
Enabling and Achieving Self-Management for
Large Scale Distributed Systems

Platform and Design Methodology for Self-Management

Ahmad Al-Shishtawy
ahmadas@kth.se

Unit of Software and Computer Systems (SCS)
School of Information and Communication Technology (ICT)

The Royal Institute of Technology (KTH)

Licentiate Seminar
April 9 2010

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Outline

1 Introduction

2 Niche Platform

3 Design Methodology

4 Improving Management

5 Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 2/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Outline

1 Introduction

2 Niche Platform

3 Design Methodology

4 Improving Management

5 Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 2/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Outline

1 Introduction

2 Niche Platform

3 Design Methodology

4 Improving Management

5 Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 2/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Outline

1 Introduction

2 Niche Platform

3 Design Methodology

4 Improving Management

5 Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 2/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Outline

1 Introduction

2 Niche Platform

3 Design Methodology

4 Improving Management

5 Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 2/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

Outline

1 Introduction
Autonomic Computing
Problem Statement

2 Niche Platform

3 Design Methodology

4 Improving Management

5 Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 3/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Problem
All computing systems need to be managed

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 4/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Problem
All computing systems need to be managed

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 4/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Problem
Computing systems are getting more and more complex

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 4/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Problem
Complexity means higher administration overheads

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 4/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Problem
Complexity poses a barrier on further development

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 4/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Solution
The Autonomic Computing initiative by IBM

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 4/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Solution
Self-Management: Systems capable of managing themselves

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 4/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Solution
Use Autonomic Managers

Monitor

Analyze Plan

Execute

Autonomic Manager

Knowledge Monitor

Analyze Plan

Execute

Autonomic Manager

Knowledge Monitor

Analyze Plan

Execute

Autonomic Manager

Knowledge Monitor

Analyze Plan

Execute

Autonomic Manager

Knowledge

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 4/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Initiative

Open Question
How to achieve Self-Management?

Monitor

Analyze Plan

Execute

Autonomic Manager

Knowledge Monitor

Analyze Plan

Execute

Autonomic Manager

Knowledge Monitor

Analyze Plan

Execute

Autonomic Manager

Knowledge Monitor

Analyze Plan

Execute

Autonomic Manager

Knowledge

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 4/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

Self-* Properties

Inspired by the autonomic nervous
system of the human body
Control loops from Control Theory
Self-management along four main axes
(self-* properties):

self-configuration
self-optimization
self-healing
self-protection

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 5/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

The Autonomic Computing Architecture

Managed Resource
Touchpoint (Sensors &
Actuators)
Autonomic Manager

Monitor
Analyze
Plan
Execute

Knowledge Source
Communication
Manager Interface

Monitor

Analyze Plan

Execute

Touch Point

Autonomic Manager

Managed Resource

Knowledge

Managed Resource

Touch Point

Manager

Interface

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 6/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

Problem Statement

Large-scale distributed systems

Complex and require self-management
May run on unreliable resources
Major sources of complexity:

Scale (resources, events, users, . . .)
Dynamism (resource churn, load changes, . . .)

Goal
A platform (concepts, abstractions, algorithms. . .) that
facilitates development of self-managing applications in
large-scale and/or dynamic distributed environment.
A methodology that help us to achieve self-management.

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 7/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Autonomic Computing
Problem Statement

Problem Statement

Large-scale distributed systems

Complex and require self-management
May run on unreliable resources
Major sources of complexity:

Scale (resources, events, users, . . .)
Dynamism (resource churn, load changes, . . .)

Goal
A platform (concepts, abstractions, algorithms. . .) that
facilitates development of self-managing applications in
large-scale and/or dynamic distributed environment.
A methodology that help us to achieve self-management.

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 7/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Outline

1 Introduction

2 Niche Platform
Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

3 Design Methodology

4 Improving Management

5 Conclusions and Future Work
Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 8/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Component Model

Architectural approach to autonomic computing
Applications built of components
Improved manageability through introspection and
reconfiguration
The Fractal component model

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 9/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Niche

Niche is a Distributed Component Management
System
Niche implements the Autonomic Computing
Architecture
Niche targets large-scale and dynamic
distributed environment and applications

Resources and components are distributed
Autonomic managers are distributed network of
Management Elements (MEs)
Sensors and Actuators are distributed

Monitor

Analyze Plan

Execute

Touch Point

Autonomic Manager

Managed Resource

Knowledge

Managed Resource

Touch Point

Manager

Interface

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 10/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Niche

Niche leverages Structured Overlay Networks
(SONs) for communication and for provisioning
of basic services

Name based communication and bindings
DHT, Publish/Subscribe, Groups, . . .

Niche separates functional part from
management part of the application

Monitor

Analyze Plan

Execute

Touch Point

Autonomic Manager

Managed Resource

Knowledge

Managed Resource

Touch Point

Manager

Interface

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 11/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Functional Part

Components, Interfaces,
and Bindings
System wide identification
Support for mobility
Component groups
One-to-all and one-to-any
bindings
Dynamic group
membership
Deployment using ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 12/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Functional Part

Components, Interfaces,
and Bindings
System wide identification
Support for mobility
Component groups
One-to-all and one-to-any
bindings
Dynamic group
membership
Deployment using ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 12/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Functional Part

Components, Interfaces,
and Bindings
System wide identification
Support for mobility
Component groups
One-to-all and one-to-any
bindings
Dynamic group
membership
Deployment using ADL Functional Part

M
o
v
e

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 12/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Functional Part

Components, Interfaces,
and Bindings
System wide identification
Support for mobility
Component groups
One-to-all and one-to-any
bindings
Dynamic group
membership
Deployment using ADL Functional Part

M
o
v
e

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 12/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Functional Part

Components, Interfaces,
and Bindings
System wide identification
Support for mobility
Component groups
One-to-all and one-to-any
bindings
Dynamic group
membership
Deployment using ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 12/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Functional Part

Components, Interfaces,
and Bindings
System wide identification
Support for mobility
Component groups
One-to-all and one-to-any
bindings
Dynamic group
membership
Deployment using ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 12/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Functional Part

Components, Interfaces,
and Bindings
System wide identification
Support for mobility
Component groups
One-to-all and one-to-any
bindings
Dynamic group
membership
Deployment using ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 12/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Functional Part

Components, Interfaces,
and Bindings
System wide identification
Support for mobility
Component groups
One-to-all and one-to-any
bindings
Dynamic group
membership
Deployment using ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 12/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Functional Part

Components, Interfaces,
and Bindings
System wide identification
Support for mobility
Component groups
One-to-all and one-to-any
bindings
Dynamic group
membership
Deployment using ADL Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 12/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Management Part

Management Elements
Watchers
Aggregators
Managers
Executors

Communicate through
events
Publish/Subscribe
Autonomic Managers
(control loops) built as
network of MEs Functional Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 13/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Management Part

Management Elements
Watchers
Aggregators
Managers
Executors

Communicate through
events
Publish/Subscribe
Autonomic Managers
(control loops) built as
network of MEs Functional Part

Management Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 13/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Management Part

Management Elements
Watchers
Aggregators
Managers
Executors

Communicate through
events
Publish/Subscribe
Autonomic Managers
(control loops) built as
network of MEs Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 13/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Management Part

Management Elements
Watchers
Aggregators
Managers
Executors

Communicate through
events
Publish/Subscribe
Autonomic Managers
(control loops) built as
network of MEs Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 13/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Management Part

Management Elements
Watchers
Aggregators
Managers
Executors

Communicate through
events
Publish/Subscribe
Autonomic Managers
(control loops) built as
network of MEs Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 13/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Touchpoints

Sensors and Actuators
For Components and
Groups
Automatically install
sensors/actuators on
group members
Predefined events (failures,
group creation, . . .)
API (bind, start/stop,
create group, discover, . . .) Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 14/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Touchpoints

Sensors and Actuators
For Components and
Groups
Automatically install
sensors/actuators on
group members
Predefined events (failures,
group creation, . . .)
API (bind, start/stop,
create group, discover, . . .) Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 14/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Touchpoints

Sensors and Actuators
For Components and
Groups
Automatically install
sensors/actuators on
group members
Predefined events (failures,
group creation, . . .)
API (bind, start/stop,
create group, discover, . . .) Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 14/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Touchpoints

Sensors and Actuators
For Components and
Groups
Automatically install
sensors/actuators on
group members
Predefined events (failures,
group creation, . . .)
API (bind, start/stop,
create group, discover, . . .) Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 14/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Touchpoints

Sensors and Actuators
For Components and
Groups
Automatically install
sensors/actuators on
group members
Predefined events (failures,
group creation, . . .)
API (bind, start/stop,
create group, discover, . . .) Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 14/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Touchpoints

Sensors and Actuators
For Components and
Groups
Automatically install
sensors/actuators on
group members
Predefined events (failures,
group creation, . . .)
API (bind, start/stop,
create group, discover, . . .) Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 14/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Touchpoints

Sensors and Actuators
For Components and
Groups
Automatically install
sensors/actuators on
group members
Predefined events (failures,
group creation, . . .)
API (bind, start/stop,
create group, discover, . . .) Functional Part

Management Part

Watcher

Aggreg.

Manager

ExecutorExecutorWatcher Watcher

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 14/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Runtime Environment

Containers that host
components and MEs
Use a Structured Overlay
Network (SON) for
communication
Provide overlay services

Resource Discovery
Initial deployment
Dynamic runtime
reconfiguration
Publish/subscribe
DHT-based registry of
identifiable entities such as
components, groups, and
bindings

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 15/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Runtime Environment

Containers that host
components and MEs
Use a Structured Overlay
Network (SON) for
communication
Provide overlay services

Resource Discovery
Initial deployment
Dynamic runtime
reconfiguration
Publish/subscribe
DHT-based registry of
identifiable entities such as
components, groups, and
bindings

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 15/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Runtime Environment

Containers that host
components and MEs
Use a Structured Overlay
Network (SON) for
communication
Provide overlay services

Resource Discovery
Initial deployment
Dynamic runtime
reconfiguration
Publish/subscribe
DHT-based registry of
identifiable entities such as
components, groups, and
bindings

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 15/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Niche Overview
Functional Part
Management Part
Touchpoints
Runtime Environment

Runtime Environment

Containers that host
components and MEs
Use a Structured Overlay
Network (SON) for
communication
Provide overlay services

Resource Discovery
Initial deployment
Dynamic runtime
reconfiguration
Publish/subscribe
DHT-based registry of
identifiable entities such as
components, groups, and
bindings

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 15/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Outline

1 Introduction

2 Niche Platform

3 Design Methodology
Distributed Management
Use Case: YASS

4 Improving Management

5 Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 16/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Distributed Management

In distributed environments we advocate for distribution of
management functions among several cooperative
managers
Multiple managers are needed for scalability, robustness,
and performance and also useful for reflecting separation
of concerns
Need guidance on how to design distributed management

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 17/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

High Level Design Steps

A self-managing application

Functional part

Management part

Touchpoints

Iterative steps to distribute
management

Management objectives

Decomposition

Assignment

Orchestration

Mapping

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 18/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

High Level Design Steps

A self-managing application

Functional part

Management part

Touchpoints

Iterative steps to distribute
management

Management objectives

Decomposition

Assignment

Orchestration

Mapping

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 18/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

High Level Design Steps

A self-managing application

Functional part

Management part

Touchpoints

Iterative steps to distribute
management

Management objectives

Decomposition

Assignment

Orchestration

Mapping

Management
Objectives

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 18/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

High Level Design Steps

A self-managing application

Functional part

Management part

Touchpoints

Iterative steps to distribute
management

Management objectives

Decomposition

Assignment

Orchestration

Mapping

Management
Objectives

MO2 MO3 MO4 MO5 MO6 MO7MO1

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 18/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

High Level Design Steps

A self-managing application

Functional part

Management part

Touchpoints

Iterative steps to distribute
management

Management objectives

Decomposition

Assignment

Orchestration

Mapping

Management
Objectives

MO2 MO3 MO4 MO5 MO6 MO7MO1

Autonomic
Manager

Autonomic
Manager

Autonomic
Manager

Autonomic
Manager

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 18/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

High Level Design Steps

A self-managing application

Functional part

Management part

Touchpoints

Iterative steps to distribute
management

Management objectives

Decomposition

Assignment

Orchestration

Mapping

Management
Objectives

MO2 MO3 MO4 MO5 MO6 MO7MO1

Autonomic
Manager

Autonomic
Manager

Autonomic
Manager

Autonomic
Manager

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 18/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

High Level Design Steps

A self-managing application

Functional part

Management part

Touchpoints

Iterative steps to distribute
management

Management objectives

Decomposition

Assignment

Orchestration

Mapping

Management
Objectives

MO2 MO3 MO4 MO5 MO6 MO7MO1

Autonomic
Manager

Autonomic
Manager

Autonomic
Manager

Autonomic
Manager

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 18/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Design Space for Management Interaction

Stigmergy
Hierarchical
Direct Interaction
Sharing of MEs

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 19/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Design Space for Management Interaction

Stigmergy
Hierarchical
Direct Interaction
Sharing of MEs

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 19/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Design Space for Management Interaction

Stigmergy
Hierarchical
Direct Interaction
Sharing of MEs

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 19/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Design Space for Management Interaction

Stigmergy
Hierarchical
Direct Interaction
Sharing of MEs

Managed Resource

Touchpoint

Autonomic

Manager 1

Autonomic

Manager 2

ME ME ME ME

ME ME

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 19/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Design Space for Management Interaction

Stigmergy
Hierarchical
Direct Interaction
Sharing of MEs

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 19/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Use Case: YASS

YASS: Yet Another Storage Service
Users can store, read and delete files on a set of
distributed resources.
Transparently replicates files for robustness and scalability.
Deployed in a dynamic distributed environment

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 20/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

YASS functional part

Front-end

Component

VO

Store Request
one-to-any binding

to the storage group

Delete File A

Request

one-to-all binding

to A’s file groupA

A

A

B

B

B

C

C

C

C

Free

Free

Free

Free

Front-end

Component

Ovals = Resources.

Rectangles = Storage and

Front-end Components.

A,B,C = Stored files.

The Storage Group

A File
 G

roup

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 21/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

YASS Management Objective

MO1: Maintain file replication degree
MO2: Maintain total storage space and total free space
MO3: Release unused storage
MO4: Increasing availability of popular files
MO5: Balance stored files among allocated resources

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 22/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

YASS Management Objective

MO1: Maintain file replication degree
MO2: Maintain total storage space and total free space
MO3: Release unused storage
MO4: Increasing availability of popular files
MO5: Balance stored files among allocated resources

MO2

MO3

MO4 MO5MO1

Replica
Autonomic
Manager

Storage
Autonomic
Manager

Availability
Autonomic
Manager

Load
Balancing
Autonomic
Manager

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 22/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

Touchpoints

Load sensor to measure the current free space
Access frequency sensor to detect popular files
Replicate file actuator to add one extra replica of a file
Move file actuator to move files for load balancing

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 23/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

MO1: Maintain the File Replication Degree

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

File

Replica

Aggregator

File

Replica

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Failure

Leave

Replica Change

Find and Restore Replica

R
e

p
lic

a
 A

u
to

n
o

m
ic

M
a

n
a

g
e

r

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 24/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

MO2: Maintain the Total Storage Space and Total Free
Space

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Storage

Aggregator

Storage

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Component

Load

Watcher

Storage

Availability

Change

Allocate

& Deploy

S
to

ra
g

e
 A

u
to

n
o

m
ic

M
a

n
a

g
e

r

Load Change

Load

Join

Failure

Leave

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 25/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

MO3: Release Unused Storage

Sensor

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Sensor EffectorEffector

Change

Storage

Autonomic

Manager

Replica

Autonomic

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 26/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

MO4: Increasing the Availability of Popular Files

Sensor

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Sensor Effector

Effector
Replica

Autonomic

Manager

File

Availability

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

File

Access

Watcher

Access Frequency

Frequency

Change

New Replication DegreeA
v
a

ila
b

ili
ty

A
u

to
n

o
m

ic
 M

a
n

a
g

e
r

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 27/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Distributed Management
Use Case: YASS

MO5: Balance the Stored Files Among the Allocated
Resources

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Storage

Aggregator

Load

Balancing

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Least/Most

Loaded

Move Files

Storage

Autonomic

Manager

L
o

a
d

 B
a

la
n

c
in

g

A
u

to
n

o
m

ic
 M

a
n

a
g

e
r

Timer

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 28/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Outline

1 Introduction

2 Niche Platform

3 Design Methodology

4 Improving Management
Policies
Robust Management Elements

5 Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 29/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Policy-based Management

Self-management under guidelines defined by humans in
the form of management policies
Management policy

A set of rules that govern the system behaviors
Reflects the business goals and/or management objectives

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 30/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Drawbacks of “Hard-coded” Policy

Application developer has to be involved in policy
implementation
Hard to trace policies

Policies are “hard-coded” (embedded) in the management
code of a distributed system
Policy logic is scattered in implementation

Change of policies may requires rebuilding and redeploying
of the application (or at least its management part)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 31/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Example: YASS Self-Configuration Using Policies

Sensors Actuators

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

M
an

ag
ed

R
es

ou
rc

e
S

to
ra

ge
A

ut
on

om
ic

 M
an

ag
er

Policy

Request

Delegate
Obligation

Configuration
Executor

Load Change

Load

Join

Failure

Leave

Policy
Manager

Storage
Aggregator

Component
Load

Watcher Allocare
& Deploy

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 32/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Policy Languages (used in this work)

SPL
Simplified Policy Language
Designed for management

SPL example

XACML
eXtensible Access Control Markup Language
Primarily designed for access control

XACML example

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 33/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Performance Evaluation

Figure: SPL Figure: XACML

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 34/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Outline

1 Introduction

2 Niche Platform

3 Design Methodology

4 Improving Management
Policies
Robust Management Elements

5 Conclusions and Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 35/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 36/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 36/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

A Robust Management Element (RME) should:
Be replicated to ensure fault-tolerance
Survive continuous resource failures by automatically
restoring failed replicas on other nodes
Maintain its state consistent among replicas
Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)
Be location transparent (i.e. clients of the RME should be
able to communicate with it regardless of its current
location)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 37/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

A Robust Management Element (RME) should:
Be replicated to ensure fault-tolerance
Survive continuous resource failures by automatically
restoring failed replicas on other nodes
Maintain its state consistent among replicas
Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)
Be location transparent (i.e. clients of the RME should be
able to communicate with it regardless of its current
location)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 37/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

A Robust Management Element (RME) should:
Be replicated to ensure fault-tolerance
Survive continuous resource failures by automatically
restoring failed replicas on other nodes
Maintain its state consistent among replicas
Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)
Be location transparent (i.e. clients of the RME should be
able to communicate with it regardless of its current
location)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 37/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

A Robust Management Element (RME) should:
Be replicated to ensure fault-tolerance
Survive continuous resource failures by automatically
restoring failed replicas on other nodes
Maintain its state consistent among replicas
Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)
Be location transparent (i.e. clients of the RME should be
able to communicate with it regardless of its current
location)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 37/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

A Robust Management Element (RME) should:
Be replicated to ensure fault-tolerance
Survive continuous resource failures by automatically
restoring failed replicas on other nodes
Maintain its state consistent among replicas
Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)
Be location transparent (i.e. clients of the RME should be
able to communicate with it regardless of its current
location)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 37/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

A Robust Management Element (RME) should:
Be replicated to ensure fault-tolerance
Survive continuous resource failures by automatically
restoring failed replicas on other nodes
Maintain its state consistent among replicas
Provide its service with minimal disruption in spite of
resource join/leave/fail (high availability)
Be location transparent (i.e. clients of the RME should be
able to communicate with it regardless of its current
location)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 37/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Solution Outline

Finite state machine replication
SMART algorithm for changing replica set (migration)
Our decentralized algorithm to automate the process

End Result
A Robust Management Element (RME) that can be used to
build robust management!

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 38/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Solution Outline

Finite state machine replication
SMART algorithm for changing replica set (migration)
Our decentralized algorithm to automate the process

End Result
A Robust Management Element (RME) that can be used to
build robust management!

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 38/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Service

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Service

Input

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Service

Input

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Service

Input

Output

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Replica

Replica

Replica

Replica

Replica

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Replica

Replica

Replica

Replica

Replica

Requests

(x, y,
 z, ..

.)

Requests
(a, b, c, ...)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Requests

(x, y,
 z, ..

.)

Requests
(a, b, c, ...)

Replica

Paxos

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Requests

(x, y,
 z, ..

.)

Requests
(a, b, c, ...)

Replica

Paxos

Slots

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Requests

(x, y,
 z, ..

.)

Requests
(a, b, c, ...)

Replica

Paxos

Slots

a

a

a

a

a

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Requests

(x, y,
 z, ..

.)

Requests
(a, b, c, ...)

Replica

Paxos

Slots

b

b

b

b

b x

x

x

x

x

a

a

a

a

a

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Requests

(x, y,
 z, ..

.)

Requests
(a, b, c, ...)

Replica

Paxos

Slots
c y z

c y z

c y z

c y z

c y z

b

b

b

b

b x

x

x

x

x

a

a

a

a

a

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Requests

(x, y,
 z, ..

.)

Requests
(a, b, c, ...)

Replica

Paxos

Slots
c y z

c y z

c y z

c y z

c y z

b

b

b

b

b x

x

x

x

x

a

a

a

a

a

Execution

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Requests

(x, y,
 z, ..

.)

Requests
(a, b, c, ...)

Replica

Paxos

Slots
c y z

c y z

c y z

c y z

c y z

b

b

b

b

b x

x

x

x

x

a

a

a

a

a

Execution

State

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine

Requests

(x, y,
 z, ..

.)

Requests
(a, b, c, ...)

Replica

Paxos

Slots
c y z

c y z

c y z

c y z

c y z

b

b

b

b

b x

x

x

x

x

a

a

a

a

a

Execution

State

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 39/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine is Not Enough

Replica

Replica

Replica

Replica

Replica

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 40/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine is Not Enough

Replica

Replica

Replica

Replica

Replica

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 40/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine is Not Enough

Replica

Replica

Replica

Replica

Replica

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 40/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine is Not Enough

Replica

Replica

Replica

Replica

Replica

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 40/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine is Not Enough

Replica

Replica

Replica

Replica

Replica

Replica

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 40/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine is Not Enough

Replica

Replica

Replica

Replica

Replica

Replica

Replica

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 40/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replicated State Machine is Not Enough

Replica

Replica

Replica

Replica

Replica

Replica

Replica

Replica

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 40/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Migration: Basic Idea

A configuration is the set of replicas
Replicas include the configuration as part of the state
A special request that changes the configuration
Handled like normal requests (assigned a slot then
executed)
The change take effect after α slots
We used the SMART algorithm Details

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 41/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Our Algorithm

Goals
Automatically maintain configuration in a decentralized way
Select resources, detect failures, and decide to migrate
Users find service without central repository

Approach
We use Structure Overlay Networks(SONs)
We use replica placement schemes (such as symmetric
replication) to select nodes that will host replicas
We use lookups and DHT ideas
We use failure detection provided by SONs

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 42/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Our Algorithm

Goals
Automatically maintain configuration in a decentralized way
Select resources, detect failures, and decide to migrate
Users find service without central repository

Approach
We use Structure Overlay Networks(SONs)
We use replica placement schemes (such as symmetric
replication) to select nodes that will host replicas
We use lookups and DHT ideas
We use failure detection provided by SONs

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 42/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Creating a Replicated State Machine (RSM)

Any node can create a RSM. Select ID and replication degree

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

RSM ID = 10, f=4, N=32

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 43/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Creating a Replicated State Machine (RSM)

The node uses symmetric replication to calculate replica IDs

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 43/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Creating a Replicated State Machine (RSM)

The node use lookups to find responsible nodes . . .

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2

Responsible Node IDs = 14, 20, 29, 7

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 43/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Creating a Replicated State Machine (RSM)

. . . and gets direct references to them

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2

Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),
 Ref(29), Ref(7)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 43/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Creating a Replicated State Machine (RSM)

The set of direct references forms the configuration

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2

Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),
 Ref(29), Ref(7)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 43/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Creating a Replicated State Machine (RSM)

The node sends a Create message to the configuration

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

SM r1

SM r2

SM r3

SM r4

RSM ID = 10, f=4, N=32
Replica IDs = 10, 18, 26, 2

Responsible Node IDs = 14, 20, 29, 7

Configuration = Ref(14), Ref(20),
 Ref(29), Ref(7)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 43/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Creating a Replicated State Machine (RSM)

Now replicas communicate directly using the configuration

SM r1

SM r2

SM r3

SM r4

Configuration_1 = Ref(14) Ref(20) Ref(29) Ref(7)
 1 2 3 4

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 43/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Replica Architecture

Shared Execution Module

Paxos 1 Paxos 2 Paxos 3

1 2 3

Service
State

Conf 1
Conf 2
Conf 3

assign
requests
to slots

State

Slots

sequentially
execute requests

R1
FirstSlot

R1
LastSlot

R3
FirstSlot

R2
FirstSlot

R2
LastSlot

Input

Output

Paxos,
Leader Election, and
Migration Messages

Replica

Service Specific Part Generic Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 44/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

When to Migrate?

To fix Lookup inconsistencies
To handle resource churn

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 45/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Handling Lookup Inconsistency

Because of lookup inconsistency the configuration may
contain incorrect nodes
The inconsistency is detected when a node receives a
request targeted at a replica that the node does not have
but should be responsible for
In this case the node issues a configuration change
request asking the current configuration to replace the
incorrect node with itself

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 46/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Handling Churn

Similar to handling churn in a DHT
When a node joins it gets a list of replicas (RSM_ID and
rank) it is responsible for form its successor
When a node leaves it hand over replicas to its successor
When a node fails the successor uses symmetric replication
and interval cast to find replicas it should be responsible for

After getting the list of replicas the node issue a
configuration request to each RSM to replace incorrect
node with itself

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 47/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Changing the Configuration (Migration)

In SMART the admin sends a configuration change
request that contains all nodes in the new configuration
We can not do the same in a decentralized fashion to avoid
conflicts

Example
Assume current configuration is {A, B, C, D}

Node X detects that C is dead and requests change to {A, B, X, D}

Node Y detects that D is dead and requests change to {A, B, C, Y}

Y overrides the change made by X!

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 48/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Changing the Configuration (Migration)

In our approach the request does not contain the entire
configuration. It contain only a request to replace a
particular node

Example
Assume current configuration is {A, B, C, D}

Node X detects that C is dead and requests replacing replica 3 with itself

Node Y detects that D is dead and requests replacing replica 4 with itself

The end result is {A, B, X, Y}

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 49/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

Our approach is generic
and can be useful for many
services
We use it in Niche to
implement Robust
Management Elements
Replace the service
specific part of the
execution module with a
management element

Shared Execution Module

Paxos 1 Paxos 2 Paxos 3

1 2 3

Service
State

Conf 1
Conf 2
Conf 3

assign
requests
to slots

State

Slots

sequentially
execute requests

R1
FirstSlot

R1
LastSlot

R3
FirstSlot

R2
FirstSlot

R2
LastSlot

Input

Output

Paxos,
Leader Election, and
Migration Messages

Replica

Service Specific Part Generic Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 50/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Policies
Robust Management Elements

Robust Management Elements

Our approach is generic
and can be useful for many
services
We use it in Niche to
implement Robust
Management Elements
Replace the service
specific part of the
execution module with a
management element

Shared Execution Module

Paxos 1 Paxos 2 Paxos 3

1 2 3

assign
requests
to slots

Slots

sequentially
execute requests

R1
FirstSlot

R1
LastSlot

R3
FirstSlot

R2
FirstSlot

R2
LastSlot

Input

Output

Paxos,
Leader Election, and
Migration Messages

Replica

ME
State

Conf 1
Conf 2
Conf 3

State
Management Element Generic Part

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 50/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Conclusions
Future Work

Outline

1 Introduction

2 Niche Platform

3 Design Methodology

4 Improving Management

5 Conclusions and Future Work
Conclusions
Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 51/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Conclusions
Future Work

Conclusions

Niche Platform
Enable self-management
Programming and runtime execution
Large-scale and/or dynamic systems

Methodology
Design space and guidelines
Interaction patterns

YASS use case
Policy based management
Robust Management Elements

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 52/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Conclusions
Future Work

Future Work

Refine design methodology including steps and interaction
patterns
Consider more use cases focusing on real applications
Study and investigate management patterns and
techniques

Distributed control, distributed optimization
Model Predictive Control (MPC)
Reinforcement learning in (feedback) control
Networked Control System (NCS)

Focus more on self-tuning
Complete work on Robust Management Elements
Port Niche to Kompics component model

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 53/54

Introduction
Niche Platform

Design Methodology
Improving Management

Conclusions and Future Work

Thank you for careful listening :-)

Questions?

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 54/54

SPL Policy Example

Policy {
Declaration {
lowloadthreshold = 500;

}
Condition {
storageInfo.totalLoad <= lowloadthreshold

}
Decision {
manager.setTriggeredHighLoad(false) &&
manager.delegateObligation("release storage")

}
}:1;

Return

XACML Policy Example

<Policy PolicyId="lowLoadPolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">

<Target>
<Subjects> <AnySubject /> </Subjects>
<Resources> <AnyResource /> </Resources>
<Actions>
<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
load

</AttributeValue>
<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />
</ActionMatch>

</Action>
</Actions>

</Target>
<Rule Effect="Permit" RuleId="lowLoad">

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:double-less-than-or-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:double-one-and-only">
<EnvironmentAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#double"

AttributeId="totalLoad"/>
</Apply>

<AttributeValue> 500 </AttributeValue>
</Condition>

</Rule>
<Obligations>

<Obligation FulfillOn="Permit" ObligationId="2">
<AttributeAssignment AttributeId="lowLoad_obligation" DataType="http://www.w3.org/2001/XMLSchema#integer">

"release storage"
</AttributeAssignment>

</Obligation>
</Obligations>

</Policy>

Return

Migration: The SMART Algorithm

SMART is a new technique for changing the set of nodes
(configuration) where a replicated service runs (i.e.
migrating the service)
Advantages over other approaches (as described by
SMART authors):

Allows migrations that replace non-failed nodes (suitable for
automated service)
Can pipeline concurrent requests (performance
optimization)
Provides complete description

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 58/54

Configuration-Specific Replicas

Each replica is associated with
one and only one configuration
Migration creates a new set of
replicas (configuration)
Simplifies the migration process
Each configuration uses its own
instance of the Paxos algorithm
Inefficient implementation (use
shared execution module to
improve it)

A B C D

Configuration

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 59/54

Configuration-Specific Replicas

Each replica is associated with
one and only one configuration
Migration creates a new set of
replicas (configuration)
Simplifies the migration process
Each configuration uses its own
instance of the Paxos algorithm
Inefficient implementation (use
shared execution module to
improve it)

A B C D

Configuration

Configuration

Current Approaches

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 59/54

Configuration-Specific Replicas

Each replica is associated with
one and only one configuration
Migration creates a new set of
replicas (configuration)
Simplifies the migration process
Each configuration uses its own
instance of the Paxos algorithm
Inefficient implementation (use
shared execution module to
improve it)

A B C D

Configuration

Configuration

Current Approaches

Configuration_1

Configuration_2

SMART Approach

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 59/54

SMART

Avoids inter-configuration conflicts by assigning none
overlapping range of slots [FirstSlot ,LastSlot] to each
configuration
The old configuration sends a Join message to the new
configuration
A replica in a new configuration need to copy state from
another replica (up till at least FirstSlot − 1)
Destroying old configurations (Finished and Ready
messages)
Clients use a configuration repository to find the current
configuration
SMART does not deal with how to select a configuration
and when to migrate

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 60/54

Challenges Implementing Lamport’s Idea

Unaware-leader challenge: A new leader may not know
the latest configuration
Window-of-vulnerability challenge: Migrations that
remove or replace a machine can create a period of
reduced fault tolerance
Extended-disconnection challenge: After a long
disconnection, a client may be unable to find the service
Consecutive-migration challenge: If request n changes
the configuration, requests n + 1 through n + α− 1 cannot
change the configuration
Multiple-poll challenge: A new leader may have to poll
several configurations

Return

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy) 61/54

	Introduction
	Autonomic Computing
	Problem Statement

	Niche Platform
	Niche Overview
	Functional Part
	Management Part
	Touchpoints
	Runtime Environment

	Design Methodology
	Distributed Management
	Use Case: YASS

	Improving Management
	Policies
	Robust Management Elements

	Conclusions and Future Work
	Conclusions
	Future Work

	
	Appendix

