composition  by  supporting  an  object-oriented 
grid  application programming model  in addition to a grid 
job  model.  Cross-platform support  is  provided  via  a  web 
services  interface  and  a  flexible  execution  model  that 

49



Chapter 2: Analysis of some Grid Architectures

supports dedicated and non-dedicated (voluntary) execution 
by grid nodes. Because grid computing software has been 
primarily written for Unix-class operating systems, Alchemi 
will  enable  the  effective  utilization  of  the  computing 
resources  of  the  vast  majority  of  desktop  computers  i.e. 
those running variants of the Microsoft Windows operating 
system.

● Libra: It  is  a  cluster  scheduling  system  that 

guarantees a certain share of the system resources to a user 
job such that the job is completed by the deadline specified 
by the user provided he has the requisite budget for it. Jobs 
whose  output  is  required  immediately  require  a  higher 
budget than those with a more relaxed deadline. Thus, Libra 
delivers utility value to the cluster users and increases their 
satisfaction  by  creating  realistic  expectations  for  the  job 
turnaround times.

● GridSim: This  toolkit  provides  facilities  for  the 

modeling  and  simulation  of  resources  and  network 
connectivity  with different  capabilities,  configurations  and 
domains. It supports primitives for application composition, 
information  services  for  resource  discovery  and interfaces 
for  assigning application tasks to  resources  and managing 
their execution. It also provides a visual modeler interface 
for creating users and resources. These features can be used 
to simulate parallel and distributed scheduling systems such 
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as  resource  brokers  or  Grid  schedulers  for  evaluating 
performance of scheduling algorithms or heuristics.

2.5 Conclusion

As  described  in  this  chapter,  the  need  for  Grid 
computing  infrastructures  is  becoming  one  of  the  main 
research  areas  in  the  field  of  parallel  and  distributed 
computing.  Different  Grid  projects  adopted  different 
approaches  to achieve their  ultimate goal  of  creating a Grid 
infrastructure.  Their  implementations  varied  to  span  a  wide 
variety including toolkits providing a bag of services that the 
user  can  select  from,  object  oriented  approaches  to  Grid 
design,  Java  based  Grids  for  portability,  and  computational 
economy Grids.

In spite of the variance between the implementations of 
these  projects,  they  share  the  same  characteristics  and 
requirements  of  any  Grid  environment  as  presented  in  the 
previous  chapter.  Also  all  the  analyzed  projects  included 
security as a core component of its architecture. These projects 
concentrated,  at  this  early  stage  of  Grid evolution,  on  basic 
security requirements and ignored the importance of intrusion 
detection as a second layer of security.  This fact motivated us 
to design and implement an intrusion detection architecture for 
Grid security.
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Chapter 3: The Grid Security Infrastructure

This  chapter  presents  and  analyzes  the  Grid  security 
infrastructure  that  is  implemented  in  various  Grid 
environments. Then it presents a research project implemented 
using  one  of  the  Grid  environments  that  uses  the  presented 
security  infrastructure.  This research project  helped in better 
understanding  of  the  Grid  environment  and  security  related 
issues.

3.1 Security Infrastructure

Security is important to all computer systems to enable 
administration and policy enforcement. These policies control 
the users of the system by specifying which user can access the 
system, what operation is allowed by each user, and protects 
the system of being compromised or misused. This is mapped 
to  the  basic  security  requirements  of  any  system which  are 
authentication,  authorization  (access  control),  integrity, 
privacy,  and  non  repudiation  [103]. Implementing  security 
mechanisms  in  the  Grid  is  important  to  protect  the  large 
number of resources and users. The problem in implementing 
such security mechanisms in the Grid is that grid application 
may require access to multiple computational and data sources 
that  may  be  geographically  distributed  and  administrated 
locally  and  independently.  Grid  applications  may  involve 
hundreds of processes running on different resources and need 
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to  authenticate  and  communicate  with  each  other  securely. 
These  processes  and  resources  may  also  join  or  leave 
dynamically  which  makes  it  impossible  to  initialize  the 
security relationship between them at the application startup.

All these problems complicate the implementation of a 
Grid  security  system  and  add  new  security  problems  not 
addresses by existing distributed security mechanisms such as 
Kerberos  and  the  secure  shell  [73].  Also  the  special  Grid 
characteristics  and  the  different  application  scenarios  have 
added  –  in  addition  to  the  normal  security  requirements  – 
special requirements including [37]:

● Single sign-on: Grid applications may take days and 

require  accessing  and  authentication  with  multiple 
resources.  The user  must  only  be required  to  authenticate 
once  at  the  beginning  of  the  application  and  then  the 
application  should  continue  acquiring  and  releasing 
resources seamlessly without further user intervention.

● Protection  of  credentials: A  user  credential  is  a 

piece of information – such as passwords or private keys – 
that is used to prove his identity during the authentication 
process. It is required that the user credential be protected to 
ensure security.

● Interoperability with local security solutions: Grid 

resources are administrated locally and independently, so it 
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is impossible to require the replacement of existing security 
mechanisms at  each site.  The Grid security  provides  only 
interdomain security and must cooperate rather than replace 
existing security mechanisms. The access to a resource will 
be determined by its local security policy and mechanisms.

● Exportability: Laws  that  govern  the  export  of 

encryption  technologies  are  complex,  dynamic,  and varies 
from  country  to  country.  Because  the  Grid  may  span 
multiple countries, security mechanisms are required to be 
exportable by avoiding the need of using bulk encryption.

● Uniform credentials/certification infrastructure: A 

common  way  for  expressing  identity  is  required  for 
interdomain access. So it is recommended to use standards 
to encode the credentials of users and resources.

● Support for secure group communication: A Grid 

application may consist of many processes working together 
to solve a problem. These processes need to communicate 
and coordinate with each other as a group in a secure way 
not simply as in client server applications.

● Support  for  multiple  implementations: The  Grid 

security  policy  should  not  require  special  implementation 
technology.  It  should  be  possible  to  implement  it  with 
various security technologies.
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A  Grid  Security  Infrastructure  (GSI)  was  first 
introduced by foster, et.al. in 2001 [37] it addressed the special 

grid  requirements.  This  architecture  is  shown in  Figure  3.1 

and  briefly  described  below  showing  how  it  satisfies  the 
requirements of the Grid.

The GSI concentrates on two main issues. The first one 
is to provide an authentication mechanism between users, user 
processes,  and  resources.  This  authentication  will  enable 
different local security policies to be integrated into a single 
global  framework.  The  second  issue  is  to  enable  the 
application  of  local  access  control  mechanisms  without 
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changing them. The infrastructure consists of four protocols, 
the User Proxy (UP), and the Resource Proxy (RP).

The UP is a process that acts on behalf of the user for a 
limited time to manage a computation session. The purpose of 
the  UP is  to  enable  single  sign-on.  The UP is  created  first 

through protocol 1 as shown in Figure 3.1. The user first gains 
access to the machine on which the UP will be created using 
local  access  control  mechanisms.  Then  the  user  uses  his 

credential  (CU)  to  create  temporary  credential  (CUP).  Finally 

the UP process is created and given its temporary credentials 

(CUP) that will be used for further authentications and acting 

on behalf of the user.

The  temporary  credentials  consist  of  a  tuple  – 
containing  various  information  such  as  the  valid  interval  of 
this credential, authorized actions, user ID, and so on – signed 
by  the  user  credentials.  It  was  possible  to  give  the  user 
credentials to the UP to enable single sign-on which is very 
simple  solution.  Alternatively,  temporary  credentials  were 
used for two reasons:

● To protect  the user  credentials.   Because giving the 
user credentials to the UP and then to processes acting on 
behalf  of  the  user  increases  the  probability  of  user 
credentials being hacked and misused.

● To  control  the  UP  and  the  user  processes  by 
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delegating a subset of the user rights – the signed tuple – to 
these  processes  through  the  temporary  credentials  and  so 
reducing security risks.

After  the  UP  is  created,  the  user  can  leave  the 

computation  –  indicated  by  the  curved  line  in  Figure  3.1  

separating the user from the rest of the GSI – leaving the UP 
handle the required operation on the user behalf.

Interoperability with local security solutions is achieved 
through  the  RP  that  acts  as  an  agent  translating  between 
interdomain  security  operations  and  local  intradomain 
mechanisms.  The UP contacts  the RP through protocol  2 as 

shown in Figure 3.1 to allocate the resource. First the UP and 
the RP authenticate  with each other  (mutual  authentication). 
Then the UP sends a signed request to the RP. The RP checks 
if  this  user  is  allowed  –  according  to  local  security 
mechanisms – to access the resource. If the user is authorized 
the user and resource proxies negotiate together to create the 

process(es) temporary credential (CP). Finally the RP allocates 

the resource and passes (CP) to the newly created process(es).

The process credential (CP) facilitates the secure group 

communication by enabling the authentication between the UP 
and  the  processes  and  between  the  processes  themselves  if 
they exist  in  different  domains.  It  also enables  a process  to 
acquire  more  resources  by  using  protocol  3,  as  shown  in 
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Figure 3.1, in which it first mutually authenticate with the UP. 
Then it passes a signed request to the UP that – after accepting 
the request  – allocates the resource through Protocol 2. This 
technique may not be scalable because of the dependence on a 
single UP but the advantage is its simplicity and fine grained 
control over resource allocation by the processes.

Each user in the Grid has a unique global name and a 
permanent  credential  that  verify  this  identity.  However,  in 
most cases the same user will be known by a different local 
name at each administrative domain. The RP maps this global 
name to a local  name which is  known by the local  security 
mechanisms  which  translates  between  interdomain  and 
intradomain  security  mechanisms.  This  mapping is  simply  a 
table  containing  the  global  name and the  local  name of  the 
user.  This  table  may  be  manually  created  and  filled  by  the 
local  administrator  of  the  domain  or  filled  automatically 

through Protocol 4 as shown in Figure 3.1.  In this protocol the 
UP mutually authenticate with the RP and then send to it the 
local  and  global  name.  Then  the  user  must  login  to  the 
resource  using  its  local  mechanisms  and  starts  a  map 
registration process which will also pass the global and local 
names to the RP. Finally the RP validates the passed values, 
and if they match, it  adds the global and local names to the 
map table.

This infrastructure relies on authentication and signature 
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verification techniques and does not require encryption. It does 
not dependent on any specific security mechanisms and can be 
implemented  by  multiple  techniques.  Standards  such  as 
X.509v3  may  be  used  to  encode  credentials  to  support  the 
uniform credentials/certification infrastructure requirement.

3.2 Evaluation of the Current Grid Security  

Infrastructure

One  of  the  currently  existing  Grid  Security 

Infrastructures was presented in previous section. The current 
implementation  of  this  infrastructure  in  the  Globus  ToolKit 
[93]  is  based  on  the  Public  Key  Infrastructure  (PKI)  [60]. 
Although  it  is  an  open  architecture  and  could  have  been 
implemented  using  other  approaches  such  as  plain  text 
passwords  or  Kerberos  [8]  among  others  [37].  This 
infrastructure  focuses  on providing an authentication  service 
for the Grid and allowing local access control mechanisms at 
each site to be applied without changing them.

The example in Figure 3.2 shows the steps of running a 
typical  Grid  application  focusing  on  the  interactions  of  the 
Grid  Security  Infrastructure  (GSI)  with  the  user  and his/her 
application. This example will give better understanding of the 
underlying GSI in action, which on top of it the Grid Intrusion 
Detection Architecture (GIDA) was designed.
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In this example the user – in the middle of the figure – 
tries  to  execute  an  application  on  the  available  suitable 
resources. Each group of resources – clusters, databases, super 
computers  ...  – that  are  under  the same local  administration 

and control,  called an  administrative  domain, is  represented 

by a circle. Each administrative domain has its own security 
policy  that  is  enforced  using  any  locally  selected  security 
mechanism, e.g., Kerberos,  SSH, or  plain text  passwords,  as 
shown inside the circles. This local security mechanism gives 
the administrative domain a completely independent security 
mechanism of other domains. This local control over resources 
allows only authorized persons to use them. In this example 
we assume that the user is authorized to use all the resources.
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The user must first find and allocate suitable resources 
for  his/her  application  among  these  authorized  resources, 
either through a broker or a resource manager. To allocate a 
resource  the  user  must  have  a  local  account  at  each 
administrative  domain.  This  account  may  be  created 
specifically  for  a  particular  user,  a  group  account,  or  left 
anonymous for public use. Providing single-sign-on, which is 
one of the requirements  of the GSI, is important  so the user 
will not have to login at each domain separately using different 
mechanisms.  Single-sign-on  requires  each  user  to  have  a 

Global Name that will  be used in identifying that user at all 
domains  and  in  each  Grid  operations.  This  global  name  is 
proved  –  at  authentication  process  –  by  using  the  user 
credentials  which is usually  a certificate signed by a trusted 
certificate  authority  and a private  key.  These credentials  are 
shown in the figure by the dark lock.

After authentication at an administrative domain using 

GSI mechanisms the global name is mapped to a Local Name – 
the name used locally to identify the user – then according to 
the local security policy the user is either authorized or denied 
to  access  the  resource.  It  can  be  noticed  that  using  this 
approach each Grid user has a unique name that identifies all 
his operations, and even if the local account is a group account 
or anonymous the logging at the Grid operations level is still 
possible using the users global names.
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Now, after the user selects some suitable resources, the 
user  can allocate  these required  resources  – in  this  example 
these suitable resources where at domains labeled 1, 2, and 3 
and allocation process is shown by the solid arrows – and run 
his  application  processes  that  are  represented  by  dark 
rectangles inside the domains. These processes are solving the 
same  problem  in  parallel  so  in  most  cases  they  need  to 
communicate  with  each  other  –  the  dashed  arrows  –  to 
cooperate  and  share  results.  This  implies  that  they  need  to 
authenticate  with  each  other  somehow.  The  processes  may 
need, while execution, to allocate more resources as in the case 
with  the  process  at  domain  1  need  to  allocate  resources  at 
domain  4  and  5,  and  then  run  other  processes  –  shown  by 
dashed  rectangles  –  at  these  new  domains  to  complete  the 
application.

One  trivial  solution  to  allow  these  processes  to 
authenticate,  allocate resources,  and perform any other  tasks 
on  behalf  of  the  user  is  to  give  them the  user's  credentials. 
Although this solution is simple, it has two main drawbacks. 
First there will not be any control over the process. It can do 
whatever the user can do because it has a copy of the user’s 
private key. And the user can not control  and limit what the 
application is allowed to do, because in a security context this 
control is enforced through the credentials.  Second and more 
importantly,  the  process  normally  runs  on  remote  resource, 
this means that a copy of the private key will exist at remote 
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sites.  Sending  the  user  credentials  with  each  process  will 
increase  the  probability  of  stealing  and  misuse  these 
credentials because they will not be well protected. Misusing 
the  credentials  means  misusing  the  grid  resources!  So  to 
protect  the  grid  resources  the  user  credentials  must  be  well 
protected. These are tow major security risks that makes this 
solution not applicable and introduced instead the concept of 
delegation.

Delegation allows the user to delegate or pass some of 
his/her rights to the processes allowing them to act on his/her 
behalf.  This  is  done  by  creating  temporary  credentials  – 
represented by the shaded locks – that allows the process to 
perform specific tasks for a limited period of time. The user 
can  place  any  restrictions  he/she  wants  on  these  temporary 
credentials, such as the period of time that they are valid, the 
sites  that  the  application  can  communicate  with  and  so  on. 
This  approach gives control  upon the processes and reduces 
the risks of the user's credentials being compromised. Now the 
user can leave after he/she has login using his/her credentials 
and  created  the  temporary  credentials,  and  then  come  back 
later to check his/her application and collect results.

The objective of the intruder is either to gain access to a 
system (Authentication) or to increase the range of privileges 
accessible on a system (Authorization) [103]. This requires an 
outsider intruder to acquire information that should have been 
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protected. In this  case this information is in the form of the 
user's credentials or private key. If the intruder managed to get 
this private key some way then he can login the system and 
perform all operations that the legitimate user had privileges to 
do.

Users' private keys can be protected in one of two ways 
[45]:

● Access  Control: The  private  key  is  kept  in  a  file 

accessible  only  by  the  private  key  owner  account.  For 
increased protection this file may also be encrypted using a 
password.

● Smart Cards: The private  key may be stored  on a 

smart  card.  This  provides  the  best  security  but  requires 
special hardware that is currently not widely used.

The Grid Security Infrastructure (GSI) assumes that no 
one - other than the owner of the private key - can gain access 
to the file containing the private key. Although the previous 
two ways are considered secure enough to protect the private 
key of the user,  there still  a small probability that flaws can 
occur and an intruder can gain access to this file. Techniques 
used  to  crack  password  protected  systems  such  as  trying 
default passwords or exhaustively trying all short passwords is 
not  valid  in  GSI  because  with  current  technology  it  is  not 
feasible  to  guess  the  user  private  key.  The  most  important 
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requirement in the GSI as presented above is the single-sign-
on  and  delegation.  This  is  important  because  the  user 
application  may  require  the  use  of  hundreds  of  resources 
located  at  different  domains,  and  requiring  the  user  to 
manually sign on each of these domains is impractical. This is 
also important because that the user's application may run for 
days or weeks, and we may not expect the user to sit in front of 
the computer and manually log on whenever a new resource is 
needed.  The  temporary  credentials  enhanced  the  security. 
Although  if  an  intruder  gain  access  to  this  temporary 
credential,  temporary  private  key,  is  less  dangerous  than 
gaining access to the user's private key, an intruder is still able 
to  do  harmful  or  unauthorized  work  using  this  temporary 
private key.

Another  risk  can  come  from  insiders.  These  are  the 
legitimate users  that  misuse their  privileges.  Protection from 
insiders  is  more difficult  because they can not  be prevented 
using security mechanisms.

3.3 The Grid Research Project

The emerging Grid technologies have changed the way 
people think about computation by presenting new paradigms 
and application models. To help us better understand the Grid 
environment, we decided to join in a research project. The goal 
of  joining  such  project  is  to  better  understand  the  Grid 
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infrastructure,  the  nature  of  Grid  applications  and 
environment, and specially to tackle the Grid security.

This work is a part of a joint research project between 
Ain  Shams  University  (ASU)  in  Egypt  and  George 
Washington University (GWU) in USA to build a system for 
signature verification. The target of the project is to create a 
hand written signature verification system. This means that the 
user  of  the  system will  be  able  to  check  if  a  hand  written 
signature he/she have (on a contract for example) is a genuine 
or forged signature.

This  work  presents  a  new  approach  to  solve  such 
problems using Grid approaches to increase performance and 
resource utilization while reducing the maintenance costs and 
security  risks  of  the  system.  This  is  done  by  proposing  a 
general architecture of the system, focusing on the advantages 
of  using  the  Grid  technologies  over  other  techniques.  The 
limitations of other  possible solutions and the advantages of 
Grid  solutions  have  make  it  a  good  paradigm  for  future 
applications. A testbed linking the two universities was created 
and  used  to  test  the  proposed  architecture  and  prove  its 
applicability in real applications.

Section  3.3.1  briefly  describes  the  problem  of  hand 
written  signature  verification.  A  proposal  of  different 
approaches to solve  this problem is presented in section 3.3.2 
showing the advantages and drawbacks of each and why the 
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grid  approach  is  better.  Section  3.3.3  discusses  the  testbed 
used  for  testing  and  the  results  of  different  experiments. 
Finally the general conclusions are presented in section 3.3.4. 

3.3.1 The Signature Verification Problem

The problem of  handwritten  signature  verification  has 
four main components that can be described in the following 
points:

1. The  Database: There  are  databases  storing 

images  of  genuine  signatures.  The system can only 
verify  signatures  for  persons  having  their  genuine 
signatures stored in these databases. For each person 
there is one or more signatures set. Each set consist of 
a number of genuine signature images of that person. 
Each  set  also  has  some  properties  –  meta  data  – 
describing  its  contents  such  as  the  number  of 
signature  images,  the  date  these  signatures  where 
signed  by  the  person,  the  conditions  at  which  the 
person  signed  these  signatures,  the  signature  image 
resolution, and so on.

2. Suspected Signature: The user  of the system 

should have a person's signature image that is needed 
to  be  verified  by  comparing  it  with  the  genuine 
signature  images  in  one  of  that  person's  signatures 
sets.
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3. The  Analysis  Algorithm: The  system  can 

accept  one  or  more  algorithm  capable  of  analyzing 
suspected signature images and decide whether they 
are  forged  or  not.  These  algorithms  may  have 
different  characteristics  and  requirements  such  as 
complexity,  execution  time,  accuracy,  signature 
image  format,  number  of  valid  signature  images 
needed, and so on.

4. The  User's  QoS: According  to  the  user's 

desired  Quality  of  Service  (QoS),  the  suspected 
person signature will be compared to one or more of 
his  signature  sets  in  the  database  –  with  different 
attributes  and  quality  –  by  one  or  more  analysis 
algorithm  –  with  different  requirements  and 
accuracies – to achieve the desired user's goals.

3.3.2 The Signature Verification System Architecture

Although the problem sounds  simple,  it  contain  many 
complex  hidden  issues  and  trade-offs  and  many  possible 
solutions. But generally these solutions can be classified into 
one of the possible three scenarios.

The Old Scenario

This is the simplest – but not the best – solution to this 
problem. It is simply to have the whole signature verification 
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system as one entity at each user that wants to use it as shown 

in  Figure 3.3. Going back in time a couple of decades at the 
beginning of the computer revolution maybe it would the only 
possible solution. In this scenario any user of the system must 
have  a  database  management  system  with  a  database  filled 
with  genuine  signature  sets  for  all  possible  persons  that  the 
user of the system may need to verify. The user must also have 
all  the signature analyzing algorithms needed to analyze the 
signatures according to his QoS. A computer system capable 
of providing the needed computational  power whenever it  is 
needed by the algorithms  to  analyze the  signatures  must  be 
available and dedicated for this purpose. This system must also 
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be  regularly  administrated  and  maintained  by  updating  the 
database with new signature sets, checking for new algorithms 
and  updated  versions,  and  maintaining  and  upgrading  the 
computer system hardware.

This  scenario  with  its  architecture  and  requirements 
introduced many problems. The database size may grow to be 
very large and hard to maintain by the user of the system when 
it is filled with millions of person signature sets. Such system 
– with replicating its components  at each user – will have a 
very high maintenance cost and poor cost/performance ratio. 
This  scenario  contains  security  problems.  The  user  of  the 
system must  implement  security  mechanisms  to  protect  this 
database and to verify that its content was not compromised by 
any undetected attack on the system. The user must also verify 
the origin  of the signature  sets  and the algorithms  to assure 
that they are correct.  Most importantly it  is unsafe and very 
risky  and  to  give  a  database  with  all  genuine  persons 
signatures to all users of the system, because there is no way to 
guarantee that none of these users will miss use this valuable 
information  to  create  professional  forged  signatures  that  are 
hard to detect.

The Modern Scenario

With  the  widespread  of  the  Internet  and web enabled 
applications  this  problem  may  be  solved  in  much  elegant 
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ways. Modern technologies may be used such as web services 
and client/server application. In one of the possible scenarios, 

as  shown  in  Figure  3.4,  the  user  acquires  appropriate 
credentials(private  keys,  password,  ...)  to verify  his  identity. 
After that, using a web browser, the user browse to one of the 
system's  home  page  then  authenticate  and  login  using  his 
credentials. The user uploads the signature image that needs to 
be verified. The server analyzes the signature and sends back 
the result to the user.

In this scenario all what the user should have is a valid 
credential to prove his identity, a web browser, and of course 
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the signature image he wants to verify. This scenario sounds 
quite simple but only from the user (client) side. But from the 
server side there are several solutions with their problems. It 
could  be  just  having  multiple  servers  (mirrors)  distributed 
around the world to divide the workload among them. Each 
server will maintain a complete system with a database of all 
valid persons signature sets, all analyzing algorithms, and the 
necessary computational  power to handle the users  requests. 
This is simple but has almost the same drawbacks of the old 
scenario.

An alternative solution for the server side is to have a 
real  distributed  system  with  a  distributed  database  of  valid 
signature sets,  for  example a database for  each country,  and 
having multiple processing nodes each specialized in one or 
more analyzing algorithms. This system will solve almost all 
the problems. Each valid signature set is maintained at a single 
database which eases the maintenance, reduces security risks, 
and reduces the database size. The cost is distributed among 
the  database  and  computation  servers.  Each  site  will  be 
responsible  only  for  its  part  of  the  system  not  the  whole 
system.

But on the other hand this architecture will require the 
implementation of a specialized infrastructure (shown by the 

circle  in  the  middle  of  Figure  3.4)   that  is  among  others 
capable of:

73



Chapter 3: The Grid Security Infrastructure

1. Locating the available signature sets databases.

2. Searching these databases for  a person's  valid 
signatures sets.

3. Locating free analyzing nodes with appropriate 
algorithms.

4. Handling  possible  failure  of  any  of  these 
system components.

5. Implement appropriate security mechanisms to 
control access to databases and analyzing nodes.

6. Provide  a  mechanism  to  allocate  and  start 
computation on the analyzing nodes.

Such  architecture  is  very  complex  and  hard  to  be 
specially  implemented for  a specific  application of  the hand 
written signature verification system.

The Grid and Security

The Grid – from its definition – is used to coordinate 
and couple resources  that  are  geographically  distributed  and 
administrated independently to create virtual organization that 
enables  collaboration  and  seamless  access  to  computational 
resources. Put in another way, the Grid simply implements the 
entire  required  infrastructure  discussed  in  the  previous 
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scenario (shown by the circle in the middle of Figure 3.4). The 
Globus ToolKit 3 [35][93] is one of the software toolkits that 
implements the Grid infrastructure. It provides basic services 
needed  by  any  Grid  enabled  application.  These  services,  as 
presented  in  Chapter  1,  are  resource  management  [50], 
information  services  [51],  data  management  [98],  and 

security[37] as shown in Figure 1.2. Security is important for 
the  success  of  a  Grid  environment.   The  Globus  ToolKit 
addressed  the  security  issue  through  the  Grid  Security 
Infrastructure  (GSI)  that  is  a  component  of  the  toolkit  and 

supports  all  other  services  as  in   Figure  1.2,  It  is  currently 
based  on  public  key  infrastructure  (PKI)  and  it  requires  all 
users and resources to have appropriate certificates to join the 
Grid  environment.  GSI  also  provide  basic  services  such  as 
encryption,  single  sign  on,  mutual  authentication,  among 
others.

The Grid Scenario

Using the Globus ToolKit 3 the scenario – as shown in 

Figure  3.5 –  will  start  by  the  user  login  using  appropriate 
credential and creates the user proxy. The user will start  the 
Globus enabled signature verification application and provide 
it with the signature image needed to be verified. The program 
will contact the monitoring and discovery service (MDS) – a 
part of the Grid information services – to find available valid 
signature sets and processing nodes with appropriate analyzing 
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algorithms.  According  to  the  user  QoS  the  application  will 
pick one or more available processing node(s) and then send to 
them suitable valid signatures set and the suspected signature 
image. After processing ends the results are sent back to the 
user application and displayed.

In this  scenario the user  will  have valid credentials  to 
prove  his  identity,  the  signature  image,  the  Globus 
infrastructure  installed,  and  the  Signature  verification 
application. In this scenario we can notice the following:

1. It  is  a  dynamic  environment  where  valid 
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signatures  sets  can  be  added  or  removed  and 
processing nodes can join or leave as they want. This 
environment  is  shared  and  coordinated  through  the 
Globus infrastructure.

2. The valid signature sets are protected by being 
kept at secured databases and only sent to trusted and 
authenticated analyzing nodes based on the choice of 
the  local  system  administrators  of  the  signature 
database.

3. The  coordination  process  is  seamless  and  all 
complexities are hidden by the Globus infrastructure. 
These  complexities  are  in  security,  resource 
management,  data  management,  and  information 
services.

4. Signature algorithms are updated and improved 
locally and then discovered globally by MDS without 
requiring changing of the user application.

5. Within this large pool of resources the user can 
deliver the desired QoS  by combining the appropriate 
pair of signature set and analyzing algorithm.

6. User  authentication  and  secure  signatures 
transfer over public insecure networks are done using 
the Grid Security Infrastructure GSI [37]
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7. There can be different trust relationships among 
users,  databases  and  processing  nodes  owners.  The 
Grid  Security  Infrastructure  supports  these  trust 
relationships. Although it is a one global system, each 
component (user, database, or processing node) works 
only  with  trusted  components.  This  trust  relation  is 
defined locally  by  the decisions  of  the  component's 
system administrators.  For  example  a  database  may 
deny  the  request  to  send  signatures  sets  to  a 
processing  node  if  it  is  not  trusted.  In  the  Globus 
ToolKit  3  this  is  done  now  using  Public  Key 
Infrastructure and hierarchical Certificate Authorities

78

Internet

ASU1

GWU
ASU2USA Egypt

Figure 3.6: Layout of available resources used in 

implementation.



Chapter 3: The Grid Security Infrastructure

3.3.3 Project Results

To test the proposed Grid scenario a testbed was created 

consisting  of  three  nodes  as  in  Figure  3.6.  The  first  one  is 
called  GWU and  is  located  in  USA at  George  Washington 
University. The other two nodes are called ASU1 and ASU2 
and  are  located  in  Egypt  at  Ain  Shams  University.  GWU 
contains both a signatures database and an eight node cluster 
for distributed signature analysis. ASU1 consists on only of an 
eight   node cluster  for  distributed  signature  analysis.  ASU2 
contains  only  a  signatures  database.  The  three  nodes  where 
linked  using  the  Globus  ToolKit  3.  The  distributed  hand 
written signature verification algorithm [63] is installed on the 
clusters at GWU and ASU1. A grid enabled application [65] 
was developed that enables the users of the system to locate 
available processing nodes with appropriate algorithms, locate 
and search the databases for a specific person's signatures sets, 
select the best signatures set and processing node for the user, 
upload the suspected signature, and finally return the result of 
analysis  back  to  the  user.  The  system  user  can  be  located 
anywhere  in  the  world,  all  what  is  needed  it  appropriate 
infrastructure  installed,  the  grid  enabled  application,  and 
appropriate credentials to use the system.

The  system  total  execution  time  was  measured  with 
respect  to  three  parameters:  The  location  of  the  user,  the 
location of the signatures database node, and the location of 
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the analysis  node,  each of  which can be – in  this  testbed – 
either  in  Egypt  or  in  USA. According  to  the  user  QoS,  the 
processing is done on the nearest available analyzing node to 
the  signatures  database  node.  The  following  scenarios  can 
occur independently of the user's location:

1. Signatures are available on GWU and GWU is chosen 
for analysis.

2. Signatures  are  available  on  GWU  and  ASU1  is 
chosen for analysis.

3. Signatures  are  available  on  ASU2  and  ASU1  is 
chosen for analysis.

4. Signatures  are  available  on  ASU2  and  GWU  is 
chosen for analysis.

EGYPT
Database

ASU1 ASU2 GWU

P
ro

ce
ss

in
g ASU1 X 0.27 1.27

ASU2 X X X

GWU X 1.31 0.51

Table 3.1: Execution time of experiments (in minutes) when the 

user in Egypt.
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USA
Database

ASU1 ASU2 GWU

P
ro

ce
ss

in
g ASU1 X 0.45 1.26

ASU2 X X X

GWU X 1.14 0.25

Table 3.2: Execution time of experiments (in minutes) when the 

user in USA.

Table 3.1 and Table 3.2 summarize the results obtained 
from running the grid application, the first when the user is in 
Egypt,  and  the  second  when  the  user  is  in  USA when  the 
analysis  is  completed  without  any  errors.  The  columns 
represent the node on which the signatures set was found and 
the rows represent the node on which processing was done. A 
cell with value X means that this case is not applicable due to 
the assumptions that the signatures do not lie on all nodes and 
that not all nodes can do analysis. The average execution time 
when the user was in Egypt was found to be 0.84 minutes and 
that when the user is in USA was found to be 0.775 minutes. 
This difference in the averages is attributed to the connection 
speed in Egypt site, as it is based on an ADSL line with upload 
to download ratio is 1:4.

Executing the same algorithm on a sequential machine 
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took about 34 seconds. The Grid enables the access to more 
powerful  resources  –  the  cluster  in  this  case  –  to  perform 
computations. From this point of view it is fare to compare the 
Grid  enabled  system  performance  that  took  49  seconds  in 
average to the sequential single machine system performance. 
It  can be noticed that  the delays due to communication  was 
recovered by faster computation resulting in approximately the 
same performance.

3.3.4 Project Conclusions

The  Grid  infrastructure  provided  a  seamless  way  to 
efficiently link and access different distributed computational 
resources.  Providing  an  ideal  development  environment  to 
create  innovative  applications  such  as  the  hand  written 
signature  verification  system  presented  here.  It  enabled  the 
efficient  use  of  the  available  resources  –  databases, 
computations, and algorithms – by an intelligent Grid enabled 
application  that  used  the  underlying  infrastructure  to 
efficiently satisfy the desired user's QoS. The system was also 
secure  by  keeping  the  genuine  signatures  sets  at  secure 
databases away from the users and by using the Grid Security 
Infrastructure  for  authenticating  users  and  transferring 
signature images. The different tests performed on the system 
showed  good  performance  compared  with  single  machine 
systems proving the applicability and advantages of using Grid 
paradigms for future applications.
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Chapter 4: Intrusion Detection

This chapter reviews the field of intrusion detection by 
defining it and showing why it is needed. Then it illustrates the 
different techniques and approaches used to detect intruders.

4.1 Introduction

Early efforts in the area of networking and the Internet 
concentrated in developing efficient protocols, algorithms and 
hardware necessary to link computers with each other.  They 
did not concern with security issues. After the rapid increase 
of the Internet size, security became a major issue to protect 
valuable information and resources. So passwords, encryption 
and other security techniques arose.

The new emerging security techniques came with three 
major  drawbacks,  witch  created  the  need  for  intrusion 
detection. First drawback is that increasing the security level 
places constraints  on communication and slows it  down and 
decreases  its  usability,  on  the  other  hand  decreasing  the 
security  level  to  make  the  communication  more  flexible 
increases the opportunity for penetration and unauthorized use 
of the linked computers. Second is that security systems may 
contain software bugs and holes that attackers can use to break 
the system, and no one can guarantee that a security system is 
one hundred percent free of bugs and holes. Third and most 
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important is that even if the security level was increased to its 
maximum levels and all bugs and holes were fixed, traditional 
security systems, some times called first layer of security, can 
not protect a system from insiders. An insider is defined as any 
legitimate  person  who  is  allowed,  according  to  a  security 
policy, to use the system.

Today's computer systems are vulnerable to both abuse 
by  insiders  and  penetration  by  outsiders.  Current  security 
systems are not enough to protect systems from insiders and 
outsiders [103]. Passwords can be cracked, keys can be stolen, 
firewalls  does  not  protect  the  system  from  insiders  and 
outsiders can dig under the firewall, security systems contains 
bugs  and holes  that  are  impossible  to  fix  in  a  feasible  way 
were  legitimate  users  can  miss  use  their  authority  and 
privileges. Thus intrusion detection is viewed as a second line 

of defense as shown in Figure 4.1. Intrusion detection systems 
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are based on the assumption that the normal use of the system 
is different from malicious use [68]. They mainly analyze the 
auditing file and try to discover any suspicious user behavior, 
and take appropriate actions if such user is discovered.

To put it in another way computer security must address 
three fundamental needs:

● Prevention

● Detection

● Response

In general it is always better to prevent something bad 
from happening. This is what the first layer of security tries to 
achieve through fire walls, passwords, keys, encryption, and so 
on. If prevention is achieved then there is no need for detection 
and response. Unfortunately this is not the case for the reasons 
stated before, and it is impossible to achieve 100% prevention 
with  the  current  technology.  That  is  why  detection  and 
response is a vital part of any security system.

The  objective  of  the  intruder  is  to  gain  access  to  a 
system (Authentication) or to increase the range of privileges 
accessible on a system (Authorization) [103]. This requires the 
intruder to acquire information – keys, passwords, etc. – that 
should have been protected.
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Intrusion detection may be defined as “the problem of 
identifying  individuals  who  are  using  a  computer  system 
without  authorization  (i.e.,  'crackers')  and  those  who  have 
legitimate access to the system but are abusing their privileges 
(i.e.,  the  'insider  threat')”  [55].  Another  definition  is  “the 
process  of  monitoring  the  events  occurring  in  a  computer 
system or network and analyzing them for signs of intrusions, 
defined  as  attempts  to  compromise  the  confidentiality, 
integrity, availability, or bypass the security mechanisms of a 
computer  or  network”  [71].  The  research  field  of  intrusion 
detection  was  first  formalized  with  the  publication  of 
Anderson's  seminal  report  in  1980  [68].  After  that  the  first 
comprehensive  model  of  an  intrusion  detection  system  was 
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introduced in 1987 by Denning [17].

To  help  in  better  understanding  of  what  is  intrusion 

detection all about, the two illustrations, shown in  Figure 4.2 

and Figure 4.3 form [70], compares computer security with all 
its layers with security mechanisms used in daily life to protect 
precious things in a building.

The first layer of computer security is basically access 
control mechanisms. They are analogous to traditional access 

control mechanisms as shown in Figure 4.2. The fence around 
the building is just like a firewall allowing only few to pass 
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through.  Gates  with  locks  on  them are  just  like  passwords. 
Inside the building closed rooms are like restricted areas that 
only few people who have the right privileges can access.

Thieves can climb the fence, steal keys, break locks, or 
even  masquerade  as  a  person  who  is  allowed  to  enter  the 
building. Authorized persons can even misuse their privileges 

to  do  something  wrong.  That  why,  as  shown  in  Figure  4.3 

cameras  are  needed  as  a  second  layer  to  increase  security. 
They are used to watch what is going on outside and inside the 
building  to  ensure  that  everything  is  OK.  That  is  exactly 
analogous  to  the  rule  of  intrusion  detection  in  a  computer 
system  where  the  building  is  the  protected  system.  As 
analyzed  below,  cameras  outside  the  building  are  network 
based intrusion detection, while inside cameras are host based 
intrusion detection.

4.2 The Anatomy of Intrusion Detection Systems

Intrusion detection systems try to detect, using different 
mechanisms and approaches, the difference in behavior caused 
by an intruder and take appropriate action to stop the intruder. 
To achieve this most intrusion detections employ a common 
architecture consisting of three major modules (gray boxes in 

Figure 4.4):

● A data gathering module (Audit Collection): This 

module gathers data that may contain evidence of intrusion 
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to be used in intrusion detection decisions. There are many 
sources  of  data  that  may  be  collected  such  as  network 
activities,  host  security  logs,  keyboard  input,  command 
based logs, or application based logs.

● An  analysis  module  (Processing): This  module 

processes  the  gathered  data  to  identify  intrusive  activity. 
There  are  many  approaches  to  analyze  the  gathered  data. 
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Earlier approaches were mainly based on the application of 
statistical  methods  to  identify  anomalous  activity  [69]. 
Many early systems [27][30][52][15] employed this method. 
Modern  approaches  uses  a  diverse  range  of  classification 
methods to identify anomalous activities including, among 
others,  rule  induction  [29][66][22],  artificial  neural 
networks  [80][47][9],  fuzzy  set  theory  [92],  classical 
machine learning  algorithms  [101][100],  artificial  immune 
systems  [83][82],  signal  processing  methods  [61],  and 
temporal sequence learning [91][2].

● A response module  (Alarm): This  module  handles 

all  the  system  alarms  and  takes  decisions  and  performs 
appropriate actions according to the results of the analysis. 
This response may be automatic or just a notification to the 
security  administrator  to  help  in  taking  right  actions  in 
stopping the intrusion risk.

A general intrusion detection model should, in addition 
to the previous components, contain the following components 

[26] (white boxes in Figure 4.4):

● Audit Storage:  An important issue in any intrusion 

detection  system  is  feature  selection  and  data  reduction. 
Feature selection is important because the inclusion of too 
much  data  will  adversely  impact  the  performance  of  the 
system, while the inclusion of too little data will reduce the 
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overall  effectiveness  of  the  system.  Audit  data  must  be 
stored somewhere so it is important to reduce the size of the 
data  to  save  storage  space.  This  storage  may be for  long 
time, months, or temporarily awaiting for processing.

● Configuration Data: This data sets the behavior  of 

the  intrusion  detection  system.  It  is  configured  by  the 
security administrator  to control  and tune the operation of 
the  system.  This  data  may  contain  information  such  as 
when, where, and how to collect audit data and also how to 
respond to intrusion among others.

● Reference  Data: To  detect  deviation  from  normal 

behavior,  the analysis  module  must  compare  the gathered 
audit data to some reference data to detect intrusion.  This 
reference  data  may  be  in  the  form  of  signatures  of  well 
known attack and/or profiles of normal behavior depending 
on  the  type  of  intrusion  detection  system  as  presented 
below. Profiles are usually updated by the analyzing module 
on  regular  basis  when  new  observed  information  about 
normal behavior  is  gained.  Signatures  are usually updated 
by  the  security  administrator  when  new  attacks  are 
discovered and their signatures detected.

● Active/Processing  data: The  analyzing  module 

usually needs to store temporary results needed to complete 
the  detection  process.  Examples  of  this  data  may include 
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information about partially fulfilled intrusion signatures or 
the percentage of matching between detected behavior and 
normal profiles at different time periods.

Intrusion  detection  systems  implement  the  above 
components  in  different  ways  and  using  a  wide  range  of 
approaches  and  techniques  aiming  to  select  the  best 
combinations to improve the system performance. This wide 
variety  led  to  different  approaches  to  classify  intrusion 
detection systems. The most significant and used approach is 
to classify Intrusion detection techniques either  according to 
the source of the data used for the analysis into network based 
and  host  based  intrusion  detection  systems  [21][39],  or 
according  to  the  approach  taken  to  analyze  the  data  into 
misuse detection and anomaly detection [16].

4.3 Network vs. Host Based Intrusion Detection

The  first  step  in  any  intrusion  detection  system is  to 
collect data about the protected system and the users using it. 
This data reflects the status of the system and the operations 
that the users are performing. Depending on the way the data 
gathering module gets its data, the intrusion detection systems 
are  classified  to  either  network  based  intrusion  detection  or 
host based intrusion detection.

Network based intrusion detection systems get their data 
by installing a device on the network capable of monitoring all 
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network traffic and passed packets. They rely on raw network 
packets  in  their  analysis.  On  the  other  hand,  host  based 
intrusion detection systems use log files created on each host, 
containing all the operations performed on the host, as the data 
source.

A Network Intrusion Detection System (NIDS) monitors 
the packets that traverse a given network link. Such a system 
operates  by  placing  the  network  interface  into  promiscuous 
mode, affording it the advantage of being able to monitor an 
entire  network  while  not  divulging  its  existence to  potential 
attackers. Because the packets that a NIDS is monitoring are 
not  actually  addressed  to  the  host  the  NIDS resides  on,  the 
system is also impervious to an entire class of attacks such as 
the "ping-of-death" attack that can disable a host without ever 
triggering  a  host  intrusion  detection  system.  A  NIDS  is 
obviously of little value in detecting attacks that are launched 
on a host through an interface other than the network.

Network  data  has  a  variety  of  characteristics  that  are 
available for a NIDS to monitor: most operate by examining 
the IP and transport  layer  headers  of individual  packets,  the 
content  of  these  packets,  or  some  combination  thereof. 
Regardless  of  which  characteristics  a  system  chooses  to 
monitor,  however,  the  positioning  of  a  NIDS fundamentally 
presents a number of challenges to its correct operation.

On a heterogeneous network, a NIDS generally does not 
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possess intimate knowledge of all of the hosts on the network 
and  is  incapable  of  determining  how  a  host  may  interpret 
packets  with  ambiguous  characteristics.  Without  explicit 
knowledge of a host system's protocol implementation, a NIDS 
is  impotent  in  determining  how a  sequence  of  packets  will 
affect that host if different implementations interpret the same 
sequence of packets in different ways [57].

A savvy attacker  can exploit  this  property  by sending 
packets that are designed to confuse a NIDS. Such attacks are 
referred to as insertion and evasion attacks based on whether 
they insert additional information into a packet stream that a 
NIDS will see and the target host will ignore or if they evade 
detection by forging data in such a way that a NIDS cannot 
completely analyze a packet stream.

Protocol  ambiguities  can  also  present  a  problem  to  a 
NIDS in the form of crud. Crud appears in a network stream 
from  a  variety  of  sources  including  erroneous  network 
implementations,  faulty  network  links,  and  network 
pathologies that have no connection to intrusion attempts [97]. 
If  a  NIDS  performs  insufficient  analysis  on  a  stream 
containing crud, it can generate false positives by incorrectly 
identifying  this  crud  as  being  intrusive.  While  a  NIDS 
therefore  is  in  a  very  convenient  position  whereby  it  has 
complete  access to all  packets  traversing  a network  link,  its 
perspicacity is challenged due to ambiguities in network data 
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and its limited perspective of host system implementations and 
network topology.

On the other hand, host intrusion detection refers to the 
class of intrusion detection systems that reside on and monitor 
an  individual  host  machine.  There  are  a  number  of  system 
characteristics that a Host Intrusion Detection System (HIDS) 
can make use of in collecting data including:

File  System: Changes  to  a  host's  file  system  can  be 

indicative of the activities that are conducted on that host. In 
particular, changes to sensitive or seldom-modified portions 
of  the  file  system  and  irregular  patterns  of   file  system 
access can provide clues in discovering attacks.

● Network Events: An IDS can intercept  all  network 

communications  after  they  have  been  processed  by  the 
network  stack  before  they  are  passed  on  to  user-level 
processes. This approach has the advantage of viewing the 
data exactly as it will be seen by the end process, but it is 
important to note that it will be useless in detecting attacks 
that are launched by a user with terminal access or attacks 
on the network stack itself.

● System Calls: With some modification of the host's 

kernel, an IDS can be positioned in such a way as to observe 
all of the system calls that are made. This can provide the 
IDS  with  very  rich  data  indicating  the  behavior  of  a 
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program.

A critical decision in any HIDS is therefore choosing the 
appropriate  system  characteristics  to  monitor.  This  decision 
involves a number of trade-offs including the content  of the 
data that is monitored, the volume of data that is captured, and 
the extent to which the IDS may modify the operating system 
of the host machine.

4.4 Anomaly Detection vs. Misuse Detection

Misuse and anomaly detection are two techniques that 
are used to analyze the data about a computer system and its 
users,  gathered  using  either  host  based  or  network  based 
techniques, to detect intrusion.

Anomaly detection process involves first characterizing 
the behaviors of individuals or systems and then recognizing 
behavior  that  is  outside the norm [44],  by trying to identify 
events  that  appear  to  be  anomalous  with  respect  to  normal 
system behavior  [16].  One  advantage  of  Anomaly  detection 
approach is that it does not require any historical knowledge of 
abnormal behavior or anomalous records. But the draw back of 
this is that intruders can slowly train the system to accept their 
malicious behaviors. 

Anomaly detection is concerned with identifying events 
that  appear  to  be  anomalous  with  respect  to  normal  system 
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behavior.  A  wide  variety  of  techniques  including  statistical 
modeling,  neural networks, and hidden Markov models have 
been  explored  as  different  ways  to  approach  the  anomaly 
detection problem [47][69][80]. Each of these anomaly-based 
approaches  fundamentally  relies  upon  the  same  principles: 
anomalous activity is indicative of an attempted attack and the 
correct  set  of  characteristics  can  sufficiently  differentiate 
anomalies from normal system usage. Developing an anomaly 
detection  system  therefore  involves  first  establishing  a 
baseline  model  that  represents  normal  system  behavior  and 
against  which  anomalous  events  can  be  distinguished.  The 
system then  analyzes  an event  by  considering  it  within  this 
model  and  classifying  it  as  normal  or  anomalous  based  on 
whether  it  falls  within  a  certain  threshold  of  the  range  of 
normal behavior or intruder, respectively.

The  most  appealing  feature  of  anomaly  detection 
systems is their ability to identify new and previously unseen 
attacks. Because the process of establishing a baseline model 
of  normal  behavior  is  usually  automated,  anomaly  systems 
also do not require expert knowledge of computer attacks. This 
approach is not  without  its  handicaps.  However, as anomaly 
detection may fail  to  detect  even attacks that  are  very well-
known  and  understood  if  these  attacks  do  not  differ 
significantly  from what  the  system establishes  to  be normal 
behavior.  Anomaly  based  systems  are  also  prone  to  higher 
numbers  of  false  positives,  as  all  anomalous  events  are 
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assumed to be intrusive although in reality a variety of other 
factors  can  produce  behavior  that  appears  anomalous  (e.g., 
implementation errors) [71].

Misuse  detection  is  another  approach  that  involves 
identifying patterns of known “bad” behavior, while anomaly 
detection  looks  for  patterns  of  activity  that  appear  to  be 
abnormal  [72].  Misuse  detection  requires  a  database 
(knowledge base) of historically known attacks. The gathered 
data  is  searched  for  patterns  and  signatures  of  well  known 
attack types stored in the knowledge base. The drawback here 
is that new attacks unknown to the system can not be detected.

The essence of misuse detection centers around using an 
expert system to identify intrusions based on a predetermined 
knowledge base.  As a result,  misuse systems are  capable of 
attaining  high  levels  of  accuracy  in  identifying  even  very 
subtle intrusions that are represented in their expert knowledge 
base;  similarly,  if  this  expert  knowledge  base  is  crafted 
carefully, misuse systems produce a minimal number of false 
positives [71]. 

A less fortunate ramification of this architecture results 
from the fact  that  a misuse detection system is incapable of 
detecting intrusions that are not represented in its knowledge 
base.  Subtle  variations  of  known  attacks  may  also  evade 
analysis  if  a  misuse  system  is  not  properly  constructed. 
Therefore,  the  efficacy  of  the  system  relies  heavily  on  the 
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thorough and correct  construction  of this  knowledge base,  a 
task that traditionally requires human domain experts.

4.5 Centralized vs. Distributed Intrusion Detection

Each component of an intrusion detection system may 
be either centralized – all functionality performed at a single 
location  –  or  distributed.  The  major  difference  among 
intrusion detection systems is related to the  centralization or 
distribution  of  the  process  of  data-collection  and/or  data-
processing. Usually the underlying monitored system has the 
major  influence  on  whether  to  centralize  or  distribute  a 
component.

Small  systems,  such  as  few PCs  linked  with  a  Local 
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Area Network (LAN), as shown in Figure 4.5 usually adopt a 
pure  centralized  approach.  A  powerful  intrusion  detection 
server  is  used that  has the capability  of both collecting data 
about the entire monitored system (the data gathering module) 
and performing all the required analysis on the collected data. 
Data reduction, data storage, and alarms among others are also 
the  responsibility  of  the  central  server.  Examples  of 
centralized systems are [6][44][46].

When the size of the monitored system increase in larger 
organizations sometimes become hard or even impossible for a 
single centralized intrusion detection server to do all the work. 
In this case some of the intrusion detection system components 
must be distributed. The simplest solution is to distribute the 
data gathering module. That will gather the data, do necessary 
selection/reduction  for  the  data,  and  then  send  it  to  a 
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centralized analysis server for processing, as shown in Figure  

4.6.  A  more  complicated  approach  is  to  distribute  the 

analyzing  module,  as  shown  in  Figure  4.7.  This  is  usually 
done  together  with  the  distribution  of  the  data  gathering 
module.  The  distributed  analyzing  modules  are  usually 
organized  in  a  hierarchical  manner.  Examples  of  distributed 
intrusion  detection  systems  are  [41][58][77].  For  Grid 
computing  architecture,  either  class  of  distributed  intrusion 
detection systems is more suitable due to the distributed nature 
of the Grid computing architecture.

4.6 Other Classifications and Attributes

There are other attributes that can be used in classifying 
intrusion detection systems. These attributes may include:

● Detection  Time: Depending  on  the  time  needed  to 

detect the intrusion from its beginning, intrusion detection 
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systems can be either real-time systems where intrusion are 
detected  after  they  happen  or  non-real-time  systems  that 
depend mainly on audit analysis. Sometime they are called 
on-line and off-line intrusion detection system respectively.

● Response Type: After an intrusion is detected, there 

must  be  some actions  taken to  stop  it.  Depending  on the 
type of this action in response to the intrusion, systems can 
be  classified  to  either  passive  or  active.  Passive  systems 
response by only notifying the security  administrator  who 
should take the appropriate actions to stop the intrusion. On 
the  other  hand,  active  systems  response  by  performing 
appropriate actions depending on the type of intrusion. Such 
as, closing a session, suspending an account, shutting down 
a devise, or closing a port in the firewall. These actions are 
performed  automatically  without  referring  to  the  security 
administrator.

● Granularity  of  Data-Processing: This  attribute 

contrasts  between  systems  that  analyze  the  data 
continuously,  as  it  arrives,  and  those  analyzing  data  as 
batches at some regular time intervals. This is related to the 
detection time mentioned above but they are not the same. A 
system may process data continuously but with certain delay 
making  it  non-real-time  while  other  system  may  process 
data in small batches at real-time.
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● Intrusion Detection System Security: This measures 

the  ability  to  withstand  attacks  against  the  intrusion 
detection system itself. This area is not yet studied well. It is 
measured as a value on a high/low scale. Most systems don't 
address this issue.

● Degree  of  Interoperability: This  attribute  is 

concerned with to what degree an intrusion detection system 
can work  in  conjunction  with  other  systems,  accept  audit 
data  from  other  sources,  and  so  on.  This  is  the 
interoperability  with other  systems and not  with the same 
system running on a different platform.

4.7 Problems of Traditional Intrusion Detection  

Systems

Centralized  intrusion  detection  systems  architectures 
such  as  [6][44][46]  depends  on  a  centralized  server  that  is 
capable  of  monitoring  and  analyzing  the  entire  network  to 
detect  intruders.  These  systems  have  one  server  with  both 
DGM and DAM running on it. Centralized intrusion detection 
architectures  are  not  suitable  for  Grid environments  because 
reasons such as their  poor  scalability.  A computational  Grid 
size  varies  from  a  few  numbers  of  computers  in  an 
organization to span the entire earth. Centralized architectures 
can  not  scale  with  this  huge  increase  in  grid  size  and  the 
centralized server will not be able to analyze this huge amount 
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of data. Another problem happens if this server is attacked or 
failed for any reason, then the entire system will be affected 
and  fails.  Another  reason  is  that,  in  the  case  of  large  Grid 
environments, it is not possible to find a centralized server that 
can  monitor  all  the  resources  in  the  grid,  because  of  the 
distributed  nature of the networks  linking its  resources.  The 
fact that the grid consists of resources controlled by different 
administrative domains makes another  problem because it  is 
not possible to find a single server that all these administrative 
domains can trust, agree to use and depend on it.

Distributed  intrusion  detection  systems  such  as 
[41][58][77] are more suitable for Computational Grids. They 
have  enhanced  the  scalability  by  distributing  some  of  the 
components of the system, such as distributing the DGM while 
keeping the DAM centralized or in some systems distributed 
by taking a hierarchical form with a centralized control at the 
top.  Distributed  systems,  although  enhanced,  are  still  not 
sufficient for Computational Grids. The components which are 
left  centralized  or  components  near  the  top  of  a  hierarchy 
forms a performance bottle neck and a single point of failure. 
Intrusion detection systems designed for Computational Grids 
must  address  the  important  fact  that  the  grid  consists  of 
different  administrative  domains  that  should  not  necessarily 
trust each other, agree to share information and work together 
to detect intruders or even believe each other if one of them 
found  an  intruder  and  warned  the  other  administrative 
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domains. These complex trust relationships must be addressed 
by  intrusion  detection  systems  to  be  suitable  for 
Computational Grids.

4.8 Conclusion

As described in this chapter, intrusion detection systems 
are becoming one of the main research areas in the field  of 
computer  security.  The  research  in  intrusion  detection  field 
covers  a  wide  variety  of  systems,  including  centralized  and 
distributed  systems.  Unfortunately,  these systems have some 
limitations making them not 100% compatible with the Grid 
environment. This mismatch appeared because the capabilities 
of intrusion detection systems dose not satisfy some or all of 
the  Grid  characteristics  and  requirements,  making  them not 
suitable for implementation in Grid environments.

The  rapid  development  of  both  intrusion  detection 
systems  and  Grid  computing  architectures,  motivated  us  to 
merge  the  two  fields  by  designing  and  implementing  a 
proposed intrusion detection model that will fulfill the needs 
of Grid computing systems.
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Chapter 5: The Proposed Grid Intrusion 

Detection Architecture

Currently,  the  Grid  Security  Infrastructure  (GSI)  does 
not have any intrusion detection system that can avoid any of 
the previously presented security leaks. Hence, computational 
Grid  environments  needs  intrusion  detection  system  as  a 
second  line  of  defense  after  normal  security  mechanisms  to 
protect  themselves from intruders  that will  try to misuse the 
valuable  resources  made  available  by  the  Grid  to  any 
legitimate user from any location on earth. This is critical in 
the Grid environment because if the attacker masqueraded as a 
legitimate user or a user misused his privileges this will result 
in a high security risk not just at a single resource but at all the 
resources this user can access and use.

Special  Grid  characteristics  and  previous  intrusion 
detection  systems  architectures  were  kept  in  mind  while 
designing the Grid Intrusion Detection Architecture, or GIDA. 
The  design  was  aiming  to  create  an  open,  extensible,  and 
general  architecture that  is  compatible  with the Grid and its 
requirements  while  tacking  advantages  of  available  Grid 
services and protocols as possible.

This chapter presents and examines the GIDA in details 
and its compatibility with the Grid is illustrated at the end of 
this chapter.
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5.1 Problem Definition

Intrusion  detection systems have many components  as 

presented in Chapter 4. However two of these components are 

essential for GIDA. The First module is the  Data Gathering  

Module (DGM) that  is  responsible  for  collecting data about 

the monitored system that may contain useful information that 
could  give  clues  about  intrusion.  The second  module  is  the 

Data Analysis Module (DAM) that analyzes the gathered data 

trying to detect any intrusion.

Taking  into  consideration  the  special  features  of  the 
Grid  architectures,  implementing  any  of  the  traditional 
intrusion detection models to GSI will have some implications 
and  incompatibilities.  Therefore,  these  models  should  be 
customized to fit into the GSI new requirements. 

A  Grid  intrusion  detection  system  should  protect  the 
resources from attacks that could happen from the Grid users. 
These  attacks  could  happen  as  a  result  of  these  resources 
installing the Grid infrastructure software and so joining a grid 
community.  The Grid intrusion detection should not  provide 
protection against normal Internet attacks that do not require a 
Grid  environment,  because  its  role  is  to  protect  Grid 
environments  from  Grid  attacks.  However  normal  attacks 
should  be  handled  locally  using  local  intrusion  detection 
systems.  There  may  be  cooperation  between  local  intrusion 
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detection systems and the Grid intrusion detection system in 
the  form of  a  warning  message  or  signal  to  warn  the  Grid 
intrusion  detection  system  in  the  case  of  a  local  attack  to 
prevent it from spreading to other Grid resources.

The  Grid  intrusion  detection  system  must  also  be 
compatible  with  the  Grid  requirements  and  constraints 

presented earlier  in  Section 1.1.  In other  words it  should be 
scalable to cope with growing size Grid environment and suit 
different small and large Grid environments. It should support 
heterogeneous  resources  and interoperate  rather  than replace 
existing systems. The Grid intrusion detection system should 
handle  the  dynamic  nature  of  the  grid  and the  fact  that  the 
failure is a rule not exception, so it should not be designed for 
a specific Grid organization. The design should keep in mind 
that  the  Grid  is  not  owned  by a  single  organization,  so  the 
detection should be cooperative and not subject to centralized 
control.  It  should also enable the delivery  of different  QoSs 
because  each  participant  in  a  Grid  environment  may  have 
different requirements and security levels. The design should 
use  standard  and  open  protocols  as  possible  to  enable 
interoperability and make expansions easy.

5.2 The Proposed Grid Intrusion Detection  

Architecture

The  Grid  Intrusion  Detection  Architecture  GIDA 
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[62][64]  was  designed  with  all  the  previously  mentioned 
problems  in  mind.  GIDA  is  build  on  top  of  the  Grid 
infrastructure  [36] including  the Grid Security  Infrastructure 
GSI [37] which provides a uniform security infrastructure for 
Computational  Grids  and  interoperates  with  the  diverse 
intradomain security solutions. This means that GIDA uses the 
services  and protocols  provided  by the Grid  to  build  a new 
layer  on  top of  the Grid  layers  to  provide  new services  for 
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intrusion detection.

The proposed GIDA is summarized in  Figure 5.1.  The 
main  idea is  to  distribute  the  problem of  the  Grid  intrusion 
detection  among  different  distributed  components  that  work 
together  to  detect  intruders.  The  Grid  environment  can  be 
considered as a virtual environment built on top of the Internet 
or  any  other  type  of  network  architectures.  These  Grid 
intrusion detection components will interact only with the Grid 
infrastructure,  so  they  will  exist  in  this  virtual  Grid 
environment and detect only Grid intruders. Meanwhile, these 
components  will  take advantage of  the services  provided by 
the Grid environment.

The GIDA has two main categories of components. The 
first  one,  corresponds  to  the data  gathering  module  (DGM), 

called  the  Intrusion  Detection  Agent  (IDA) which  is 

responsible  for  gathering  data  about  the users  and resources 
from a specific administrative domain. The second component, 
corresponds to the data analysis module (DAM), is called the 

Intrusion Detection Server  (IDS),  which  is  responsible  for 

analyzing the gathered data and cooperate with other IDSs to 
detect intruders.  Both of these modules, IDAs and IDSs, are 
distributed and not subject to centralized control as shown in 

Figure 5.1.

As stated above the Grid consists of resources owned by 
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different  administrative  domain,  this  is  represented  by  the 

circles in Figure 5.1, each administrative domain will have an 
intrusion detection agent responsible for gathering data that is 
specific  to  this  administrative  domain  and summarizing  this 
data and converting it to a standard format. In other words this 
will  deal  with  the  heterogeneity  of  Computational  Grid 
resources.  Summarizing  the  gathered  data  will  reduce  the 
consumed  network  bandwidth  when  sending  data  to  be 
analyzed but will  require  preprocessing at the administrative 
domain (client).

Each intrusion detection agent (IDA) will register with 
one or more intrusion detection server (IDS) this will increase 
the reliability, robustness  and adaptability  of the system. In 
the case of the failure of one IDS the administrative domain 
can still be protected against intruders if its IDA is registered 
with  other  IDS.  Of  course  there  is  an  overhead  of  this 
increased  reliability  and  robustness  in  the  form  of  the 
increased bandwidth consumption and the time needed by the 
IDS to analyze the data, this is due to the increase in the size of 
the  data  being  transferred  and  more  processing  needed  to 
analyze  them.  So  there  must  be  a  trade  off  between  the 
performance and its cost. The registration with multiple IDSs 
also allows the delivery of complex QoS if each one of these 
IDSs uses different approach to detect intruders with different 
properties.
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After gathering information, these gathered information 
will be transferred from each intrusion detection agent IDA to 
all  registered  intrusion  detection  servers  IDS.  The  Grid 
Information Service (GIS) [51] which is a major component of 
most  Computational  Grids  can  be  used  to  store  this 
information.  If  the  GIS is  not  available  or  not  applicable  a 
special database can be implemented in the IDS to store the 
gathered information for analysis.

The Intrusion Detection Servers (IDS) will analyze the 
gathered information from the different IDAs and try to detect 
intruders.  These  IDSs must  not  be  homogeneous.  Each IDS 
can use a different approach to analyze the gathered data such 
as anomaly or misuse detection and each one can be designed 
and implemented using either neural network, statistical, data 
mining,  or  other  technique  for  intrusion  detection  [79].  The 
key here is  to use standard,  open,  general-purpose protocols 
between  the  IDSs  that  allow  them  to  cooperate  and  work 
together.

When  an  IDS  detects  an  intruder  it  should  warn  the 
other IDSs which in turn will signal the registered IDAs that 
will  worn  the  local  security  to  take  an  appropriate  action. 
Because  GIDA  is  build  on  top  of  the  Grid  infrastructure, 

GIDA can take advantage of the user's global name. When an 

IDS detects  an intruder  it  warns other  IDSs using the user's 
global name. When an IDS receive a warning it has the choice 
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whether to accept or deny the warning according to the IDS 
QoS and trust relationship to the IDS sending the warning. If 
the receiving IDS chooses to accept the warning then the user's 
global  name  is  mapped  to  the  local  name  at  each  IDA 
registered with the IDS that accepted the warning. Using the 
local name the account can be disabled and appropriate actions 
should be taken. This example shows the benefit of building 
on top of the Grid infrastructure because using the global name 
of the user enabled interoperability between IDSs which would 
be otherwise difficult to implement.

The  administrative  domains  can  have  local  intrusion 
detection  system  that  detects  local  intruders.  This  local 
intrusion detection system can cooperate with GIDA to help it 
find  the  intruders.  When an intruder  is  detected  locally,  the 
IDA is warned which will then signal all the registered IDSs 
that are then responsible to warn other IDSs and signal other 
registered  IDAs to  take appropriate  actions.  In this  case the 
local intrusion detection system will detect the intrusion based 
on the local name of the user that will be converted at the IDA 
to the Grid global name of that user. The global name will be 
used as in the previous example to warn other IDSs.

5.2.1 The Data Gathering Module

As  mentioned  before,  the  DGM  is  responsible  for 
gathering data about  the monitored system that  may contain 
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useful information to detect intrusion. Taking a closer look at 

the  DGM  as  shown  in  Figure  5.2  will  show  its  main 
components. The small circles labeled with “A” are agents that 
work for the IDA and are specialized in monitoring a specific 
resource or component of the system. Such as system log files, 
processes started, requests for processor time and storage pace, 
and so on.  An agent can also be monitoring the local intrusion 
detection system to get data about locally detected intruders. 

These agents are system dependent. They are created specially 

for  each  system  depending  on  its  hardware  and  software 
platforms. These agents are responsible to deal with the Grid 
heterogeneity. They are designed specially for each system but 
can be used to get information about that system in a standard 
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format.

The  Intrusion  Detection  Agent  (IDA)  is  the  main 
component of the data gathering module. It uses the agents to 
get  standard  information  about  the  monitored  system.  This 
information is summarized and formatted in a standard format 
to  be  ready  for  analysis.  The  IDA  is  also  responsible  for 
registration with one or more IDSs. The gathered data is then 
sent to all registered IDSs.

There  is  also  a  user  interface  for  the  DGM  that  is 
connected to the IDA and used to monitor and configure the 
agents and also to register with IDSs and to check the status of 
the system and to see if intruders are detected.

5.2.2 The Data Analysis Module

The Intrusion Detection Server (IDS) corresponds to the 
Data Analysis Module (DAM). It has two sub modules that are 
the  analysis-and-detection  module  and  the  cooperation 
module.  The IDS first  receives  the  data  from the  registered 
IDAs  and  stores  this  data  in  the  Grid  Information  Service 
(GIS) or a special database.  Then the analysis and detection 
module analyzes the gathered data and queries the cooperation 
module  to  obtain  results  from  other  analysis  and  detection 
modules of other registered IDSs and uses them all to generate 
a final decision about the current users (intruders / normal).
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The analysis can be done using any approach based on 
the  decision  of  the  implementer.  The  cooperation  module 
should  use  standard  and  open  protocols  to  enable 
interoperability. The proposed system has the ability to either 
use the Grid Information Service (GIS) protocols to locate and 
query  other  IDSs  or  to  use  Peer-to-Peer  (P2P)  protocols  to 
locate and query other IDSs. Both approaches are distributed, 
scalable,  and  fault  tolerant.  In  the  case  of  P2P each IDS is 
considered  as  a  peer  in  a  community  where  each  peer 
contributes with its analysis results in favor of being able to 
get other results. The only restriction here is that, an IDS only 
exchange information with other trusted IDSs according to a 
predefined trust relationship.

The  GIDA  can  be  viewed  as  abstract  layers  in  a 

hierarchical manner as shown in Figure 5.3. The First layer is 
the specialized agents responsible for data gathering about the 
monitored system. The Second layer represents the IDAs. Each 
IDA is responsible for one administrative domain, it receives 
the data from the agents and prepare them and send them to be 
analyzed.  In  addition  it  may  receive  warning  signals  from 
IDSs. The Third layer has the IDSs which are responsible for 
the analysis of the gathered data.

Looking at the hierarchy in Figure 5.3 it can be noticed 
that there is no head or root for this hierarchy. This is due to 
the fact that all components of the GIDA are distributed and 
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there is no single centralized control  module to be placed at 
the top. The figure also shows the overlapping of the different 
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stages  of  data  gathering,  preprocessing,  and  analysis  of  the 
proposed GIDA.

The  proposed  GIDA  is  an  extensible  and  open 
architecture that can be implemented in various ways. It meets 
the characteristics  and requirements of Computational  Grids, 
as elaborated in the next section. The detailed implementation 
of the proposed GIDA modules and protocols are illustrated in 
the next chapter.

5.3 GIDA Compatibility with the Grid

The GIDA should be compatible with the characteristics 
and constraints introduced by the Grid to ensure its successful 
implementation  in  a  Grid  environment.  The  GIDA 
implementation  should  be  built  on  top  the  Grid  Services  – 

introduced in Section 1.1 – as following:

● Resource Management:  The agents  should  use the 

log files generated by the resource management services to 
gather  useful  information  about  user  interactions  with  the 
resources. The IDAs and IDSs themselves can be considered 
as resources that are managed by the resource management 
services. For example an IDA can request registration to an 
IDS through a resource management service.

● Information  Services: IDAs  should  use  the  Grid 

information  services  to  find  available  IDSs,  query  their 
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capabilities,  and  check  their  status.  IDSs  should  also  use 
these  services  to  insure  that  the  registered  IDAs  are  still 
available  and  not  disconnected.  IDSs  may  also  use 
information services to locate and query other IDSs.

● Data  Management: Data  management  services 

should be used to securely and efficiently transfer data from 
IDAs to IDSs and also to transfer results among IDSs.

● Security: The  security  issues  should  be  managed 

using Grid Security Infrastructure (GSI). Each IDA and IDS 
should have a certificate that will be used in authentication 
between IDAs and IDSs, and also between IDSs themselves. 
The  agents  are  considered  local  because  they  only  work 
inside a domain and communicate only with this domain's 
IDA, so they do not need certificates. The security services 
are  used  to  enforce  trust  relationships,  because 
authentication will  fail  if  the two participants  do not  trust 
each other.

The  Grid  characteristics  and  constraints  were  also 

introduced  in  Section  1.1 and in  the  following the  GIDA is 
checked to be compatible with them:

● Heterogeneity:  The IDA, and its  agents,  deals with 

the heterogeneity  of the Grid resources.  For each class  of 
resources  – Clusters,  Super Computers,  Databases,  and so 
on – special agents and an IDA is built to suit that resource 
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hardware and software. The IDSs are also heterogeneous so 
they can cover the needs of all resources.

● Scalability:  The  GIDA  components  are  all 

distributed.  Centralized components  were avoided because 
they cause problems with scalability. Although distribution 
guaranties  scalability  but  it  does  not  ensure  performance 
and efficiency of the system. This issue will be examined in 
the next chapter.

● Dynamicity or Adaptability:  In a Grid environment 

the failure is the rule not the exception. With a large number 
of  resources  distributed  among  different  administrative 
domains, each resource may join or leave in an uncontrolled 
manner.  To handle  this  there  are  multiple  IDSs so in  the 
case of the failure or unavailability of an IDS other IDSs can 
do its job. Also to increase the fault tolerance, each IDA can 
register with multiple IDSs as presented before.

● Multiple  administrative  domains  and  autonomy: 

Resources  in  the  Grid  are  controlled  by  different 
administrative  domains  and  owned  by  different 
organizations.  The  autonomy  of  these  sites  must  be 
protected.  Not all  domains  agree to  work with each other 
and share  information.  The GIDA addresses  this  problem 
through  providing  different  trust  relationships  among 
participants.
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● No  Centralized  Control: There  is  no  centralized 

control in GIDA. The decision is made through cooperation 
among IDSs and each domain has the choice to accept or 
deny a warning signal.

● Using Standard Protocols: The GIDA is built on top 

of  the Grid and uses standard,  open,  and general  purpose 
protocols.

● Deliver  None  Trivial  QoS: The  heterogeneous 

nature  if  IDSs  that  enabled  them  to  implement  different 
intrusion  detection  techniques  with  different  properties 
together  with  allowing  an  IDA  to  register  with  multiple 
IDSs has enabled each domain to deliver non trivial quality 
of service.

The above analysis shows that the design of the GIDA 
was  made  with  the  Grid  and  its  properties  in  mind.  The 
compatibility  of  the  GIDA  with  the  Grid  makes  it  a  good 
candidate for Grid intrusion detection systems. Following the 
GIDA  can  generate  many  systems  with  different 
characteristics and performance.
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Chapter 6: The proposed GIDA 

Implementation

This chapter presents a proposed implementation for the 
proposed  Grid  Intrusion  Detection  Architecture  (GIDA) 
components. This implementation represents an instance of the 
general  and open GIDA. This  proposed implementation  will 
use computer simulation to simulate different organizations of 
Grid environments including resources, users, and IDAs. The 
IDSs in  this  proposed  implementation  will  be homogeneous 
and implemented using Learning Vector Quantization (LVQ) 
neural  network  for  data  analysis  and  simple  protocols  for 
cooperation between the IDSs.

The proposed GIDA needs to be tested and verified to 
prove its compatibility with the Grid environment and to prove 
its  applicability  in  real  world.  The  purpose  of  this 
implementation  is  testing  and evaluating  GIDA and give  an 
insight  into  its  properties,  so  the  implementation  should  be 
simple and use basic and standard techniques to concentrate on 
the  GIDA  properties  and  to  ensure  that  the  focus  is  not 
diverged to complex techniques and fine tunings. The simple 
and well known techniques will also enable experts to predict 
the effect  of changing them – with more efficient  and more 
advanced techniques – on the GIDA.

125



Chapter 6: The proposed GIDA Implementation

6.1 Simulating the Computational Grid

Computer  simulation  has  always  been  used  as  a  cost 
effective solution for the evaluation, testing, and proving the 
effectiveness  of  new  architectures  and  models  before 
implementing them in real world applications [4]. Simulation 
also  allows  researchers  to  perform  experiments  repetitively 
using different combinations and arrangements in a controlled 
environment to find the most optimum solution in an effective 
way that would otherwise be both cost and time consuming.

Researchers  in  the  field  of  Computational  Grids  face 
many  problems  in  their  research  because  of  the  special 
characteristics of Computational Grids. Below is a review of 
some of the main problems.

Most  of  the  researchers  do  not  have  access  to  real 
Computational  Grids or  testbeds  such as [10][76][78][99] to 
perform their experiments on it.  This is due to the high cost 
and technical and organizational challenges needed to build a 
real Computational Grid.

Even  those  who  have  access  to  real  Computational 
Grids face problems. Computational Grids contain expensive 
resources  such  as  super  computers,  large  clusters,  other 
expensive  devices  such  as  electronic  telescope,  and  so  on. 
Dedicating a portion of these resources' time to researchers to 
perform  their  experiments  increases  research  costs  and  in 
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many cases is infeasible and not applicable.

Computational Grid applications can take days or even 
weeks to complete and are complex in nature. Experimenting 
using real applications will waste lots of researchers' time and 
effort because of the long period of time needed to complete 
their execution and the time needed to build test applications 
to examine different application models and problem solving 
approaches.

Even  if  assuming  that  both  the  resources  and  test 
applications are available for the researchers and that the time 
and  cost  constraints  are  relaxed.  It  is  very  difficult  to 
coordinate and control the experiment and gather information 
about it. This is due to the large size of Computational Grids 
and  the  fact  that  both  the  resources  and  users  are 
geographically  distributed  and  are  owned  by  different 
administrative domains which makes the coordination between 
them very  complex,  creating  a  controlled  environment  very 
difficult  because  of  their  dynamic  nature,  and  repeating  the 
experiment  and  testing  different  combinations  and  different 
resource  arrangements  and  scenarios  with  varying 
specifications  and  loads  considered  impossible.  Testing  the 
scalability is another problem which is limited by the size of 
the Computational Grid available to the researchers.

Because of the above problems most of the researchers 
have  turned  to  simulate  Computational  Grids.  Tools  for 
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simulating  Computational  Grids  have  been  developed  and 
used  in  research  including  for  example:   GirdSim  [59], 
SimGrid [25], ChickSim [12], Brics [28], and MicroGrid [49]. 
Researchers use this simulated Computational Grid to test their 
algorithms,  models,  and  architectures.  After  they  are  well 
established  and  tested,  they  are  implemented  on  real 
Computational Grids and retested only in the final phase. This 
reduces the time, cost, effort, and accelerates the research and 
give better results.

6.2 The Intrusion Detection Agent Implementation

The Grid Intrusion Detection Architecture (GIDA) can 
be  divided  into  two  main  modules:  the  Intrusion  Detection 
Agent (IDA) and the Intrusion Detection Server (IDS). For the 
purpose of validating and testing the GIDA, the IDAs and the 
Grid environment where simulated. This helps in overcoming 
problems similar  to  those  presented  in  the  previous  section. 
The  IDS  is  then  tested  using  the  data  generated  from  the 
simulation.

Unfortunately  most  of  the  available  Grid  simulation 
tools  are  designed  to  solve  problems  related  to  resource 
management  and  scheduling  ignoring  security  related 
requirements  such  as  authentication,  authorization,  users' 
behavior,  and managing trust  relationships  between different 
administrative  domains.  For  these  reasons  a  new  Grid 
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simulation  toolkit  was  developed  that  addresses  security 
requirements  which  will  be  used  to  test  the  proposed  Grid 
Intrusion Detection Architecture.

6.2.1 The Simulation Problem Definition

Testing  and  validating  the  proposed  Grid  Intrusion 
Detection Architecture requires performing experiments on a 
variety  of  resources  and  users  arrangements  with  varying 
parameters including:

● Increasing the number of users and resources to test 
the scalability of the architecture by measuring its ability to 
detect intruders with this increase in grid size.

● Comparing  between  standard  distributed  intrusion 
detection systems having a single analyzing and detection 
module  (one  IDS)  and  the  proposed  architecture  with 
increasing  number  of  IDSs (decreasing  the  scope of  each 
IDS).

● The effect of overlapping the scopes of the IDS (each 
resource can register with one or more IDS) and the ability 
of the architecture to detect intruders. In addition, study the 
effect  of  this  overlapping  with  different  degrees  on  the 
robustness and fault tolerance of the proposed architecture 
in case of one or more IDS have been compromised.

● The  effect  of  trust  relationships  between  different 
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administrative  domains  on  the  cooperation  between 
different IDSs to detect intruders.

Performing these experiments on a real Computational 
Grid has many problems including:

● Controlling the number of users and resources to test 
the scalability.

● Log  files  containing  data  about  users'  actions  can 
contain important data and sometimes are protected and not 
available to researchers.

● Most of the administrative domains will not agree to 
change their security policy and trust relationships to allow 
different experiments.

● Real  Computational  Grids  are  not  controlled 
environment because of its dynamic nature, distributed large 
number  of  user  and  resources,  and  owned  by  different 
administrative domains. Because of this an experiment can 
not  be  repeated  to  test  the  effect  of  changing  some 
parameters.

For these problems and others presented in the previous 
section,  simulation  becomes a good solution  that  overcomes 
these challenges and accelerates the research.

The simulation environment will  allow performing the 
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required  experiments.  As  summarized  in  Figure  6.1  the 
simulated users  will  send requests  to the available resources 
based on each user behavior. Intruders are also simulated and 
will also send requests to resources. The simulated resources 
will  receive  the  users'  requests  and  report  them  to  the 
registered IDSs. The IDSs here are just dummy IDSs that do 
not perform any analysis but only dump the received data in a 
log file for later process by the real IDS. Each experiment will 
generate a dataset consisting of one or more log files. These 
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datasets are then used the process of testing the IDSs.

6.2.2 The Proposed Grid and IDA Simulator

The  simulation  environment  consists  of  a  set
U={u

1
, u

2
, u

3
,  u

n
} of  users,  a  set I={i
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, i
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, i

3
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} of 

intruders,  a  set R={r
1
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2
, r

3
,  r

k
} of  resources,  a  set

S={s
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, s
2

, s
3

,  s
p
} of  services  provided  by  the  resources, 

and  a  set D={d
1
, d

2
, d

3
,  d

q
} of  IDSs.  In  general  the  two 

inequalities should be true: qkn and mn . The value of
p is related only to the number of services available in the 

simulated Grid environment. Each resource ri will have a set 
S

ri

⊆S of available services, a set D
r i

⊆D of registered IDSs, 

and a set U
r i

⊆U of authorized users. Each user u j will have 

a  set R
u j

⊆R of  resources  that  this  user  will  use,  and  a  set
S

u j

⊆S of services that are provided by these R
u j

resources.

Each user u
j
∈ U will pick a service s

k
∈ Su j

and find a 

resource r
i
∈ R

u j
that have s

k
∈ S

r i
and sends a request for the 

service s k to it. This will be repeated during the simulation. 

An intruder i
l
∈ I has  the  capability  of  requesting  a  service

s k from the resource ri masquerading as the user u j . Each 

resource r i that  receive  a  request  from  a  user u j will 

generate a record similar to the one shown in  Figure 6.2  that 
contains the user global name, service name, resource name, 
time  of  request,  start  time,  end  time,  amount  requested  if 
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applicable, the unit used to measure the specified amount, and 
any other useful information. Then the generated record will 
be sent  to  all  registered  IDSs.  Each IDS (dummy IDS) will 
receive records from resources in its scope and write it to a log 
file. After the simulation ends these log files will represent the 
dataset for the simulated experiment. 

One  major  problem  is  how  to  simulate  the  user 
behavior.  That is  when and what service will  a user  pick to 
execute on which resource, in a way that is similar to users in 
real world where each user has his own unique behavior and 

habits. To do this each user u j will have one or more profile. 

Each profile will consist of the following:

● The period of day (start time and end time) in which 
this profile is valid. For example there may be a profile for 
the morning another for the evening and so on.

● A  general  category  of  the  profile.  Such  as 
administrator,  programmer,  scientist,  and  so  on.  This 
requires  the  services  in  the  set  S  to  be  also  classified  to 
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similar categories.

● The average frequency or average number of request 
per unit time for this profile.

● An array A filled and shuffled with pairs (a, b) where
a ∈ Ru j

, and b ∈ Su j
and belongs to the profile's category. 

Values   and  , which are the main parameters of normal 

distribution, are set for each array. These values are used to 
select  a  pair,  using  normally  distributed  random  number, 
from the array to represent a user's request.

● A  rate  at  which  the  profile  will  change  to  reflect 
changes in user behavior. Changes will be made by adding, 

removing,  and  swapping  pairs  from  the  array  A,  and  by 

changing the values of  and .

According to the current time t during the simulation the 

valid profile p of each user (one having t between its start time 
and end time) will be used to pick a resource and a service (by 
picking an element of the array using normal distribution) at a 
frequency equals to the profile average frequency, and the user 
behavior will be changing during the simulation time.

A  trust  relationship  tree  similar  to  the  one  shown  in 

Figure  6.3 is  required  to  add  trust  management  to  the 
simulation system. This tree is similar to the relationship that 
exists between certificate authorities in systems that uses the 
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Public  Key  Infrastructure  PKI  such  as  the  Grid  Security 
Infrastructure GSI [37]. Each entity in the simulation (users, 
resources, and IDSs) will have a trust level represented by one 
of  the letters  from the trust  relationship  tree.  Each IDA can 
register with IDSs with the same level or above it in the trust 
tree; otherwise the registration will be refused. Similarly a user 
can request  a service from resources  with the same level  or 

higher in the trust tree. For example in Figure 6.3 a user with 
level J can request a service from a resource in level F or B, 
but not form a resource at level E or C. An IDA at level F can 
register with an IDS at level B but not with IDSs at level E or 
J. Trust relationships will also appear when talking about the 
cooperation between IDSs below.
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6.3 The Intrusion Detection Server Implementation

This  component  will  analyze  the  data  generated  from 
the simulation  with the goal  of  detecting  intruders  trying  to 
compromise and misuse a Computational  Grid. As shown in 

Figure 6.4 the log file generated from the simulation step will 
be provided to the appropriate IDS. The IDSs will analyze this 
data  using  the  analysis  and detection  module  and cooperate 
with  other  IDSs using  the  cooperation  module  to  detect  the 
intruders.

The  implementation  of  these  two  IDS  components  is 
described in the following subsections.
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6.3.1 The Analysis and Detection Module

Intrusion detection systems are based on the assumption 
that  the  normal  system use  differs  from malicious  use [68]. 
Intrusion  detection  systems  try  to  detect,  using  different 
mechanisms  and  approaches,  this  difference  in  behavior 
caused by an intruder and take appropriate action to stop the 
intruder. Intrusion detection techniques can be classified either 
according to  the source  of  the data  used for  the analysis  or 
according to the approach taken to analyze the data. In the first 
case it is classified into network based and host based intrusion 
detection systems [39][21]. In the second case it is classified 
into misuse detection and anomaly detection [16].

Network  intrusion  detection  systems  get  their  data  by 

installing a device on the  network capable of monitoring all 

network  traffic  and  the  passing  packets.  They  rely  on  raw 
network packets in their analysis. On the other hand host based 

intrusion detection systems use log files created on each host, 

containing all the operations performed on the host, as the data 
source.  In  the  context  of  Computational  Grids  the  network 
intrusion detection has many disadvantages and problems. The 
following  points  summarize  these  disadvantages  and 
problems:

● It is impossible to have a device installed on the grid 
capable of monitoring all the passing packets because of the 
large scale and distributed nature of the networks involved. 
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Even if this device is distributed on the network, moving the 
raw network packets to the IDS is not efficient so it must be 
preprocessed  and  summarized  at  each  administrative 
domain  before  being  sent  to  the  IDS.  This  may  add 
undesired overheads and complications to the systems.

● Because of security requirements in the grid most of 
the raw packets used are encrypted and this cause problems 
in network based intrusion detection.

● Analysis at a low level such as raw network packets 
makes higher level information, such as the global name of 
the user, not available or hard to discover.

● Network based intrusion detection systems sometimes 
analyze the raw network packets to guess what is the user is 
trying to do. While this information is already available in 
log files.

For these reasons it is recommended to implement the 
GIDA using host based intrusion detection. The data gathering 
module  as  presented  before  is  responsible  for  gathering  the 
data from the log files on each host (or administrative domain) 
and transferring it to the IDS. Because of these reasons areas 

labeled  (1)  and  (2)  in  Table  6.1 that  use  network  based 
approach will not be used.

Misuse and anomaly detection are two techniques that 
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are  used  to  analyze  the  gathered  data  to  detect  intruders. 
Misuse  detection  technique  search  the  gathered  data  for 

patterns and signatures of well known attack types stored in a 

knowledge  base  [16]  on  the  other  hand  anomaly  detection 

technique tries to identify events that appear to be anomalous 

with  respect  to  normal system behavior  [16].  Currently  the 

misuse detection technique can not be used in the context of 
the Computational Grids because the Computational Grids are 
still new and under research, signatures and patterns of attacks 
are not available and the creation of a knowledge base of well 

known  attacks  is  currently  impossible.  In  Table  6.1 areas 
labeled  with  (1)  and  (3)  which  uses  misuse  detection 
techniques are not used in the context of Computational Grids.

From the  previous  analysis  it  is  recommended  to  use 
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host based anomaly detection intrusion detection technique to 
implement the GIDA because it is suitable for Computational 

Grids,  area  labeled  (4)  in  Table  6.1,  it  was  also  used  to 
implement the Grid Intrusion Detection Architecture GIDA in 
this chapter.

Because the GIDA is an open architecture, the analyzing 
and  detection  module  can  be  implemented  using  various 
techniques. Such as neural networks, statistical analysis, data 
mining, and so on. It is possible also to be implemented using 
different  technique  on  different  IDSs  in  the  same 
Computational  Grid.  The  implementation  described  in  this 
chapter  assumes  homogeneous  IDSs  all  using  anomaly 
detection  implemented  with  neural  networks.  The  neural 
network  used  is  the  Learning  Vector  Quantization  (LVQ). 
Properties  of  LVQ and reasons  of  choosing it  are  presented 
below.

6.3.2 The Learning Vector Quantization

Learning Vector Quantization (LVQ) [85] is a neurally 
inspired, nearest neighbor classifier based on Kohonen's work 
with  self-organization  [86][87][88].  Quantization  can  be 
defined as mapping a broad range of input values to a smaller 
number  of  output  values.  In  LVQ,  the  input  values  can  be 
thought of as the decision boundaries between a set of classes, 
and the output values are a predetermined number of nodes or 
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reference vectors.  The strategy behind LVQ is to effectively 
train  the  reference  vectors  to  define  the  Bayes  Optimal 
decision boundaries between the classes. Correctly positioning 
the reference vectors in LVQ is accomplished in a supervised 
manner by presenting a training pattern to an input vector and 
adjusting  the  position  of  selected  reference  vectors  in 
accordance with a set of learning rules, as will  be described 
later in this section.

The training algorithms associated with LVQ attempt to 
adjust the position of the reference vectors so that each input 
pattern  has  a  reference  vector  of  the  right  category  as  its 
nearest  neighbor.  Classification,  subsequently,  is  carried  out 
using  a nearest-neighbor  method.  Kohonen argues  [88]  that, 
asymptotically, the reference vectors approach the centroids of 
their resulting Voronoi tessellation. A Voronoi tessellation is a 
partition  of  ℜd into  disjoint  polytopes  such that  all  training 

patterns within a polytope have the same reference vector as 
their  nearest  neighbor.  Thus,  the  goal  of  LVQ  is  to 
approximate  the  boundaries  of  the  Voronoi  polytopes, 
therefore  approximating  the  decision  surfaces  of  a Bayesian 
classifier.  Reference  [3]  provides  a  rigorous  mathematical 
description of the LVQ process and proves convergence of the 
algorithm under certain asymptotic conditions. 

There  are  several  versions  of  LVQ  reported  in  the 
literature  [89].  While  each  LVQ  algorithm  attempts  to 
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approximate the Bayes decision surfaces between classes, the 
learning rules associated with each LVQ algorithm are slightly 
different. In this initial research, the LVQ algorithm referred to 
as  OLVQ1  was  used.  OLVQ1  is  an  enhancement  of  the 
original LVQ1 algorithm which is described below.

The LVQ1 Algorithm

Assume that a number of “codebook vectors” mi (free 

parameter  vectors)  –  here  representing  the  legitimate  users 
behavior  –  are  placed  into  the  input  space  –  all  possible 
behaviors  –  to  approximate  various  domains  of  the  input 
vector x by their quantized values. Usually several codebook 
vectors are assigned to each class – single user – of x values, 
and  x is then decided to belong to the same class to which 

the nearest mi belongs. Let

c = min
i
{∥x−mi∥} (1)

define the nearest mi to x , denoted by mc .

Values  for x that  approximately  minimize  the 
misclassification  errors  in  the  above  nearest-neighbor 
classification  can  be  found  as  asymptotic  values  in  the 
following learning process. Let x t  be a sample of input and 

let  the mit represent  sequences  of  the mi in  the  discrete-

time domain. Starting with properly defined initial values, the 
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following define the basic LVQ1 process:

mc t1 = mc t    t[ x t −mc t ]

if x and mc belong to the same 

class,

mc t1 = mc t  −  t[ x t −mc t ]

if x and mc belong to different 

classes,

mit1 = mi t for i≠c .

Here 0t 1 ,  and t  may  be  constant  or 
decreasing monotonically with time. In the above basic LVQ1 
in is recommended that  should initially be smaller than 0.1.

The optimized-learning-rate LVQ1 (OLVQ1)

The basic LVQ1 algorithm is now modified in such a 

way that an individual learning rate it  is assigned to each
mi .  The discrete-time learning  process  will  be as  follows. 

Let c be defined by Equation (1). Then:

mc t1 = mc t    c t [ x t−mc t ]

if x is classified correctly,

mc t1 = mc t  −  c t [ x t−mc t ] (2)
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if the classification of x is incorrect,

mit1 = mi t for i≠c .

The optimal values of it  are determined by the recursion:

c t  =
c t−1

1  s t c t−1

Where s t  =1 if the classification is correct and s t  =−1
if the classification was wrong.

6.3.3 Using LVQ for implementing IDSs

The LVQ neural  network  was  used  to  implement  the 
analysis and detection module part of all the IDSs as shown in 

Figure 6.5.

The LVQ was used for the following main reasons:

● The LVQ is similar to the SOM neural network and 
both are widely used for classification. LVQ is used in this 
context  to  classify  user's  behavior  to  either  legitimate  or 
intruder based on the previous user behaviors that were used 
to  train  the  LVQ neural  network.  LVQ was also  used  in 
other intrusion detection systems such as [44].

● In  the  Grid  environment  LVQ take  advantage  over 
SOM because it is supervised and uses the available global 
user names as class labels during classification process. This 
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supervision helps improving the classification process.

● It  is  important  to  note  this  methodology  does  note 
require  the generation of masquerader  data. Training does 
not require the inclusion of malicious records. The system is 
trained based-on legitimate user data, and then measures the 
deviation of subsequent users from these profiles. Thus, the 
problem of negative data is obviated.
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Before  applying  the  data  in  the  log  files  –  generated 
from the simulation – to the LVQ it must be first reprocessed 

Figure 6.5. Preprocessing is done by grouping user's actions in 
the log files in windows. Each window will contain actions of 
the same user. The number of actions within a window can be 
specified by a fixed number of actions or by a specified period 
of time or both. The global user name is used as a label for the 

window. Each window represents an input vector used to train 

the  LVQ  and  the  label  is  used  in  the  supervised  learning 
process.

After  training  the  LVQ is  ready  for  detection.  User's 
actions from the testing log file is also grouped in windows 
and applied to the neural network that will try to classify it to 
either normal or intruder. The decision and response are made 
based  on  this  classification  and  the  results  of  other  IDSs 
classifications that are known through the cooperation module.

A  challenge  that  all  developers  of  anomaly  detection 
based  intrusion  detection  classifiers  must  address  is  feature 
selection/data  reduction.  Clearly,  the  inclusion  of  too  much 
data  will  adversely  impact  the  performance  of  the  system, 
while  the  inclusion  of  too little  data  will  reduce  the  overall 
effectiveness  of  the  system.  In  addition,  most  anomaly 
detection approaches must address the problem of conceptual 
drift  [43].  In  this  domain  the  problem  of  conceptual  drift 
manifests itself in that a user s behavior changes over time. An 
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effective  anomaly-based  intrusion  detection  system  should 
adapt to this change while still  recognizing intrusive actions 
and not adapting to those.

Because the behavior of the users change slightly over 
time, the system after a period of time will give a high rate of 
false positive alarms (normal users classified as intruders). To 
overcome this problem the neural network must be retrained. 
The  retraining  can  be  manual  based  on  the  decision  of  the 
system administrator or automatic at a fixed period of time.

6.3.4 The Cooperation Module

Each  IDS  has  a  scope.  This  scope  is  defined  by  the 
administrative domains (resources) that chose to register with 

this  IDS  as  was  shown  in  Figure  5.1.  The  analyzing  and 
detection module will make its decisions about users based on 
the data available in its scope. Because other information that 
exists outside its scope is invisible and not available for use. 
This will produce poor results because other important events 
may  occur  in  the  scope  of  other  IDSs.  Here  arises  the 
important rule of the cooperation module. It is responsible for 
distributing  the  intrusion  detection  problem  among  IDSs. 
Instead  of  having  one  IDS,  there  will  be  several  IDSs each 
responsible  for  a  portion  of  the  Grid  environment.  The 
cooperation module will be responsible for sharing the results 
obtained at each IDS among the other IDSs. This sharing will 
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be achieved through a protocol that defines how will an IDS 
query and share its results with other IDSs.

This  sharing can be either  implemented using peer-to-
peer techniques [19] or by using the Grid Information System 
(GIS)  to  share  the  results.  Both  techniques  are  distributed, 
does not rely on a central server and it supports the dynamic 
nature of Computational Grids.

The  protocol  used  in  this  implementation  is  simple. 
Each IDS has a subset of users that are in its scope. For each 
user, the IDS will query other IDSs (peers) for their results of 
this user. Then the received results will be used together with 
the  local  result  to  decide  whether  the  user  is  intruder  or 
normal.  The decision  is  made based on the number  of  miss 
classifications  in  a  certain  period  of  time  crossing  a 
predetermined threshold value. When an intruder is detected at 
an  IDS,  a  warning  will  be  sent  to  other  IDSs  to  take 
appropriate actions. 

This protocol can be enhanced by adding weights to the 
received results from other IDSs based on the characteristics 
of the sending IDS. This weight can be calculated for each user 
based  on  the  length  of  history  used  to  train  the  LVQ,  the 
number of the users' records, and the scope of the IDSs among 
others.

The trust relationships between different  entities add a 
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constraint  on  the  protocol  described  above.  As  shown  in 

Figure 6.3. An IDS can request from another IDS only if it has 
a  trust  level  equal  to  or  lower  than  the  trust  level  of  the 
requested IDS with respect to the trust relationship tree.
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Chapter 7: Experimental Results

The analysis  of the results  from different  test  cases is 
important to give  better understanding of the GIDA and the 
factors affecting its performance. This understanding will also 
help to fine tune an implementation of the GIDA to best fit a 
specific Grid environment.

This  Chapter  starts  with  listing  the  measurement 
parameters that will be used to evaluate the performance of the 
Presented  GIDA implementation.  Then shows and examines 
the values obtained for these parameters in different test cases 
each  trying  to  illustrate  different  aspects  of  the  GIDA 
implementation.

7.1 Evaluation Parameters and Test Approach

The performance of the proposed GIDA implementation 
is measured by the following five main parameters:

● False  positive  percentage: This  parameter  reflects 

the  percentage  of  normal  Grid  users,  which  are  miss 
classified by the GIDA implementation  as intruders,  from 
the  total  number  of  legitimate  users  in  a  specific  Grid 
environment.

● False  negative  percentage: This  parameter  reflects 

the percentage of intruders  that  are miss classified by the 
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system as normal users from the total number of intruders in 
an environment.

● Training time: This measures the time (in minutes) 

needed  to  train  the  LVQ  neural  network.  The  software 
package used in the experiments is the LVQ_PAK version 
3.1 [90] running on a PC with Pentium VI 2.8GHz processor 
and 512MB RAM. The Linux  distribution  called  “Fedora 
Core 1” was used as the operating system.

● Detection duration: This measures the time duration 

(in minutes) needed by the GIDA implementation to detect 
that there is an intrusion occurring. It is the duration from 
the start of the attack until it was detected.

● Recognition  percentage: This  is  measured  after 

training  the  LVQ neural  network  with  test  data  to  check 
how the accuracy level of the LVQ to correctly classify and 
recognize users  with the absence of  intruders.  Ideally  this 
should be 100% but because similarity and overlapping of 
the users' behaviors, some users are miss classified.

The  value  of  these  parameters  is  affected  by  the 
environment and conditions in which the system is running. In 

this variable environment there are controllable issues such as 

the data preprocessing applied to raw data before using it to 

train the LVQ and the number of IDSs that exist in a certain 
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Grid environment. On the other hand there are uncontrollable 

issues in  a Grid environment  such as the  number of  users, 

number  of  resources,  and  number  of  intruders.  The 

designers  and  administrators  of  a  deployed  GIDA 
implementation in a certain Grid environment must adapt the 
controllable issues to best fit the uncontrollable issues to give 
the best possible performance. The remainder of this chapter 
presents different experiments each concentrating on the effect 
of  one  issue  of  the  environment  on  the  performance  of  the 
presented  GIDA  implementation.  The  results  from  these 
experiments  will  both  help  in  proving  the  applicability  and 
suitability  of  GIDA  to  Grid  environment  and  help 
administrators  of  GIDA  implementations  to  fine  tune  and 
control its performance.

7.2 Data Preprocessing

The records  in  the  log  files  are  preprocessed  (Figure  

6.5)  before  applying them to the LVQ neural  network.  This 
preprocessing is done by grouping several  records  or  events 
for the same user in a single victor that will be later applied to 
the input neurons of the LVQ. A window manages the process 
of grouping records together. Records for the same user that 
lies  in  the  same window are  grouped  together.  The records 
inside  a  window are  selected  depending  on  the  type  of  the 
window  used  in  the  preprocessing.  The  window  can  take 

several forms (Figure 7.1) depending on how it is controlled. 
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It can be one of the following:

● A window can  be  controlled  by  a  fixed  number  of 
records in each window (Type 1). For example if the size of 
the window is ten, then each ten records for the same user 
are grouped together.

●  A window can be controlled by a fixed time period 
for the window regardless of the number of records in this 
period  (Type  2).  For  example  if  the  window has  a  fixed 
period  of  five  minutes  then  all  the  user's  records  that 
happened in these five minutes are grouped together.
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Figure 7.1: Different possible types of windows

Type 1: Fixed number of records/events.

Type 3: Fixed number of events with time limit.

Type 4: Fixed events with time limit ignoring incomplete.

Type 2: Fixed time period window.

Type 5: Fixed events with time limit fixing incomplete.
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●  Another  possibility  is  to  have  a  mix  of  the  two 
previous types which will create a hybrid window with both 
size and time limits. In this case the number of records is 
determined depending on which limit is reached first (Type 
3).  For  example  a  window may  have  a  fixed  size  of  ten 
records  and  a  period  of  five  minutes.  In  this  case  if  ten 
records are generated in less than five minutes then they are 
grouped together and new window starts, on the other hand 
if  five  minutes  passes  while  having  less  than  ten  records 
then they are also grouped and new window starts.

● The  hybrid  approach  can  have  a  problem  when  a 
window  has  a  few  number  of  records.  Because  these 
windows will  not  have enough information  to reflect  user 
behaviors.  This  problem  can  be  fixed  either  by  ignoring 
incomplete  windows  (Type  4),  or  by  fixing  incomplete 
windows by overlapping it  with the previous window and 
adding some of its records  (Type 5) so it will have enough 
information about the user.

The  results  in  Figure  7.2 are  for  fixed  size  window 

(Type  1)  starting  from 5  records  to  40  records.  Figure  7.3 

shows the results for fixed duration window (Type 2) starting 
from 100 seconds to 2400 seconds. The hybrid window (Type 

5) results are shown in Figures 7.4, 7.5, and 7.6 for different 
combinations  of  size  and  duration.  Note  that  in  the  hybrid 
approach increasing the window duration will make it similar 
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to  Type  1,  while  increasing  the  window  size  will  make  it 
similar to Type 2.

Generally the experiments in Figures 7.2 to 7.6 test the 
effect of increasing the number of records in the window on 
the  system  performance.  This  increase  in  the  number  of 
records in the window may happen because of increasing its 
size, duration, or both depending on the type of window used. 
The  following  general  behavior  was  conducted  from  these 
experiments as a result of increasing the window capacity:

● The false positive percentage is reduced as a result of 
increasing  the  window  capacity.  This  is  normal  as  more 
records  in  a  window  means  that  it  will  contain  more 
information  about  the user  and reduces  the  probability  of 
miss classification.

● On  the  other  hand,  this  increase  in  the  capacity 
minimized the effect of malicious records because they are 
grouped with many legitimate records. This resulted in an 
increase  in  the  false  negative  percentage  which  is  not 
desired.

● Increasing  the  capacity  means  that  completing  the 
window will need longer time. This resulted in increasing 
the detection duration time which is not desired because the 
LVQ must wait until the window is complete before it can 
tell wither it match its user's behavior or not.
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● Increasing  the  capacity  of  the  window  means  that 
there will be less number of total windows or victors  that 
will be used in training the LVQ. This resulted in reducing 
the training time.

● More capacity means more information about the user 
and  better  recognition.  So  the  recognition  of  the  LVQ 
increased by increasing the capacity.

The  increase  of  window  capacity  had  positive  and 
negative  effect  on  different  parameters  so  there  must  be  an 
optimization  to  keep  these  parameters  at  the  desired  value. 
Increasing  the  number  of  IDSs  resulted  in  fewer  records 
available for each IDS which means that Type 1 windows will 
span  large  period  of  time  while  Type  2  window  will  have 
small capacity compared with having only one IDS. Both of 
these  two  extremes  have  disadvantages  as  presented.  The 
hybrid window (Type 5) gave better results because it kept the 
number  if  records  in  the  window at  the  desired  value  even 
when  using  multiple  IDSs  and  it  also  kept  the  detection 
duration stable.

For Example, increasing the number of IDSs from one 
IDS to  four  IDSs  has  different  effect  on  the  false  negative 
percentage depending on the window type. The Type 1 fixed 
window with 10 records has decreased it from 47% to 7%. The 
Type 2 window with  900 seconds  duration  has  decreased  it 
from 70% to 20%. While the Type 5 Hybrid window with 10 
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records  and  900  seconds  duration  has  the  best  effect  by 
reducing  it  from  37%  to  0%.  This  difference  shows  the 
advantage  of  using  the  Hybrid  window  in  a  distributed 
environment for the data preprocessing.

7.3 Number of IDSs

This  is  one  of  the  most  important  issues  examined 
because it shows the scalability of the system and proves the 
possibility  of  distributing  the  intrusion  detection  problem 
among  multiple  IDSs.  The  experiments  show  the  effect  of 
increasing  the  number  of  IDSs  from  1  to  24  for  Grid 

environments having 50, 200, and 350 users (Figure 7.7). The 
following results were conducted from the experiments:

● Increasing  the  number  of  IDSs  increased  the 

percentage of false positive (Figure 7.7.a). This is because 
less  information  is  available  to  each  IDS  about  the  user 
behavior  that  makes  it  more  prone  to  errors.  This  is  not 
desired  but  it  is  less  critical  than  an  increasing  in  false 
negative percentage, because false positive does not means 
intrusion  but  it  is  only annoying because legitimate users' 
access  to  resources  may  be  denied  if  they  are  falsely 
detected as intruders.

● Meanwhile increasing the number of IDSs decreases 

the  percentage  of  false  negative  (Figure  7.7.b),  because 
among  the  few and  narrow  user  actions  monitored  at  an 
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IDS, detecting a deviation form them is easier than detecting 
deviation  from  many  diverse  actions.  This  is  a  very 
important issue because false negative is critical because it 
means that an intrusion is not detected, and in this case it 
gives great advantage to distributed IDSs over a centralized 
IDS.

● Increasing the number of IDSs has a great effect on 

reducing  the  training  time (Figure  7.7.c).  This  is  because 
dividing the training data set among multiple IDSs reduces 
the number of input vectors used for training in the complex 
LVQ algorithm. This is also an advantage of the distributed 
system over the centralized one and shows great scalability. 
The  size  of  possible  input  data  size  is  bounded  by  the 
available  memory  on  the  computer  used  for  training.  So 
after a certain size distributing the problem will be the only 
solution.

● The  increase  of  the  number  of  IDSs  only  slightly 

decreased  the  LVQ recognition  percentage  (Figure  7.7.e). 
This  reduction  is  reflected  in  the  increase  of  the  false 
positive  percentage.  The  reason  for  this  reduction  in 
recognition is the smaller size of data used in training. This 
reduction is small compared with the advantages gained in 
training time and false negative percentage.

● The detection duration was kept at an average of 25 

minutes  (Figure 7.7.d).  This  is  achieved because of  using 
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the hybrid window (Type 5) approach.

These results show that distributed intrusion detection is 
applicable in Grid environments  and also gave better  results 
than  centralized  system  in  all  critical  cases.  This  trade  of 
between false positive and false negative percentages exists in 
all intrusion detection systems. The number of IDSs must be 
carefully chosen to deliver the desired values of false positive 
and negative percentages.

For  example,  in  the  experiments  with  200  users, 
doubling the number of IDSs by increasing their number form 
two to four affected the false positive percentage by increasing 

its value by  8.6% from 0.8% to 9.4% respectively. The good 
news is that this increase in the number of IDSs stronger effect 
on  the  false  negative  percentage  by  decreasing  its  value  by 

16.7% from 20% to 3.3% which is more important parameter 
for  intrusion  detection.  Also  the  training  time  decreased  by 
61% from 142 to 55 minutes. Doubling the number of IDSs 
form 2 to 4 has a weak effect on the detection duration and the 
recognition rate of the LVQ. The detection duration has only 

decreased by 2 minutes from 32 minutes to 30 minutes. This is 
because  the  detection  duration  is  mostly  affected  by  the 
properties  of the window used as introduced in the previous 
section. The recognition rate has only decreased by 5.3% from 
98% to 92.7%.
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7.4 Number of users

This  is  another  important  issue  that  measures  the 
scalability of the system in accepting larger number of users. 
The experiments start with 50 users up to 400 users for Grid 

environments  with  1,  4,  and  8  IDSs  (Figure  7.8).  The 
following was conducted from the experiments:

● Increasing the number of users slightly increased the 

false positive percentage (Figure 7.8.a). This is not desired 
but not very critical.

● The false negative percentage was reduced with the 
increase of the number of users and distribution gave even 

better results (Figure 7.8.b). This result support scalability 
of the system.

● Centralized systems with one IDS was not scalable as 
training  time  increased  exponentially,  multiple  IDSs  kept 

training  time  low  and  gave  much  better  results  (Figure  

7.8.c) that also supports the scalability. This is because of 

the complexity of the LVQ algorithm which is  O(#nodes2)  

and because more users need more nodes to keep accuracy 
high.

● The detection duration was kept at an average of 25 

minutes  (Figure  7.8.d).  This  is  also  achieved  because  of 
using the hybrid window (Type 5).
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● The recognition percentage was slightly reduced with 
the increase of the number of users.

These results showed that the GIDA is scalable and can 
support  a  growing  number  of  users,  and  also  showed  the 
limitation  of  centralized  systems  for  facing  growing  Grid 
environments.

For  example,  in  the  experiments  with  four  IDSs, 
doubling the number of users from 100 to 200 users increased 

the false positive percentage only by 3.3% from 96% to 92.7% 
but  fortunately  meanwhile  decreased  the  false  negative 

percentage by 30% from 33.3% to 3.3%. Doubling the number 

of  users  has  increased  the  training  time  by  800% from 6.9 
minutes  to  55.2  minutes!  This  shows  the  importance  of 
increasing the number of IDSs in supporting scalability. The 
recognition percentage and the detection duration parameters 
were slightly affected by the doubling of the number of users. 
The recognition percentage decreased from 95.9% to 92.7%. 
The  detection  duration  decreased  from  42  minutes  to  30 
minutes.

7.5 Number of resources

The effect of the number of resources on the system is a 
bit tricky, because it indirectly affects the performance of the 
system unlike  the  number  of  users  or  number  of  IDSs.  The 
following  experiments  study  the  effect  of  increasing  the 
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number  of  resources  in  a Grid environment  form 20 to  160 

resources or administrative domains (Figure 7.9):

● Increasing  resources  reduced  the  false  positive 

percentage dramatically (Figure 7.9.a). This is because the 
users  have  wider  variety  of  resources  to  choose  from  to 
perform their tasks. This gave them better distinct behavior 
depending  on which  resource  did  a  particular  user  chose. 
This  is  a  great  advantage  and  can  be  used  to  cure  the 
increase in the false  positive percentages  when increasing 
the  number  of  users  or  number  of  IDSs.  Although  this 
parameter  is  not  controllable,  but  it  is  likely  to  naturally 
increase the number of resources when increasing the size 
of a grid environment and support the scalability.

● The  increase  in  the  number  of  resources  has  very 
slightly increased false negative percentage compared with 

the decrease in the false positive percentage (Figure 7.9.b).

● The  training  time  also  reflects  the  advantage  and 
scalability of distributed approach over the centralized one 

(Figure 7.9.c).

● The detection duration kept stable around 25 minutes 

(Figure 7.9.d).

● The increase of the number of resources has increased 

the  LVQ  recognition  percentage  (Figure  7.9.e).  This  is 
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reflected on the reduction of the false positive percentage.

The increase  of  the  number  of  resources  has  positive 
effect  on  the  system  performance  and  can  help  overcome 
problems of increasing the number of users and/or IDSs. This 
is  an advantage because this  support  scalability  of GIDA to 
manage an increasing number of resources. Unfortunately the 
number of resources in not controllable and it is forced by the 
protected Grid environment.

For  example,  in  the  experiments  with  four  IDSs, 
increasing the number of resources from 60 to 120 has a strong 
effect  on  the  false  positive  percentage  by  decreasing  it  by 

22.1% from 22.7% to 0.6%. This is a great advantage as the 
increase in the false negative percentage was only from 6.7% 
to 13.3% and the increase in the training time was only from 
34  minutes  86  minutes.  The  detection  duration  and  the 
recognition  percentage  parameters  were  slightly  affected  by 
the  doubling  of  the  number  of  resources.  The  detection 
duration  increased  from  26  minutes  to  31  minutes.  The 
recognition percentage increased from 87.5% to 97.4%.

7.6 Number of intruders

The  effect  of  increasing  the  number  of  intruders 
attacking the system was tested in the following experiments. 

The number of attackers was increased from 5 to 40 (Figure  

7.10).  Increasing  the  number  of  intruders  only  slightly 
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increased the percentage of the false negative (Figure 7.10.b). 
This increase did not affect the other system parameters.

For  example,  in  the  experiments  with  four  IDSs, 
increasing  the  number  of  intruders  from 10  to  20  has  only 
affected  the  false  negative  percentage  by  increasing  it  from 
3.3% to  11.7%.  Other  parameters  were  almost  not  affected. 
False  positive  percentage  decreased  only  from 9.4% to  8%. 
The detection duration decreased only from 30 minutes to 28 
minutes. Recognition percentage almost remained the same by 
increasing from 92.7% to 93%. Also the training time almost 
remained the same by decreasing from 55.2 minutes to 54.8 
minutes.

173



Chapter 7: Experimental Results

174

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

False Positive

Intruders

P
er

ce
nt

ag
e

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

False Negative

Intruders

P
er

ce
nt

ag
e

0 10 20 30 40

0

40

80

120

160

200

240

280

320

360

Training Time

Intruders

M
in

ut
es

0 10 20 30 40

0

5

10

15

20

25

30

35

40

45

50

55

60

Detection Duration

Intruders

M
in

ut
es

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

Recognition

Intruders

P
er

ce
nt

ag
e

Figure7.10: The effect of 

increasing the number of 

intruders

(a) (b)

(e)

(d)(c)

1 IDS

4 IDSs

Legend

8 IDSs



 
C

h
ap

te
r

 8

Conclusions and 

Future Work

8.1 The Grid Environment
8.2 The Grid Intrusion Detection Architecture
8.3 The Grid Simulator
8.4 Results Summary
8.5 Future Work



Chapter 8: Conclusions and Future Work

Chapter 8: Conclusions and Future Work

This chapter presents the final conclusions gained from 
the study of intrusion detection in Grid environment through 
this  thesis.  It  also  suggests  future  directions  to  expand  and 
further investigate this work.

8.1 The Grid Environment

Security is an important issue for the future of the Grid. 
As Grid technologies improve and real Grids start to appear, 
security will be more critical to protect the Grid resources in 
large  collaborations  and commercial  applications.  The study 

present in Chapter 1 and Chapter 2 for the Grid architecture 
and some Grid projects showed that security is a vital issue for 
the success of any Grid environment and was addressed by all 
studied  Grid  projects.  This  is  mainly  because  the  Grid 
technologies  provide  easy  and  seamless  access  to  resources 
that is almost always critical and important so can attract many 
people who may want to misuse and abuse the system. These 
misusers may either be insiders or outsiders.

Unfortunately all the projects concentrated on providing 
basic  security  services  such  as  authentication,  authorization, 
single sign on, encryption and so on. But they did not address 
the possible attack of the insiders who are legitimate users but 
can misuse their  privileges, or possible  penetration from the 
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outsiders  because  of  system  bugs  or  security  holes.  These 
problems are the concerns of the intrusion detection field. The 
intrusion detection techniques, in spite of their importance as a 
second line of defense, were not applied to Grid environments 
or  addressed  by  various  Grid  project  and  considered  a 
contribution of this research.

8.2 The Grid Intrusion Detection Architecture

The  study  of  the  current  intrusion  detection  system 

presented  in  Chapter  4 showed  that  these  systems  are  not 
suitable and directly applicable to Grid environments because 
they  do  not  address  the  special  characteristics  and 
requirements of this new Grid environment. A Grid Intrusion 
Detection  Architecture  (GIDA)  was  presented  that  was 
designed to be suitable and applicable in Grid environments. 
The  GIDA  design  was  found  to  support  heterogeneity, 
scalability,  adaptability  and  multiple  administrative  domains 
which are the basic characteristics of Grid environment. GIDA 
is also not subject to centralized control, uses standard, open, 
general-purpose protocols, and can deliver nontrivial qualities 
of service which are the basic requirement of Grid systems.

The general conclusion in this part is that GIDA is an 
open,  flexible,  and Grid  compatible  architecture  that  can  be 
used as a guide line to design many Grid intrusion detection 
systems that have various properties and performance.
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8.3 The Grid Simulator

Simulation  is  important  and  has  many  advantages  in 
studying  new systems.  There  are  many  simulators  for  Grid 
environments that are used in research. But unfortunately these 
simulators  were mainly designed to  test  resource  scheduling 
and management not security and intrusion detection. A new 
simulator  was  implemented  –  inspired  by  available  Grid 
simulators – to address issues related to security and intrusion 
detection. The simulator  was used to simulate different  Grid 
environments and generate data that was later analyzed by a 
prototype implementation of a simple IDS. This simulator may 
be used by other researchers to test their implementations of 
the GIDA or even in designing a new architecture.

8.4 Results Summary

The implementation of GIDA proved the applicability of 
such  architecture  in  Grid  environments  through  the  results 

presented in Chapter 7.  The distributed system with multiple 
IDSs  was  shown  to  be  scalable  and  much  better  that 
centralized  system  with  one  IDS.  The  training  time  was 
sharply reduced when the problem was divided among IDSs 
and  also  the  false  negative  percentage  was  reduced.  The 
system also showed scalability  to accept growing number of 
users.  The  number  of  resources  reduced  the  false  negative 
percentage. A good selection of number of IDSs and resources 
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in  a  Grid  environment  can  help  in  improving  Intrusion 
detection performance. The hybrid approach for the window, 
used  in  preprocessing,  was  shown  to  best  suit  different 
environments by keeping enough information in each window 
for neural network to correctly classify the users and also to 
keep detection duration at acceptable levels.

The  main  issues  affecting  the  system  have  been 
presented to help in deciding the value of different parameters 
to  increase  the  performance  of  the  system in  different  Grid 
environments. This work also helped in better understanding 
the problem of intrusion detection in Grid environments and in 
building  future  systems.  Also  in  fine  tuning  Grid  intrusion 
detection systems.

8.5 Future Work

This work could be continued in many directions such 
as  completing  missing  parts,  improving  the  current  system, 
and  trying  different  approaches  and  mechanisms.  To  begin 
with,  the  proposed  architecture  itself  can  be  improved  by 
adding more  components,  details,  standards,  and guide lines 
based on experience with the current  architecture to provide 
the best support  to the designers of Grid Intrusion Detection 
Systems.

From  the  point  of  view  of  the  proposed  prototype 
implementation it is possible to try different algorithms for the 
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LVQ  neural  network  and  try  to  fine  tune  it  with  different 
values  for  its  parameters.  It  is  also  suggested  to  try  other 
neural  networks  and  even  other  approaches  than  neural 
networks.  After  this  step  a  heterogeneous  system should  be 
created with different techniques of intrusion detection used in 
the IDSs. After the application of the Grid techniques in real 
life problem it  is suggested to create a knowledge base with 
signatures of known Grid attacks to enable the use of misuse 
intrusion detection along with the anomaly intrusion detection 
technique presented in this work to create a complete intrusion 
detection system.

Study  of  the  effect  of  different  trust  relationships 
between participants must be studied to understand their effect 
on the system. Also the overlapping of the scopes of different 
IDSs  will  affect  the  system performance  and  reliability  and 
should be analyzed.

The  cooperation  protocol  must  also  be  revisited  and 
improved after the use of heterogeneous IDSs, complex trust 
relationships,  and IDSs  scope  overlapping.   This  is  because 
these issues increase the complexity of the system and thus the 
complexity  of the cooperation between the IDSs. Also these 
two issues will raise a question about their effect on different 
QoSs and how these QoSs can be selected and measured.

The simulator presented in this work is also subject to 
improvements  to  support  other  problems  than  security  to 
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increase its usability. Trust relationships should be added and 
its performance enhanced and evaluated.

Finally these systems should be implemented and tested 
on  real  grids  because  this  is  the  only  way  to  prove  their 
success  in  protecting  Grid  environments  and  increasing  the 
security level.
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ملخص الرسالة

 يعتففبر توفيففر القدرة الحسففابية الكافيففة لحففل المشاكففل المختلفففة بقدرة
 وكفاءة عاليفففة هفففي الهدف السفففاسي للعامليفففن ففففي أي مجال يتطلب العمفففل بدقفففة
 وتوفيففففر الوقففففت و المال. ظهففففر مجال البيئات الحسففففابية الشبكيففففة ليسففففد الفجوة
 الموجودة بيفففن التكنولوجيفففا المتاحفففة و الطلب المتزايفففد للقدرة الحسفففابية. توففففر
 الشبكة الحسابية بيئة حسابية قوية وذلك عن طريق ربط الموارد الموزعة لتمكين
 التجميفففع و المشاركفففة بسفففهولة وذلك لخلق مورد حسفففابي أكثفففر قوة. والجديفففر
 بالذكفر أن مصفطلح الموزع هنفا ل يشيفر فقفط إلى الماكفن الجغرافيفة بفل أيضفا

إلى الدارة التي قد تغطي المنظمات المتعددة.

 إلى جانفب أهميفة القضايفا المنيفة المختلففة التفي طُرقفت مفع بدايفة مجال
 البيئات الحسفابية الشبكيفة يعتفبر كشفف التطففل مفن أهفم العناصفر لي نظام أمنفي
 حديفث لنفه يُعتفبر خفط دفاع ثانفي ضفد الثغرات المنيفة و أيضفا ضفد المسفتخدمين

الذين يسيؤون إستخدام حقوقهم.

 تتعرض هذه الرسفالة لدراسفة مشكلة كشفف التطففل ففي البيئات الحسابية
 الشبكيففة باعتبارهففا احففد القضايففا المنيففة المهمففة. يقدم البحففث طرازا مرنففا مبنيففا
 على التعاون و توزيففع العمففل لكشففف التطفففل فففي البيئات الحسففابية الشبكيففة. هذا
 العمففل مبنففي على أسفاس دراسفة مشاريففع البيئات الحسففابية الشبكيففة و نظفم كشفف
 التطفففل الحاليففة لتصففميم طراز يتناسففب مففع البيئة الحسففابية الشبكيففة المتاحففة و

يستفيد منها.

 وقففففد تففففم تنفيففففذ نموذج للطراز المقترح مففففن أجففففل الجازة و المراجعففففة



 لكتسفففاب معلومات أكثفففر و خفففبرة ففففي حفففل مشكلة كشفففف التطففففل ففففي سفففياق
 البيئات الحسفابية الشبكيفة. يعمفل النموذج المقترح بطريقفة كشفف تطففل موزعفة

 Learningو متجانسفففة و التفففي تسفففتخدم الشبكات العصفففبية المعروففففة بأسفففم )
Vector Quantization .للتصنيف وذلك لكتشاف التطفل إذا حدث )

 قد تم استخدام نظم النمذجة و المحاكاة  لفحص هذا النموذج في عدة
 بيئات حسفففابية شبكيفففة ذات تنظيمات و طرازات مختلففففة مفففن خلل محاكاة هذة
 البيئات باسففففتخدام برنامففففج لمحاكاة البيئة الشبكيففففة. وقففففد تففففم تطويففففر برامففففج
 المحاكاة هذه لتتناسففففب مففففع دراسففففة المففففن و كشففففف التطفففففل. اظهرت النتائج
 إمكانيفة تطبيق النّظام المقترح ففي البيئات الحسفابية الشبكيفة و متفوقفا علي نظم
 مركزية غير موزعة. وقد تم أيضا دراسة العناصر المختلفة التي قد تؤثر على
 أداء نظام كشفف التطففل المقترح. فقفد أدت زيادة عدد المسفتخدمين و أيضفا عدد

 False Negativeخادمات كشففف التطفففل إلى نقصففان نسففبة الخطففأ السففلبي )
Percentageالذي يعتفبر مفن أهفم عناصفر تقييفم جودة أنظمفة التطففل. وقفد ) 

 دعمفففت هذه النتائج إثبات إمكانيفففة تطفففبيق النظام ففففي البيئات الحسفففابية الشبكيفففة.
 وممفففا زاد هذا الدعفففم أن زيادة عدد الموارد، وهفففو طفففبيعي مفففع زيادة حجفففم البيئة

 False Positiveالحسفابية الشبكيفة ، أدي إلى نقصفان نسفبة الخطفأ اليجابفي )
Percentageوقفد أدى ذلك إلى التغلب على زيادة طفيففة طرأت على هذه .) 

النسبة بسبب زيادة عدد المستخدمين و خادمات كشف التطفل.
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