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Large-scale distributed systems

Complex and require self-management
May run on unreliable resources
Major sources of complexity:

Scale (resources, events, users, . . . )
Dynamism (resource churn, load changes, . . . )

Goal
A platform (concepts, abstractions, algorithms. . . ) that
facilitates development of self-managing applications in
large-scale and/or dynamic distributed environment.
A methodology that help us to achieve self-management.
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Niche is a Distributed Component Management
System
Niche implements the Autonomic Computing
Architecture
Niche targets large-scale and dynamic
distributed environment and applications

Resources and components are distributed
Autonomic managers are distributed network of
Management Elements (MEs)
Sensors and Actuators are distributed
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Niche leverages Structured Overlay Networks
(SONs) for communication and for provisioning
of basic services

Name based communication and bindings
DHT, Publish/Subscribe, Groups, . . .

Niche separates functional part from
management part of the application
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Distributed Management

In distributed environments we advocate for distribution of
management functions among several cooperative
managers
Multiple managers are needed for scalability, robustness,
and performance and also useful for reflecting separation
of concerns
Need guidance on how to design distributed management
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Use Case: YASS

YASS: Yet Another Storage Service
Users can store, read and delete files on a set of
distributed resources.
Transparently replicates files for robustness and scalability.
Deployed in a dynamic distributed environment
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Distributed Management
Use Case: YASS

YASS Management Objective

MO1: Maintain file replication degree
MO2: Maintain total storage space and total free space
MO3: Release unused storage
MO4: Increasing availability of popular files
MO5: Balance stored files among allocated resources

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 22/54



Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

YASS Management Objective

MO1: Maintain file replication degree
MO2: Maintain total storage space and total free space
MO3: Release unused storage
MO4: Increasing availability of popular files
MO5: Balance stored files among allocated resources

MO2

MO3

MO4 MO5MO1

Replica
Autonomic
Manager

Storage
Autonomic
Manager

Availability
Autonomic
Manager

Load
Balancing
Autonomic
Manager

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 22/54



Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Touchpoints

Load sensor to measure the current free space
Access frequency sensor to detect popular files
Replicate file actuator to add one extra replica of a file
Move file actuator to move files for load balancing
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MO1: Maintain the File Replication Degree
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Distributed Management
Use Case: YASS

MO2: Maintain the Total Storage Space and Total Free
Space
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Distributed Management
Use Case: YASS

MO3: Release Unused Storage
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Distributed Management
Use Case: YASS

MO4: Increasing the Availability of Popular Files
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Distributed Management
Use Case: YASS

MO5: Balance the Stored Files Among the Allocated
Resources
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1 Introduction

2 Niche Platform

3 Design Methodology

4 Improving Management
Policies
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5 Conclusions and Future Work
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Policy-based Management

Self-management under guidelines defined by humans in
the form of management policies
Management policy

A set of rules that govern the system behaviors
Reflects the business goals and/or management objectives
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Drawbacks of “Hard-coded” Policy

Application developer has to be involved in policy
implementation
Hard to trace policies

Policies are “hard-coded” (embedded) in the management
code of a distributed system
Policy logic is scattered in implementation

Change of policies may requires rebuilding and redeploying
of the application (or at least its management part)
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Example: YASS Self-Configuration Using Policies
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Policy Languages (used in this work)

SPL
Simplified Policy Language
Designed for management

SPL example

XACML
eXtensible Access Control Markup Language
Primarily designed for access control

XACML example
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Performance Evaluation

Figure: SPL Figure: XACML
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Robust Management Elements

A Robust Management Element (RME) should:
Be replicated to ensure fault-tolerance
Survive continuous resource failures by automatically
restoring failed replicas on other nodes
Maintain its state consistent among replicas
Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)
Be location transparent (i.e. clients of the RME should be
able to communicate with it regardless of its current
location)
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Solution Outline

Finite state machine replication
SMART algorithm for changing replica set (migration)
Our decentralized algorithm to automate the process

End Result
A Robust Management Element (RME) that can be used to
build robust management!
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Replicated State Machine is Not Enough
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Migration: Basic Idea

A configuration is the set of replicas
Replicas include the configuration as part of the state
A special request that changes the configuration
Handled like normal requests (assigned a slot then
executed)
The change take effect after α slots
We used the SMART algorithm Details
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Our Algorithm

Goals
Automatically maintain configuration in a decentralized way
Select resources, detect failures, and decide to migrate
Users find service without central repository

Approach
We use Structure Overlay Networks(SONs)
We use replica placement schemes (such as symmetric
replication) to select nodes that will host replicas
We use lookups and DHT ideas
We use failure detection provided by SONs
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Creating a Replicated State Machine (RSM)

Any node can create a RSM. Select ID and replication degree
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Creating a Replicated State Machine (RSM)

The node uses symmetric replication to calculate replica IDs
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Creating a Replicated State Machine (RSM)

The node use lookups to find responsible nodes . . .
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Creating a Replicated State Machine (RSM)

. . . and gets direct references to them
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Creating a Replicated State Machine (RSM)

The set of direct references forms the configuration
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Creating a Replicated State Machine (RSM)

Now replicas communicate directly using the configuration
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Replica Architecture
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When to Migrate?

To fix Lookup inconsistencies
To handle resource churn
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Handling Lookup Inconsistency

Because of lookup inconsistency the configuration may
contain incorrect nodes
The inconsistency is detected when a node receives a
request targeted at a replica that the node does not have
but should be responsible for
In this case the node issues a configuration change
request asking the current configuration to replace the
incorrect node with itself
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Handling Churn

Similar to handling churn in a DHT
When a node joins it gets a list of replicas (RSM_ID and
rank) it is responsible for form its successor
When a node leaves it hand over replicas to its successor
When a node fails the successor uses symmetric replication
and interval cast to find replicas it should be responsible for

After getting the list of replicas the node issue a
configuration request to each RSM to replace incorrect
node with itself
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Changing the Configuration (Migration)

In SMART the admin sends a configuration change
request that contains all nodes in the new configuration
We can not do the same in a decentralized fashion to avoid
conflicts

Example
Assume current configuration is {A, B, C, D}

Node X detects that C is dead and requests change to {A, B, X, D}

Node Y detects that D is dead and requests change to {A, B, C, Y}

Y overrides the change made by X!
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Changing the Configuration (Migration)

In our approach the request does not contain the entire
configuration. It contain only a request to replace a
particular node

Example
Assume current configuration is {A, B, C, D}

Node X detects that C is dead and requests replacing replica 3 with itself

Node Y detects that D is dead and requests replacing replica 4 with itself

The end result is {A, B, X, Y}
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Robust Management Elements

Our approach is generic
and can be useful for many
services
We use it in Niche to
implement Robust
Management Elements
Replace the service
specific part of the
execution module with a
management element
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Conclusions

Niche Platform
Enable self-management
Programming and runtime execution
Large-scale and/or dynamic systems

Methodology
Design space and guidelines
Interaction patterns

YASS use case
Policy based management
Robust Management Elements
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Future Work

Refine design methodology including steps and interaction
patterns
Consider more use cases focusing on real applications
Study and investigate management patterns and
techniques

Distributed control, distributed optimization
Model Predictive Control (MPC)
Reinforcement learning in (feedback) control
Networked Control System (NCS)

Focus more on self-tuning
Complete work on Robust Management Elements
Port Niche to Kompics component model
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Thank you for careful listening :-)

Questions?
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SPL Policy Example

Policy {
Declaration {
lowloadthreshold = 500;

}
Condition {
storageInfo.totalLoad <= lowloadthreshold

}
Decision {
manager.setTriggeredHighLoad(false) &&
manager.delegateObligation("release storage")

}
}:1;

Return



XACML Policy Example

<Policy PolicyId="lowLoadPolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">

<Target>
<Subjects> <AnySubject /> </Subjects>
<Resources> <AnyResource /> </Resources>
<Actions>
<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
load

</AttributeValue>
<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />
</ActionMatch>

</Action>
</Actions>

</Target>
<Rule Effect="Permit" RuleId="lowLoad">

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:double-less-than-or-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:double-one-and-only">
<EnvironmentAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#double"

AttributeId="totalLoad"/>
</Apply>

<AttributeValue> 500 </AttributeValue>
</Condition>

</Rule>
<Obligations>

<Obligation FulfillOn="Permit" ObligationId="2">
<AttributeAssignment AttributeId="lowLoad_obligation" DataType="http://www.w3.org/2001/XMLSchema#integer">

"release storage"
</AttributeAssignment>

</Obligation>
</Obligations>

</Policy>

Return



Migration: The SMART Algorithm

SMART is a new technique for changing the set of nodes
(configuration) where a replicated service runs (i.e.
migrating the service)
Advantages over other approaches (as described by
SMART authors):

Allows migrations that replace non-failed nodes (suitable for
automated service)
Can pipeline concurrent requests (performance
optimization)
Provides complete description
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Configuration-Specific Replicas

Each replica is associated with
one and only one configuration
Migration creates a new set of
replicas (configuration)
Simplifies the migration process
Each configuration uses its own
instance of the Paxos algorithm
Inefficient implementation (use
shared execution module to
improve it)

A B C D

Configuration
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Each replica is associated with
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Migration creates a new set of
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Inefficient implementation (use
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SMART

Avoids inter-configuration conflicts by assigning none
overlapping range of slots [FirstSlot ,LastSlot ] to each
configuration
The old configuration sends a Join message to the new
configuration
A replica in a new configuration need to copy state from
another replica (up till at least FirstSlot − 1)
Destroying old configurations (Finished and Ready
messages)
Clients use a configuration repository to find the current
configuration
SMART does not deal with how to select a configuration
and when to migrate
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Challenges Implementing Lamport’s Idea

Unaware-leader challenge: A new leader may not know
the latest configuration
Window-of-vulnerability challenge: Migrations that
remove or replace a machine can create a period of
reduced fault tolerance
Extended-disconnection challenge: After a long
disconnection, a client may be unable to find the service
Consecutive-migration challenge: If request n changes
the configuration, requests n + 1 through n + α− 1 cannot
change the configuration
Multiple-poll challenge: A new leader may have to poll
several configurations

Return
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