Enabling and Achieving Self-Management for

Large Scale Distributed Systems

Platform and Design Methodology for Self-Management

Ahmad Al-Shishtawy
ahmadas@kth.se
Unit of Software and Computer Systems (SCS)

School of Information and Communication Technology (ICT)
The Royal Institute of Technology (KTH)

Licentiate Seminar
April 9 2010

Outline

e Introduction

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Outline

e Introduction

9 Niche Platform

Self-Management for Large Scale Distributed Systems (A. Al-

Outline

e Introduction
9 Niche Platform

9 Design Methodology

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Outline

e Introduction
9 Niche Platform
9 Design Methodology

e Improving Management

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Outline

0 Introduction

9 Niche Platform

e Design Methodology
e Improving Management

e Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing
Problem Statement

Outline

0 Introduction
@ Autonomic Computing
@ Problem Statement

Self-Management for Large Scale Distributed Systems (A. Al-

Introduction

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Problem
All computing systems need to be managed

El

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Problem
All computing systems need to be managed

3

El

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing

Problem Statement

The Autonomic Computing Initiative

Problem
Computing systems are getting more and more complex

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing

Problem Statement

The Autonomic Computing Initiative

Problem
Complexity means higher administration overheads

g & &
FEIEIIII

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Problem
Complexity poses a barrier on further development

éééééééé

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

The Autonomic Computing initiative by IBM

JEIEF I IS

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Self-Management: Systems capable of managing themselves

JEIEF I IS

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing

Problem Statement

The Autonomic Computing Initiative

Use Autonomic Managers

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Open Question
How to achieve Self-Management?

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing
Problem Statement

Self-* Properties

@ Inspired by the autonomic nervous
system of the human body

@ Control loops from Control Theory

@ Self-management along four main axes
(self-* properties):
o self-configuration
self-optimization
self-healing
self-protection

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing

Problem Statement

The Autonomic Computing Architecture

Manager
Interface

@ Managed Resource
@ Touchpoint (Sensors &

Touch Point

Actuators)
@ Autonomic Manager
@ Monitor
e Analyze
e Plan —] Toueh port —
o Execute N\ N /
%m \m =
@ Knowledge Source = = -
@ Communication

@ Manager Interface

Managed Resource

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing
Problem Statement

Problem Statement

Large-scale distributed systems

@ Complex and require self-management
@ May run on unreliable resources

@ Major sources of complexity:

e Scale (resources, events, users, ...)
e Dynamism (resource churn, load changes, ...)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Introduction

Autonomic Computing
Problem Statement

Problem Statement

Large-scale distributed systems

@ Complex and require self-management
@ May run on unreliable resources

@ Major sources of complexity:

e Scale (resources, events, users, ...)
e Dynamism (resource churn, load changes, ...)

@ A platform (concepts, abstractions, algorithms. . .) that
facilitates development of self-managing applications in
large-scale and/or dynamic distributed environment.

@ A methodology that help us to achieve self-management.

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Outline

e Niche Platform

Niche Overview

@ Functional Part

@ Management Part

@ Touchpoints

@ Runtime Environment

Self-Management for Large Scale Distributed Systems (A. Al-

Niche Overview
Functional Part
Management Part
Touchpoints

Runtime Environment

Niche Platform

Component Model

@ Architectural approach to autonomic computing

@ Applications built of components

@ Improved manageability through introspection and
reconfiguration

@ The Fractal component model

€ Bcccic

€ Bcceic _—_—
Receiver Analyzer Loger
I E
LN
\
\
. Scheduler i
N
M C ic
Frontend Dispatcher - File
¢ ic
- I
~ ¢ ic
~| Error
Handler
Backend
Comanche

Self-Management for Large Scale Distributed Systems (A. Al-

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

@ Niche is a Distributed Component Management
System

@ Niche implements the Autonomic Computing
Architecture

@ Niche targets large-scale and dynamic
distributed environment and applications
e Resources and components are distributed
e Autonomic managers are distributed network of
Management Elements (MEs)
e Sensors and Actuators are distributed

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

@ Niche leverages Structured Overlay Networks
(SONs) for communication and for provisioning
of basic services

o Name based communication and bindings
e DHT, Publish/Subscribe, Groups, ...
@ Niche separates functional part from
management part of the application

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Functional Part

Components, Interfaces,
and Bindings

System wide identification
Support for mobility
Component groups

One-to-all and one-to-any
bindings

Dynamic group
membership
Deployment using ADL

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Functional Part

Components, Interfaces,
and Bindings

System wide identification
Support for mobility
Component groups

One-to-all and one-to-any
bindings |:|_|_|:|_

Dynamic group
membership
Deployment uSing ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Functional Part

Components, Interfaces,
and Bindings

System wide identification
Support for mobility
Component groups

One-to-all and one-to-any
bindings

Dynamic group
membership
Deployment using ADL

Move
~—

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Functional Part

Components, Interfaces,
and Bindings

System wide identification
Support for mobility
Component groups

One-to-all and one-to-any
bindings

Dynamic group
membership
Deployment using ADL

7

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Functional Part

Components, Interfaces,
and Bindings

System wide identification
Support for mobility
Component groups
One-to-all and one-to-any

bindings
Dynamic group |:|_|D
membership

Deployment uSing ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Functional Part

Components, Interfaces,
and Bindings

System wide identification
Support for mobility
Component groups
One-to-all and one-to-any

bindings
Dynamic group EJ_D
membership

Deployment uSing ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Functional Part

Components, Interfaces,
and Bindings

System wide identification
Support for mobility
Component groups
One-to-all and one-to-any

bindings
Dynamic group EJ_D
membership

Deployment uSing ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Functional Part

Components, Interfaces,
and Bindings

System wide identification
Support for mobility
Component groups
One-to-all and one-to-any

bindings
Dynamic group EJ_D
membership

Deployment uSing ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Functional Part

Components, Interfaces,
and Bindings

System wide identification
Support for mobility
Component groups
One-to-all and one-to-any

bindings
Dynamic group EJ_D
membership

Deployment USing ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Platform

Management Part

@ Management Elements
e Watchers
Aggregators
Managers
Executors
@ Communicate through
events

@ Publish/Subscribe
@ Autonomic Managers

(control loops) built as
network of MEs

Niche Overview
Functional Part
Management Part
Touchpoints

Runtime Environment

E—'ﬁ

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Platform

Management Part

@ Management Elements
e Watchers
Aggregators
Managers
Executors
@ Communicate through
events

@ Publish/Subscribe
@ Autonomic Managers

(control loops) built as
network of MEs

Niche Overview
Functional Part
Management Part
Touchpoints

Runtime Environment

Management Part

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Functional Part
Management Part
Touchpoints

Niche Platform

Runtime Environment

Management Part

@ Management Elements

Management Part

[Manager|

e Watchers S
e Aggregators | = Lg bl
[*] Managel’s |Watcher| |Wat<:her| |Watcher| |Executor| |Executor|
e Executors

@ Communicate through
events

@ Publish/Subscribe

@ Autonomic Managers
(control loops) built as
network of MEs

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Platform

Niche Overview
Functional Part
Management Part
Touchpoints

Runtime Environment

Management Part

@ Management Elements
e Watchers
Aggregators
Managers
Executors
@ Communicate through
events

@ Publish/Subscribe
@ Autonomic Managers

(control loops) built as
network of MEs

Management Part

| Watcher | |Wat<:her| | Watcher |

[ecse] [Brecuol]

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Management Part

Management Part

@ Management Elements
e Watchers
Aggregators
Managers
Executors
@ Communicate through
events

@ Publish/Subscribe
@ Autonomic Managers

(control loops) built as
network of MEs

Executor Executor

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Touchpoints

@ Sensors and Actuators

@ For Components and
Groups

Management Part

i
Aggreg.
N/

Executor

.........

Executor

@ Automatically install

sensors/actuators on
group members

@ Predefined events (failures,
group creation, ...)

@ API (bind, start/stop,
create group, discovet, ...)

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Touchpoints

@ Sensors and Actuators

@ For Components and
Groups

Management Part

i
Aggreg.
N/

Executor

.........

Executor

@ Automatically install

sensors/actuators on
group members

@ Predefined events (failures,
group creation, ...)

@ API (bind, start/stop,
create group, discovet, ...)

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Touchpoints

@ Sensors and Actuators

@ For Components and
Groups

Management Part

i
Aggreg.
N/

Executor

.........

Executor

@ Automatically install

sensors/actuators on
group members

@ Predefined events (failures,
group creation, ...)

@ API (bind, start/stop,
create group, discovet, ...)

Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Touchpoints

Management Part

@ Sensors and Actuators

@ For Components and
Groups

@ Automatically install

sensors/actuators on
group members

.........

i
Aggreg.
N/

Executor Executor

@ Predefined events (failures,
group creation, ...)

@ API (bind, start/stop,
create group, discover, . ..) Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Touchpoints

Management Part

@ Sensors and Actuators

@ For Components and
Groups

@ Automatically install

sensors/actuators on
group members

.........

i
Aggreg.
N/

Executor Executor

@ Predefined events (failures,
group creation, ...)

@ API (bind, start/stop,
create group, discover, . ..) Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Touchpoints

Management Part

@ Sensors and Actuators

@ For Components and
Groups

@ Automatically install

sensors/actuators on
group members

.........

i
Aggreg.
N/

Executor Executor

@ Predefined events (failures,
group creation, ...)

@ API (bind, start/stop,
create group, discover, . ..) Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Touchpoints

Management Part

@ Sensors and Actuators

@ For Components and
Groups

@ Automatically install

sensors/actuators on
group members

.........

i
Aggreg.
N/

Executor Executor

@ Predefined events (failures,
group creation, ...)

@ API (bind, start/stop,
create group, discover, . ..) Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Runtime Environment

@ Containers that host
components and MEs

@ Use a Structured Overlay
Network (SON) for
communication

@ Provide overlay services

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Runtime Environment

@ Containers that host
components and MEs

@ Use a Structured Overlay S
Network (SON) for
communication e =

@ Provide overlay services

HE
Dﬂ'D

GO

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Runtime Environment

@ Containers that host
components and MEs

@ Use a Structured Overlay
Network (SON) for
communication

@ Provide overlay services

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

Runtime Environment

@ Containers that host

components and MEs

@ Use a Structured Overlay
Network (SON) for
communication

@ Provide overlay services

Resource Discovery

Initial deployment

Dynamic runtime
reconfiguration
Publish/subscribe
DHT-based registry of
identifiable entities such as
components, groups, and
bindings

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

Outline

e Design Methodology
@ Distributed Management
@ Use Case: YASS

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

Distributed Management

@ In distributed environments we advocate for distribution of
management functions among several cooperative
managers

@ Multiple managers are needed for scalability, robustness,
and performance and also useful for reflecting separation
of concerns

@ Need guidance on how to design distributed management

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

High Level Design Steps

A self-managing application
@ Functional part
@ Management part
@ Touchpoints

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

High Level Design Steps

A self-managing application

@ Functional part
@ Management part
@ Touchpoints

Iterative steps to distribute
management

v

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
Use Case: YASS

Design Methodology

High Level Design Steps

A self-managing application

@ Functional part

@ Management part

@ Touchpoints

Iterative steps to distribute
management

@ Management objectives

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
Use Case: YASS

Design Methodology

High Level Design Steps

A self-managing application

Management
Objectives

@ Functional part
@ Management part

@ Touchpoints

Iterative steps to distribute
management

@ Management objectives

COOCYXXx)

@ Decomposition

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Design Methodology

High Level Design Steps

A self-managing application

@ Functional part
@ Management part
@ Touchpoints

Iterative steps to distribute
management

@ Management objectives

@ Decomposition
@ Assignment

v

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
Use Case: YASS

Management
Objectives

@ e

@)

C11
N

E=

Distributed Management
Use Case: YASS

Design Methodology

High Level Design Steps

A self-managing application

Management
Objectives

@ Functional part
@ Management part

@ Touchpoints

Iterative steps to distribute
management

@ Management objectives

@ Decomposition
@ Assignment
@ Orchestration

v

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
Use Case: YASS

Design Methodology

High Level Design Steps

A self-managing application

Management
Objectives

@ Functional part

@ Management part
@ Touchpoints

Iterative steps to distribute
management

@ Management objectives

@ Decomposition
@ Assignment
@ Orchestration

@ Mapping

v

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
Use Case: YASS

Design Methodology

Design Space for Management Interaction

@ Stigmergy

a. The stigmergy effect. b. Direct interaction.

@ Hierarchical
@ Direct Interaction
@ Sharing of MEs

Touchpoint
Managed Resource 1
Managed Resource 2 Managed Resource

c. Hierarchical management. d. Shared Management Elements.

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
Use Case: YASS

Design Methodology

Design Space for Management Interaction

/'

Touchpoint

@ Stigmergy /r
@ Hierarchical

@ Direct Interaction
@ Sharing of MEs

Managed Resource

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Design Methodology

Distributed Management
Use Case: YASS

Design Space for Management Interaction

@ Stigmergy u

@ Hierarchical
@ Direct Interaction
@ Sharing of MEs

Autonomic

Manager
(T

Touchpoint

Autonomic

Manager
[N

Touchpoint

Managed Resource 1

Managed Resource 2

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
(ASS

Design Methodology

Design Space for Management Interaction

@ Stigmergy
@ Hierarchical

@ Direct Interaction
@ Sharing of MEs

Touchpoint

Managed Resource

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
Use Case: YASS

Design Methodology

Design Space for Management Interaction

@ Stigmergy

@ Hierarchical

@ Direct Interaction
@ Sharing of MEs

Touchpoint

Managed Resource

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

Use Case: YASS

@ YASS: Yet Another Storage Service

@ Users can store, read and delete files on a set of
distributed resources.

@ Transparently replicates files for robustness and scalability.
@ Deployed in a dynamic distributed environment

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
Use Case: YASS

Design Methodology

YASS functional part

Front-end
Component

Front-end
Component

Ovals = Resources.
Rectangles = Storage and
Front-end Components.
A,B.C = Stored files.

e Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

YASS Management Objective

@ MO1: Maintain file replication degree

@ MO2: Maintain total storage space and total free space
@ MO3: Release unused storage

@ MOA4: Increasing availability of popular files

@ MOS5: Balance stored files among allocated resources

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

YASS Management Objective

@ MO1: Maintain file replication degree

@ MO2: Maintain total storage space and total free space
@ MO3: Release unused storage

@ MOA4: Increasing availability of popular files

@ MOS5: Balance stored files among allocated resources

T

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

Touchpoints

@ Load sensor to measure the current free space

@ Access frequency sensor to detect popular files

@ Replicate file actuator to add one extra replica of a file
@ Move file actuator to move files for load balancing

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

MO1: Maintain the File Replication Degree

e
€
(o] I
s ol
= o
5 © !
<E%|
©

o=
a |
5]
[an

Managed
Resource

Self-Management fol

File Replica Change File
R

i

I

Replica eplica |
Aggregator Manager :
I

I

Failure

ge Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

MO2: Maintain the Total Storage Space and Total Free
Space

Storage Storage

ks) | 1
g [[
o ilabili !
E 5| Availability Manager |
S5 © |
< ¢!
o 8 |
2=, Allocate [
S | |
3 | & Deploy |

Sensor

Managed
Resource

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management

Design Methodology Use Case: YASS

MQO3: Release Unused Storage

{ Storage { Replica
| Autonomic : : Autonomic :
'\ Manager Manager

AR

Sensor || EﬁectoL\D—{ Sensor |—— Effector
=

Managed
Resource

Self-Management for e Scale Distributed Systems (A. Al-Shishtawy)

Distributed Management
Use Case: YASS

Design Methodology

MOA4: Increasing the Availability of Popular Files

File
Access
Watcher

File

Availability
Autonomic Manager

Sensor TReiEn
eplica |
T Qo
o © 'Autonomlc:
g 3 \ Manager
s 3 ¢ \ager_|
S T~

} Sensor }—{ Effector

||

Managed
Resource

Distributed Management
Use Case: YASS

Design Methodology

MOS5: Balance the Stored Files Among the Allocated
Resources

r
| Storage |

| Autonomic Least/Most Load
| Manager

I
AStofaQe ; Loaded Balancing
| i ggregator : Manager

| Timer Move Files

Load Balancing
Autonomic Manager

Managed
Resource

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

. Robust Management Elements
Improving Management -

Outline

0 Improving Management
@ Policies
@ Robust Management Elements

Self-Management for Large Scale Distributed Systems (A. Al-

Policies

. Robust Management Elements
Improving Management -

Policy-based Management

@ Self-management under guidelines defined by humans in
the form of management policies
@ Management policy

o A set of rules that govern the system behaviors
o Reflects the business goals and/or management objectives

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

. Robust Management Elements
Improving Management -

Drawbacks of “Hard-coded” Policy

@ Application developer has to be involved in policy
implementation
@ Hard to trace policies
e Policies are “hard-coded” (embedded) in the management
code of a distributed system
e Policy logic is scattered in implementation
@ Change of policies may requires rebuilding and redeploying
of the application (or at least its management part)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Example: YASS Self-Configuration Using Policies

Policy o)
Manager O,

Load Change

Storage
Autonomic Manager

Join
Failure
Leave

Allocare
& Deploy

Actuators

Managed
Resource

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

. Robust Management Elements
Improving Management -

Policy Languages (used in this work)

@ SPL
e Simplified Policy Language
o Designed for management
("]

@ XACML

e eXtensible Access Control Markup Language
e Primarily designed for access control
("]

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Performance Evaluation

:3 4 j
£ £
12000 — 90—
¥

10000 — / B
8000 —| &0 —| /
6000 —| / 45—
4000 / w0 |5
2000 —| 15—

“ be

i > 7
T T T 1 -

Noof-policies I I I [I

.) ~ Nolof policies
100 200 300 400 500 200 400 600 800 1000

Figure: SPL Figure: XACML

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

|) Robust Management Elements
mproving Management

Outline

0 Improving Management

@ Robust Management Elements

Self-Management for Large Scale Distributed Systems (A. Al-

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

Self-Management for e Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

Self-Management for e Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

A Robust Management Element (RME) should:

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

A Robust Management Element (RME) should:
@ Be replicated to ensure fault-tolerance

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

A Robust Management Element (RME) should:
@ Be replicated to ensure fault-tolerance

@ Survive continuous resource failures by automatically
restoring failed replicas on other nodes

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

A Robust Management Element (RME) should:
@ Be replicated to ensure fault-tolerance

@ Survive continuous resource failures by automatically
restoring failed replicas on other nodes

@ Maintain its state consistent among replicas

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

A Robust Management Element (RME) should:
@ Be replicated to ensure fault-tolerance

@ Survive continuous resource failures by automatically
restoring failed replicas on other nodes

@ Maintain its state consistent among replicas

@ Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

A Robust Management Element (RME) should:
@ Be replicated to ensure fault-tolerance

@ Survive continuous resource failures by automatically
restoring failed replicas on other nodes

@ Maintain its state consistent among replicas

@ Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)

@ Be location transparent (i.e. clients of the RME should be

able to communicate with it regardless of its current
location)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Solution Outline

@ Finite state machine replication
@ SMART algorithm for changing replica set (migration)
@ Our decentralized algorithm to automate the process

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Solution Outline

@ Finite state machine replication
@ SMART algorithm for changing replica set (migration)
@ Our decentralized algorithm to automate the process

A Robust Management Element (RME) that can be used to
build robust management!

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine

Service

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine

Service

]Input

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine

Service

]Input

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine

10utput

Service

]Input

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine

Replica

Replica

Replica

Replica

Replica

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine

S
G R Replica
4 ¢ %
)
Replica

Replica

a°
&) D
e .
Replica

Replica

ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine

@%%e
) %%
)
|

- |:| Replica
[l Paxos
[
0926\6)
N
?&‘*‘1’ -

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine

E [OReplica

[l Paxos

|:| Slots

| =]

Self-Management for e Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Replicated State Machine

&

2
8%
)

BT
e CRRNRNRNAN
s> =

[LITTTTTTT]

: |:| Replica

[l Paxos

|:| Slots

Self-Management for e Scale Distributed Systems (A. Al-Shi:

Policies
Robust Management Elements

Improving Management

Replicated State Machine

&

2
8%
)

[l TTTTTT]

® [l TTTTTT]
% R :

ks R

[TTTTTT]

[l TTTTTT]
|:| Replica

[l Paxos

|:| Slots

Self-Management for e Scale Distributed Systems (A. Al-Shi:

Policies
Robust Management Elements

Improving Management

Replicated State Machine

&

2
8%
)

[albIx[elvlz] TTT |

o® [albx[elyfz] TTT]
% R

ks S

[albelvig TTT1

[albIelvz] TTT]
|:| Replica

[l Paxos

|:| Slots

Self-Management for e Scale Distributed Systems (A. Al-Shi:

Policies
Robust Management Elements

Improving Management

Replicated State Machine

S
3 oo
8%
)
=4 | |:| Replica
| [l Paxos
7 Oslots
a|b]x|c
[albIXey[TTT1 [Execution

o°
&) R
[aleelylg TTT1]

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Replicated State Machine

R
3 oo
8%
)
=4 | |:|Replica
P
-l [l Paxos
: Oslots
a[blX[c]
[albIXey[TTT1 [Execution
.State
25\6\
ol
e,

Self-Management for e Scale Distributed Systems (A. Al-Shi:

Policies
Robust Management Elements

Improving Management

Replicated State Machine

R
3 oo
4 Q@%
)
A |:|Replica
P
-l [l Paxos
z [slots
BRRE
[albeM7 TTT] [Execution
.State
25\6\
R
X1

Self-Management for e Scale Distributed Systems (A. Al-Shi:

Improving Management

Policies
Robust Management Elements

Replicated State Machine is Not Enough

Self-Management fol

Replica

Replica

Replica

Replica

Replica

ge Scale Distributed Systems (A. Al-Shishtawy)

Improving Management

Policies
Robust Management Elements

Replicated State Machine is Not Enough

Self-Management fol

Replica

Replica

Replica

Replica

ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine is Not Enough

Replica

Replica

Replica

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine is Not Enough

Replica

Replica

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine is Not Enough

Reli
Replica SRS

Replica

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine is Not Enough

Reli
Replica SRS

Replica

Replica

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replicated State Machine is Not Enough

Repli
Replica eplica
Replica
Replica Replica

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Migration: Basic Idea

@ A configuration is the set of replicas
@ Replicas include the configuration as part of the state
@ A special request that changes the configuration

@ Handled like normal requests (assigned a slot then
executed)

@ The change take effect after « slots
@ We used the SMART algorithm

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Our Algorithm

@ Automatically maintain configuration in a decentralized way
@ Select resources, detect failures, and decide to migrate
@ Users find service without central repository

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Our Algorithm

@ Automatically maintain configuration in a decentralized way
@ Select resources, detect failures, and decide to migrate
@ Users find service without central repository

Approach

@ We use Structure Overlay Networks(SONSs)

@ We use replica placement schemes (such as symmetric
replication) to select nodes that will host replicas

@ We use lookups and DHT ideas

@ We use failure detection provided by SONs

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Creating a Replicated State Machine (RSM)

Any node can create a RSM. Select ID and replication degree

RSM ID = 10, f=4, N=32

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Creating a Replicated State Machine (RSM)

The node uses symmetric replication to calculate replica IDs

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Creating a Replicated State Machine (RSM)

The node use lookups to find responsible nodes . ..

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2
Responsible Node IDs = 14, 20, 29, 7

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Creating a Replicated State Machine (RSM)

...and gets direct references to them

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2
Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),
Ref(29), Ref(7)

Self-Management fo ge Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Creating a Replicated State Machine (RSM)

The set of direct references forms the configuration

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2
Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),
Ref(29), Ref(7)

Self-Management for Large Scale Distributed Systems (A. Al-

Policies
Robust Management Elements

Improving Management

Creating a Replicated State Machine (RSM)
The node sends a Create message to the configuration

w o, oMl

2

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2
Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),
Ref(29), Ref(7)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Creating a Replicated State Machine (RSM)
Now replicas communicate directly using the configuration

Configuration_1 =[Ref(14)[Ref(20) [Ref(29) [Ref(7)]
1 2 3 7

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Replica Architecture

Output

Shared Execution Module
Service Specific Part Generic Part
State

Conf 1
Conf 2
Conf 3

sequentially
execute requests

Slots Jif2[3] -+ |

Service
State

R1 R1 EZ R2 33

FirstSlot LastSlot|FirstSlot. LastSlot |FirstSlot .
assign
requests

[Paxos 1] [Paxos 2] [Paxos 3] fo slots

Replica A

Paxos,
Input Leader Election, and
Migration Messages

Self-Management for Large Scale Distributed Systems (A. Al wy)

Policies

) Robust Management Elements
Improving Management

When to Migrate?

@ To fix Lookup inconsistencies
@ To handle resource churn

Self-Management for Large Scale Distributed Systems (A. Al-

Policies

) Robust Management Elements
Improving Management

Handling Lookup Inconsistency

@ Because of lookup inconsistency the configuration may
contain incorrect nodes

@ The inconsistency is detected when a node receives a
request targeted at a replica that the node does not have
but should be responsible for

@ In this case the node issues a configuration change
request asking the current configuration to replace the
incorrect node with itself

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Handling Churn

@ Similar to handling churn in a DHT
e When a node joins it gets a list of replicas (RSM_ID and
rank) it is responsible for form its successor
e When a node leaves it hand over replicas to its successor
@ When a node fails the successor uses symmetric replication
and interval cast to find replicas it should be responsible for
@ After getting the list of replicas the node issue a
configuration request to each RSM to replace incorrect
node with itself

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Changing the Configuration (Migration)

@ In SMART the admin sends a configuration change
request that contains all nodes in the new configuration

@ We can not do the same in a decentralized fashion to avoid
conflicts

Assume current configuration is {A, B, C, D}

Node X detects that C is dead and requests change to {A, B, X, D}
Node Y detects that D is dead and requests change to {A, B, C, Y}
Y overrides the change made by X!

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies
Robust Management Elements

Improving Management

Changing the Configuration (Migration)

@ In our approach the request does not contain the entire
configuration. It contain only a request to replace a
particular node

Assume current configuration is {A, B, C, D}

Node X detects that C is dead and requests replacing replica 3 with itself
Node Y detects that D is dead and requests replacing replica 4 with itself
The end resultis {A, B, X, Y}

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

A
. . O
@ Our approach is generic i :
Shared Execution Module
and can be useful for many Service Specific Part Jt Generic part
. Stalte
services Servce| o1
@ We use it in Niche to e] cons
implement Robust ‘Rsequentially
execute requests
Management Elements siots FRR T T
@ Replace the service /_‘J—’;_jﬁ—’mjass:gn
f t fth requests
SpeCI IC par Y e [Paxos 1] [Paxos 2] [Paxos 3] to slots
execution module with a Replica A
management element T Paxos,
Input iLeader Election, and
Migration Messages

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Policies

) Robust Management Elements
Improving Management

Robust Management Elements

h . . TOutput
° Our approac 1S generlc Shared Execution Module
and can be useful for many Generic Part
services
@ We use it in Niche to
implement Robust sequentially
execute requests
Management Elements siots FRR T T
@ Replace the service /_‘J—’;_jﬁ—’mjass:gn
f t fth requests
SpeCI IC par o e [Paxos 1] [Paxos 2] [Paxos 3] to slots
execution module with a Replica A
management element T Pavos,
Input Leader Election, and
iMigration Messages

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Conclusions
Future Work

Conclusions and Future Work

Outline

e Conclusions and Future Work
@ Conclusions
@ Future Work

Self-Management for Large Scale Distributed Systems (A. Al-

Conclusions

Future Work

Conclusions and Future Work

Conclusions

@ Niche Platform

e Enable self-management
e Programming and runtime execution
e Large-scale and/or dynamic systems

@ Methodology

e Design space and guidelines
e Interaction patterns

@ YASS use case
@ Policy based management
@ Robust Management Elements

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Conclusions
Future Work

Conclusions and Future Work

Future Work

@ Refine design methodology including steps and interaction
patterns
@ Consider more use cases focusing on real applications

@ Study and investigate management patterns and
techniques

e Distributed control, distributed optimization
e Model Predictive Control (MPC)

e Reinforcement learning in (feedback) control
o Networked Control System (NCS)

@ Focus more on self-tuning
@ Complete work on Robust Management Elements
@ Port Niche to Kompics component model

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Thank you for careful listening :-)

Questions?

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

o

>

SPL Policy Example

Policy {
Declaration {
lowloadthreshold = 500;
}
Condition {
storageInfo.totalload <= lowloadthreshold

}

Decision {
manager.setTriggeredHighLoad (false) &&
manager.delegateObligation ("release storage")

}
}:1;

XACML Policy Example

<Policy PolicyId="lowLoadPol
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">

<Target>
<Subjects> <AnySubject /> </Subjects>
<Resources> <AnyResource /> </Resources>
<Actions>
<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal™>
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
load

</AttributeValue>
<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string" />

</ActionMatch>
</Action>
</Actions>
</Target>
<Rule Effect="Permit" RuleId="lowLoad">
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:double
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:double-one-and-only">
<EnvironmentAttributeDesignator DataType="http://www.w3.0rg/2001/XMLSchemafdouble"

ss-than-or ">

AttributeId="totalLoad"/>
</Rpply>
<AttributeValue> 500 </AttributeValue>
</Condition>
</Rule>
<Obligations>

<Obligation FulfillOn="Permit" ObligationId="2">
<AttributeAssignment AttributeId="lowLoac tion" DataType="http://www.w3.0rg/2001/XMLSchema#integer">

"release storage"
</AttributeAssignment>
</Obligation>
</Obligations>
</Policy>

Migration: The SMART Algorithm

@ SMART is a new technique for changing the set of nodes
(configuration) where a replicated service runs (i.e.
migrating the service)

@ Advantages over other approaches (as described by
SMART authors):

e Allows migrations that replace non-failed nodes (suitable for
automated service)

e Can pipeline concurrent requests (performance
optimization)

e Provides complete description

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Configuration-Specific Replicas

@ Each replica is associated with
one and only one configuration

o>
o
®o
@c

@ Migration creates a new set of
replicas (configuration)

@ Simplifies the migration process

@ Each configuration uses its own
instance of the Paxos algorithm

@ Inefficient implementation (use
shared execution module to
improve it)

Configuration

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Configuration-Specific Replicas

@ Each replica is associated with
one and only one configuration A B C D

@ Migration creates a new set of ¢ 600
replicas (configuration)

@ Simplifies the migration process Current Approaches

i . . Configuration
@ Each configuration uses its own
instance of the Paxos algorithm

@ Inefficient implementation (use
shared execution module to
improve it)

Configuration

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Configuration-Specific Replicas

@ Each replica is associated with
one and only one configuration

@ Migration creates a new set of
replicas (configuration)

@ Simplifies the migration process

@ Each configuration uses its own
instance of the Paxos algorithm

@ Inefficient implementation (use
shared execution module to
improve it)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Configuration

Configuration

Configuration_1

Configuration_2

A B C D
e 6 0 ©°
Current Approaches

SMART Approach

SMART

@ Avoids inter-configuration conflicts by assigning none
overlapping range of slots [FirstSlot, LastSlot] to each
configuration

@ The old configuration sends a Join message to the new
configuration

@ A replica in a new configuration need to copy state from
another replica (up till at least FirstSlot — 1)

@ Destroying old configurations (Finished and Ready
messages)

@ Clients use a configuration repository to find the current
configuration

@ SMART does not deal with how to select a configuration
and when to migrate

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Challenges Implementing Lamport’s Idea

@ Unaware-leader challenge: A new leader may not know
the latest configuration

@ Window-of-vulnerability challenge: Migrations that
remove or replace a machine can create a period of
reduced fault tolerance

o Extended-disconnection challenge: After a long
disconnection, a client may be unable to find the service

@ Consecutive-migration challenge: If request n changes
the configuration, requests n+ 1 through n+ « — 1 cannot
change the configuration

@ Multiple-poll challenge: A new leader may have to poll
several configurations

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

	Introduction
	Autonomic Computing
	Problem Statement

	Niche Platform
	Niche Overview
	Functional Part
	Management Part
	Touchpoints
	Runtime Environment

	Design Methodology
	Distributed Management
	Use Case: YASS

	Improving Management
	Policies
	Robust Management Elements

	Conclusions and Future Work
	Conclusions
	Future Work

	
	Appendix

