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Problem Statement

The Autonomic Computing Initiative

Problem
Computing systems are getting more and more complex
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The Autonomic Computing Initiative

Problem
Complexity poses a barrier on further development
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Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Open Question
How to achieve Self-Management?
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Autonomic Computing
Problem Statement

Self-* Properties

@ Inspired by the autonomic nervous
system of the human body

@ Control loops from Control Theory

@ Self-management along four main axes
(self-* properties):
o self-configuration
self-optimization
self-healing
self-protection
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Problem Statement

Large-scale distributed systems

@ Complex and require self-management
@ May run on unreliable resources

@ Major sources of complexity:

e Scale (resources, events, users, ...)
e Dynamism (resource churn, load changes, ...)
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Problem Statement

Large-scale distributed systems

@ Complex and require self-management
@ May run on unreliable resources

@ Major sources of complexity:

e Scale (resources, events, users, ...)
e Dynamism (resource churn, load changes, ...)

@ A platform (concepts, abstractions, algorithms. . .) that
facilitates development of self-managing applications in
large-scale and/or dynamic distributed environment.

@ A methodology that help us to achieve self-management.
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Niche Overview
Functional Part
Management Part
Touchpoints

Runtime Environment

Niche Platform

Component Model

@ Architectural approach to autonomic computing

@ Applications built of components

@ Improved manageability through introspection and
reconfiguration

@ The Fractal component model
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Niche Overview
Niche Platform Functional Part

Management Part

Touchpoints

Runtime Environment

@ Niche is a Distributed Component Management
System

@ Niche implements the Autonomic Computing
Architecture

@ Niche targets large-scale and dynamic
distributed environment and applications
e Resources and components are distributed
e Autonomic managers are distributed network of
Management Elements (MEs)
e Sensors and Actuators are distributed
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Management Part

Touchpoints

Runtime Environment

@ Niche leverages Structured Overlay Networks
(SONs) for communication and for provisioning
of basic services

o Name based communication and bindings
e DHT, Publish/Subscribe, Groups, ...
@ Niche separates functional part from
management part of the application
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Dynamic group
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Touchpoints

Runtime Environment

Runtime Environment

@ Containers that host

components and MEs

@ Use a Structured Overlay
Network (SON) for
communication

@ Provide overlay services

Resource Discovery

Initial deployment

Dynamic runtime
reconfiguration
Publish/subscribe
DHT-based registry of
identifiable entities such as
components, groups, and
bindings
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Design Methodology Use Case: YASS

Distributed Management

@ In distributed environments we advocate for distribution of
management functions among several cooperative
managers

@ Multiple managers are needed for scalability, robustness,
and performance and also useful for reflecting separation
of concerns

@ Need guidance on how to design distributed management
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High Level Design Steps

A self-managing application
@ Functional part
@ Management part
@ Touchpoints
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High Level Design Steps

A self-managing application

@ Functional part
@ Management part
@ Touchpoints

Iterative steps to distribute
management
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A self-managing application

@ Functional part

@ Management part
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Design Methodology

High Level Design Steps

A self-managing application

Management
Objectives

@ Functional part
@ Management part

@ Touchpoints

Iterative steps to distribute
management

@ Management objectives
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@ Management part
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Iterative steps to distribute
management

@ Management objectives

@ Decomposition
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Design Methodology

High Level Design Steps

A self-managing application

Management
Objectives

@ Functional part
@ Management part
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@ Management objectives
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Distributed Management
Use Case: YASS

Design Methodology

High Level Design Steps

A self-managing application

Management
Objectives

@ Functional part

@ Management part
@ Touchpoints

Iterative steps to distribute
management

@ Management objectives

@ Decomposition
@ Assignment
@ Orchestration

@ Mapping
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Design Methodology

Design Space for Management Interaction

@ Stigmergy

a. The stigmergy effect. b. Direct interaction.

@ Hierarchical
@ Direct Interaction
@ Sharing of MEs

Touchpoint
Managed Resource 1
Managed Resource 2 Managed Resource

c. Hierarchical management. d. Shared Management Elements.
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Design Methodology Use Case: YASS

Use Case: YASS

@ YASS: Yet Another Storage Service

@ Users can store, read and delete files on a set of
distributed resources.

@ Transparently replicates files for robustness and scalability.
@ Deployed in a dynamic distributed environment
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Distributed Management
Use Case: YASS

Design Methodology

YASS functional part

Front-end
Component

Front-end
Component

Ovals = Resources.
Rectangles = Storage and
Front-end Components.
A,B.C = Stored files.
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Distributed Management

Design Methodology Use Case: YASS

YASS Management Objective

@ MO1: Maintain file replication degree

@ MO2: Maintain total storage space and total free space
@ MO3: Release unused storage

@ MOA4: Increasing availability of popular files

@ MOS5: Balance stored files among allocated resources
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Design Methodology Use Case: YASS

YASS Management Objective

@ MO1: Maintain file replication degree

@ MO2: Maintain total storage space and total free space
@ MO3: Release unused storage

@ MOA4: Increasing availability of popular files

@ MOS5: Balance stored files among allocated resources
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Design Methodology Use Case: YASS

Touchpoints

@ Load sensor to measure the current free space

@ Access frequency sensor to detect popular files

@ Replicate file actuator to add one extra replica of a file
@ Move file actuator to move files for load balancing
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Distributed Management

Design Methodology Use Case: YASS

MO1: Maintain the File Replication Degree
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Distributed Management

Design Methodology Use Case: YASS

MO2: Maintain the Total Storage Space and Total Free
Space
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Design Methodology Use Case: YASS

MQO3: Release Unused Storage
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Design Methodology

MOA4: Increasing the Availability of Popular Files
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Distributed Management
Use Case: YASS

Design Methodology

MOS5: Balance the Stored Files Among the Allocated
Resources
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Policies

. Robust Management Elements
Improving Management -

Policy-based Management

@ Self-management under guidelines defined by humans in
the form of management policies
@ Management policy

o A set of rules that govern the system behaviors
o Reflects the business goals and/or management objectives
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Policies

. Robust Management Elements
Improving Management -

Drawbacks of “Hard-coded” Policy

@ Application developer has to be involved in policy
implementation
@ Hard to trace policies
e Policies are “hard-coded” (embedded) in the management
code of a distributed system
e Policy logic is scattered in implementation
@ Change of policies may requires rebuilding and redeploying
of the application (or at least its management part)
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Policies
Robust Management Elements

Improving Management

Example: YASS Self-Configuration Using Policies
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Policies

. Robust Management Elements
Improving Management -

Policy Languages (used in this work)

@ SPL
e Simplified Policy Language
o Designed for management
("]

@ XACML

e eXtensible Access Control Markup Language
e Primarily designed for access control
("]
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Robust Management Elements

Improving Management
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Robust Management Elements

A Robust Management Element (RME) should:
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Robust Management Elements

A Robust Management Element (RME) should:
@ Be replicated to ensure fault-tolerance
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Robust Management Elements

A Robust Management Element (RME) should:
@ Be replicated to ensure fault-tolerance

@ Survive continuous resource failures by automatically
restoring failed replicas on other nodes
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Robust Management Elements

A Robust Management Element (RME) should:
@ Be replicated to ensure fault-tolerance

@ Survive continuous resource failures by automatically
restoring failed replicas on other nodes
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Robust Management Elements

A Robust Management Element (RME) should:
@ Be replicated to ensure fault-tolerance

@ Survive continuous resource failures by automatically
restoring failed replicas on other nodes

@ Maintain its state consistent among replicas

@ Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)

@ Be location transparent (i.e. clients of the RME should be

able to communicate with it regardless of its current
location)
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Solution Outline

@ Finite state machine replication
@ SMART algorithm for changing replica set (migration)
@ Our decentralized algorithm to automate the process
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Solution Outline

@ Finite state machine replication
@ SMART algorithm for changing replica set (migration)
@ Our decentralized algorithm to automate the process

A Robust Management Element (RME) that can be used to
build robust management!
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Migration: Basic Idea

@ A configuration is the set of replicas
@ Replicas include the configuration as part of the state
@ A special request that changes the configuration

@ Handled like normal requests (assigned a slot then
executed)

@ The change take effect after « slots
@ We used the SMART algorithm
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Our Algorithm

@ Automatically maintain configuration in a decentralized way
@ Select resources, detect failures, and decide to migrate
@ Users find service without central repository
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Our Algorithm

@ Automatically maintain configuration in a decentralized way
@ Select resources, detect failures, and decide to migrate
@ Users find service without central repository

Approach

@ We use Structure Overlay Networks(SONSs)

@ We use replica placement schemes (such as symmetric
replication) to select nodes that will host replicas

@ We use lookups and DHT ideas

@ We use failure detection provided by SONs
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Creating a Replicated State Machine (RSM)

Any node can create a RSM. Select ID and replication degree

RSM ID = 10, f=4, N=32
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Creating a Replicated State Machine (RSM)

The node uses symmetric replication to calculate replica IDs

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2
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Creating a Replicated State Machine (RSM)

The node use lookups to find responsible nodes . ..

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2
Responsible Node IDs = 14, 20, 29, 7
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Creating a Replicated State Machine (RSM)

...and gets direct references to them

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2
Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),
Ref(29), Ref(7)
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Creating a Replicated State Machine (RSM)

The set of direct references forms the configuration

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2
Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),
Ref(29), Ref(7)
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Creating a Replicated State Machine (RSM)
The node sends a Create message to the configuration

w o, oMl

2

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2
Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),
Ref(29), Ref(7)
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Creating a Replicated State Machine (RSM)
Now replicas communicate directly using the configuration

Configuration_1 =[Ref(14)[ Ref(20) [Ref(29) [ Ref(7)]
1 2 3 7
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Replica Architecture
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When to Migrate?

@ To fix Lookup inconsistencies
@ To handle resource churn
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Handling Lookup Inconsistency

@ Because of lookup inconsistency the configuration may
contain incorrect nodes

@ The inconsistency is detected when a node receives a
request targeted at a replica that the node does not have
but should be responsible for

@ In this case the node issues a configuration change
request asking the current configuration to replace the
incorrect node with itself
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Handling Churn

@ Similar to handling churn in a DHT
e When a node joins it gets a list of replicas (RSM_ID and
rank) it is responsible for form its successor
e When a node leaves it hand over replicas to its successor
@ When a node fails the successor uses symmetric replication
and interval cast to find replicas it should be responsible for
@ After getting the list of replicas the node issue a
configuration request to each RSM to replace incorrect
node with itself
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Changing the Configuration (Migration)

@ In SMART the admin sends a configuration change
request that contains all nodes in the new configuration

@ We can not do the same in a decentralized fashion to avoid
conflicts

Assume current configuration is {A, B, C, D}

Node X detects that C is dead and requests change to {A, B, X, D}
Node Y detects that D is dead and requests change to {A, B, C, Y}
Y overrides the change made by X!
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Changing the Configuration (Migration)

@ In our approach the request does not contain the entire
configuration. It contain only a request to replace a
particular node

Assume current configuration is {A, B, C, D}

Node X detects that C is dead and requests replacing replica 3 with itself
Node Y detects that D is dead and requests replacing replica 4 with itself
The end resultis {A, B, X, Y}
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Robust Management Elements
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Robust Management Elements
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Outline

e Conclusions and Future Work
@ Conclusions
@ Future Work
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Conclusions and Future Work

Conclusions

@ Niche Platform

e Enable self-management
e Programming and runtime execution
e Large-scale and/or dynamic systems

@ Methodology

e Design space and guidelines
e Interaction patterns

@ YASS use case
@ Policy based management
@ Robust Management Elements
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Future Work

@ Refine design methodology including steps and interaction
patterns
@ Consider more use cases focusing on real applications

@ Study and investigate management patterns and
techniques

e Distributed control, distributed optimization
e Model Predictive Control (MPC)

e Reinforcement learning in (feedback) control
o Networked Control System (NCS)

@ Focus more on self-tuning
@ Complete work on Robust Management Elements
@ Port Niche to Kompics component model
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SPL Policy Example

Policy {
Declaration {
lowloadthreshold = 500;
}
Condition {
storageInfo.totalload <= lowloadthreshold

}

Decision {
manager.setTriggeredHighLoad (false) &&
manager.delegateObligation ("release storage")

}
}:1;



XACML Policy Example

<Policy PolicyId="lowLoadPol
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">

<Target>
<Subjects> <AnySubject /> </Subjects>
<Resources> <AnyResource /> </Resources>
<Actions>
<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal™>
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
load

</AttributeValue>
<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string" />

</ActionMatch>
</Action>
</Actions>
</Target>
<Rule Effect="Permit" RuleId="lowLoad">
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:double
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:double-one-and-only">
<EnvironmentAttributeDesignator DataType="http://www.w3.0rg/2001/XMLSchemafdouble"

ss-than-or ">

AttributeId="totalLoad"/>
</Rpply>
<AttributeValue> 500 </AttributeValue>
</Condition>
</Rule>
<Obligations>

<Obligation FulfillOn="Permit" ObligationId="2">
<AttributeAssignment AttributeId="lowLoac tion" DataType="http://www.w3.0rg/2001/XMLSchema#integer">

"release storage"
</AttributeAssignment>
</Obligation>
</Obligations>
</Policy>



Migration: The SMART Algorithm

@ SMART is a new technique for changing the set of nodes
(configuration) where a replicated service runs (i.e.
migrating the service)

@ Advantages over other approaches (as described by
SMART authors):

e Allows migrations that replace non-failed nodes (suitable for
automated service)

e Can pipeline concurrent requests (performance
optimization)

e Provides complete description
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Configuration-Specific Replicas

@ Each replica is associated with
one and only one configuration

o>
o
®o
@c

@ Migration creates a new set of
replicas (configuration)

@ Simplifies the migration process

@ Each configuration uses its own
instance of the Paxos algorithm

@ Inefficient implementation (use
shared execution module to
improve it)

Configuration
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Configuration-Specific Replicas

@ Each replica is associated with
one and only one configuration A B C D

@ Migration creates a new set of ¢ 600
replicas (configuration)

@ Simplifies the migration process Current Approaches

i . . Configuration
@ Each configuration uses its own
instance of the Paxos algorithm

@ Inefficient implementation (use
shared execution module to
improve it)

Configuration
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Configuration-Specific Replicas

@ Each replica is associated with
one and only one configuration

@ Migration creates a new set of
replicas (configuration)

@ Simplifies the migration process

@ Each configuration uses its own
instance of the Paxos algorithm

@ Inefficient implementation (use
shared execution module to
improve it)
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SMART

@ Avoids inter-configuration conflicts by assigning none
overlapping range of slots [FirstSlot, LastSlot] to each
configuration

@ The old configuration sends a Join message to the new
configuration

@ A replica in a new configuration need to copy state from
another replica (up till at least FirstSlot — 1)

@ Destroying old configurations (Finished and Ready
messages)

@ Clients use a configuration repository to find the current
configuration

@ SMART does not deal with how to select a configuration
and when to migrate
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Challenges Implementing Lamport’s Idea

@ Unaware-leader challenge: A new leader may not know
the latest configuration

@ Window-of-vulnerability challenge: Migrations that
remove or replace a machine can create a period of
reduced fault tolerance

o Extended-disconnection challenge: After a long
disconnection, a client may be unable to find the service

@ Consecutive-migration challenge: If request n changes
the configuration, requests n+ 1 through n+ « — 1 cannot
change the configuration

@ Multiple-poll challenge: A new leader may have to poll
several configurations
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