
Phan Cong-Vinh
NTT University, Vietnam

Formal and Practical
Aspects of Autonomic
Computing and
Networking:
Specification, Development,
and Verification

Formal and practical aspects of autonomic computing and networking: specification, development, and verification / Phan
Cong-Vinh, editor.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book outlines the characteristics, novel approaches of specification, refinement, programming and
verification associated with automated computing and networking”--Provided by publisher.
 ISBN 978-1-60960-845-3 (hardcover) -- ISBN 978-1-60960-846-0 (ebook) -- ISBN 978-1-60960-847-7 (print & perpetual
access) 1. Autonomic computing. 2. Computer networks. 3. Formal methods (Computer science) I. Cong-Vinh, Phan.
 QA76.9.A97F67 2012
 004--dc23
 2011025143

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Senior Editorial Director: Heather Probst
Book Production Manager: Sean Woznicki
Development Manager: Joel Gamon
Development Editor: Joel Gamon
Acquisitions Editor: Erika Gallagher
Typesetters: Jennifer Romanchak
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

241

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

DOI: 10.4018/978-1-60960-845-3.ch010

Vladimir Vlassov
KTH Royal Institute of Technology, Sweden

Ahmad Al-Shishtawy
KTH Royal Institute of Technology, Sweden

Per Brand
Swedish Institute of Computer Science, Sweden

Nikos Parlavantzas
Université Européenne de Bretagne, France

Niche:
A Platform for Self-Managing

Distributed Applications

ABSTRACT

We present Niche, a general-purpose, distributed component management system used to develop, deploy,
and execute self-managing distributed applications. Niche consists of both a component-based program-
ming model as well as a distributed runtime environment. It is especially designed for complex distributed
applications that run and manage themselves in dynamic and volatile environments.Self-management in
dynamic environments is challenging due to the high rate of system or environmental changes and the
corresponding need to frequently reconfigure, heal, and tune the application. The challenges are met
partly by making use of an underlying overlay in the platform to provide an efficient, location-independent,
and robust sensing and actuation infrastructure, and partly by allowing for maximum decentralization of
management.We describe the overlay services, the execution environment, showing how the challenges
in dynamic environments are met. We also describe the programming model and a high-level design
methodology for developing decentralized management, illustrated by two application case studies.

242

Niche

INTRODUCTION

Autonomic computing (Horn, 2001) is an attractive
paradigm to tackle the problem of growing soft-
ware complexity by making software systems and
applications self-managing. Self-management,
namely self-configuration, self-optimization,
self-healing, and self-protection, can be achieved
by using autonomic managers (IBM, 2006). An
autonomic manager continuously monitors soft-
ware and its execution environment and acts to
meet its management objectives. Managing ap-
plications in dynamic environments with dynamic
resources and/or load (like community Grids,
peer-to-peer systems, and Clouds) is especially
challenging due to large scale, complexity, high
resource churn (e.g., in P2P systems) and lack of
clear management responsibility.

This chapter presents the Niche platform
(Niche, 2010) for self-managing distributed ap-
plications; we share our practical experience,
challenges and issues, and lessons learned when
building the Niche platform and developing self-
managing demonstrator applications using Niche.
We also present a high-level design methodology
(including design space and steps) for developing
self-managing applications.

Niche is a general-purpose, distributed compo-
nent management system used to develop, deploy,
and execute self-managing distributed applications
or services in different kinds of environments, in-
cluding very dynamic ones with volatile resources.
Niche is both a component-based programming
model that includes management aspects as well
as a distributed runtime environment.

Niche provides a programming environment
that is especially designed to enable application
developers to design and develop complex dis-
tributed applications that will run and manage
themselves in dynamic and volatile environments.
The volatility may be due to the resources (e.g.,
low-end edge resources), the varying load, or
the action of other applications running on the
same infrastructure. The vision is that once the

infrastructure-wide Niche runtime environment
has been installed, applications that have been
developed using Niche, can be installed, and run
with virtually no effort. Policies cover such issues
as which applications to scale down or stop upon
resource contention. After deployment the appli-
cation manages itself, completely without human
intervention, excepting, of course, policy changes.
During the application lifetime the application is
transparently recovering from failure, and tuning
and reconfiguring itself on environmental changes
such as resource availability or load. This cannot
be done today in volatile environments, i.e., it
is beyond the state-of-the-art, except for single
machine applications and the most trivial of dis-
tributed applications, e.g., client/server.

The rest of this chapter is organized as follows.
The next section lays out the necessary background
for this work. Then, we discuss challenges for
enabling and achieving self-management in a
dynamic environment characterized by volatile
resources and high resource churn (leaves, failures
and joins of computers). Next, we present Niche.
We provide some insight into the Niche design
ideas and its architecture, programming model and
execution environment, followed by a presentation
of programming concepts and some insight into
the programming of self-managing distributed
applications using Niche illustrated with a simple
example of a self-healing distributed group service.
Next, we present our design methodology (includ-
ing design space and design steps) for developing
a management part of a self-managing distributed
application in a decentralized manner, i.e., with
multiple interactive autonomic managers. We il-
lustrate our methodology with two demonstrator
applications, which are self-managing distributed
services developed using Niche. Next, we discuss
combining a policy-based management (using a
policy language and a policy engine) with hard-
coded management logic. Finally, we present some
conclusions and our future work.

243

Niche

BACKGROUND

The benefits of self-managing applications apply
in all kinds of environments, and not only in dy-
namic ones. The alternative to self-management
is management by humans, which is costly,
error-prone, and slow. In the well-known IBM
Autonomic Computing Initiative (Horn, 2001) the
axes of self-management were self-configuration,
self-healing, self-tuning and self-protection. To-
day, there is a considerable body of work in the
area, most of it geared to clusters.

However, the more dynamic and volatile
the environment, the more often appropriate
management actions to heal/tune/reconfigure
the application will be needed. In very dynamic
environments self-management is not a question
of cost but feasibility, as management by humans
(even if one could assemble enough of them) will
be too slow, and the system will degrade faster than
humans can repair it. Any non-trivial distributed
application running in such an environment must
be self-managing. There are a few distributed
applications that are self-managing and can run
in dynamic environments, like peer-to-peer file-
sharing systems, but they are handcrafted and
special-purpose, offering no guidance to designing
self-managing distributed applications in general.

Application management in a distributed set-
ting consists of two parts. First, there is the initial
deployment and configuration, where individual
components are shipped, deployed, and initialized
at suitable nodes (or virtual machine instances),
then the components are bound to each other as
dictated by the application architecture, and the
application can start working. Second, there is
dynamic reconfiguration when a running applica-
tion needs to be reconfigured. This is usually due
to environmental changes, such as change of load,
the state of other applications sharing the same
infrastructure, node failure, node leave (either
owner rescinding the sharing of his resource, or
controlled shutdown), but might also be due to
software errors or policy changes. All the tasks

in the initial configuration may also be present in
dynamic reconfiguration. For instance, increasing
the number of nodes in a given tier will involve
discovering suitable resources, deploying and
initializing components on those resources and
binding them appropriately. However, dynamic
reconfiguration generally involves more, because
firstly, the application is running and disruption
must be kept to a minimum, and secondly, manage-
ment must be able to manipulate running compo-
nents and existing bindings. In general, in dynamic
reconfiguration, there are more constraints on the
order in which configuration change actions are
taken, compared to initial configuration when the
configuration can be built first and components
are only activated after this has been completed.

A configuration may be seen as a graph,
where the nodes are components and the links are
bindings. Components need suitable resources to
host them, and we can complete the picture by
adding the mapping of components onto physical
resources. This is illustrated in Figure 1. On the left
we show the graph only, the abstract configuration,
while on the right the concrete configuration is
shown. The bindings that cross resource bound-
aries will upon use involve remote invocations,
while those that do not can be invoked locally.
Reconfiguration may involve a change in the
concrete configuration only or in both the abstract
and concrete configurations. Note, that we show
the more interesting and challenging aspects of
reconfiguration; there are also reconfigurations
that leave the graph unchanged but only change
the way in which components work by changing
component attributes.

We now proceed with some examples of dy-
namic reconfiguration. In these dynamic environ-
ments, a resource may announce that it is leaving
and a new resource will need to be located and
the components currently residing on the resource
moved to the new resource. In this case only the
concrete configuration is changed. Alternatively,
when there is an increase in the number of service
components in a service tier this will change the

244

Niche

abstract (and concrete) configuration by adding
a new node and the appropriate bindings. An-
other example is when a resource fails. If we
disregard the transient broken configuration,
where the failed component is no longer present
in the configuration and the bindings that existed
to it are broken, an identical abstract configuration
will eventually be created, differing only in the
resource mapping. In general, an application ar-
chitecture consists of a set of suitable abstract
configurations with associated information as to
the resource requirements of components. The
actual environment will determine which one is
best to deploy or to reconfigure towards.

Note that in Figure 1 only the top-level com-
ponents are shown. At a finer level of detail there
are many more components, but for our manage-
ment we can ignore components that are always
co-located and bound exclusively to co-located
components. Note, that we ignore only those that
are always co-located (in all configurations). There
are components that might be co-located in some
concrete configurations (when a sufficient capable
resource is available) but not in others. In Figure
1, on the right, a configuration is shown with
one machine hosting 3 components; in another
concrete configuration they might be mapped to
different machines.

We use an architectural approach to self-
management, with particular focus on achieving

self-management for dynamic environments,
enabling the usage of multiple distributed coop-
erative autonomic managers for scalability and
avoiding a single-point-of failure or contention.

RELATED WORK

The increasing complexity of software systems
and networked environments motivates autonomic
system research in both, academia and industry,
e.g., (J. O. Kephart & Chess, 2003; Roy et al., 2007;
Horn, 2001; Parashar & Hariri, 2005). Major com-
puter and software vendors have launched R&D
initiatives in the field of autonomic computing.

The main goal of autonomic system research
is to automate most system management func-
tions, including configuration management, fault
management, performance management, power
management, security management, cost manage-
ment, SLA management, and SLO management.

There is vast research on building autonomic
computing systems using different approaches
(Parashar & Hariri, 2005), including control theo-
retic approach; architectural approach; multi-agent
systems; policy-based management; management
using utility-functions. For example, authors of
(Hellerstein, Diao, Parekh, & Tilbury, 2004) apply
the control theoretic approach to design computing
systems with feedback loops. The architectural

Figure 1. Abstract (left) and concrete (right) view of a configuration. Boxes represent nodes or virtual
machines, circles represent components.

245

Niche

approach to autonomic computing (White, Han-
son, Whalley, Chess, & Kephart, 2004) suggests
specifying interfaces, behavioral requirements,
and interaction patterns for architectural elements,
e.g., components. The approach has been shown
to be useful for autonomous repair management
(Bouchenak et al., 2005). A reference architecture
for autonomic computing is presented in (Sweitzer
& Draper, 2006). The authors present patterns
for applying their proposed architecture to solve
specific problems common to self-managing ap-
plications. The analyzing and planning stages of
a control loop can be implemented using utility
functions to make management decisions, e.g., to
achieve efficient resource allocation (J. O. Kephart
& Das, 2007). Authors of (J. Kephart et al., 2007)
and (Das et al., 2008) use multi-objective utility
functions for power-aware performance manage-
ment. Authors of (Abdelwahed & Kandasamy,
2006; Bhat, Parashar, Khandekar, Kandasamy,
& Klasky, 2006) use a model-predictive control
technique, namely a limited look-ahead control
(LLC), combined with a rule-based managers,
to optimize the system performance based on
its forecast behavior over a look-ahead horizon.
Policy-based self-management (Chan & Arnold,
2003; Feng, Wasson, & Humphrey, 2007; Agrawal,
Calo, Lee, Lobo, & Res., 2007; Kumar et al.,
2007) allows high-level specification of manage-
ment objectives in the form of policies that drive
autonomic management and can be changed at
run time.

Some research is focused on interaction and
coordination between multiple autonomic manag-
ers. An attempt to analyze and understand how
multiple interacting loops can manage a single
system has been done in (Roy et al., 2007) by
studying and analyzing existing systems such as
biological and software systems. By this study
the authors try to understand the rules of a good
control loop design. A study of how to compose
multiple loops and ensure that they are consis-
tent and complementary is presented in (Cheng,
Huang, Garlan, Schmerl, & Steenkiste, 2004). The

authors presented an architecture that supports
such compositions.

There are many research projects focused on
or using self-management for software systems
and networked environments, including projects
performed at the NSF Center for Autonomic Com-
puting (The Center for Autonomic Computing,
2010) and a number of European projects funded
by European Commission such as RESERVOIR,
SELFMAN, Grid4All and others.

There are several industrial solutions (tools,
techniques and software suites) for enabling and
achieving self-management of enterprise IT sys-
tems, e.g., IBM® Tivoli®1 and HP’s OpenView,
which include different autonomic tools and
managers to simplify management, monitoring
and automation of complex enterprise-scale IT
systems. These solutions are based on functional
decomposition of management performed by
multiple cooperative managers with different man-
agement objectives (e.g., performance manager,
power manager, storage manager, etc.). These tools
are specially developed and optimized to be used
in IT infrastructure of enterprises and datacenters.

The area of autonomic computing is still evolv-
ing. Still there are many open research issues
such as development environments to facilitate
development of self-managing applications, ef-
ficient monitoring, scalable actuation, and robust
management.

In our work we focus on enabling and achiev-
ing self-management for large-scale distributed
systems in dynamic environments (dynamic re-
sources and load) using an architectural approach
to self-management with multiple distributed
cooperative autonomic managers.

OUR APPROACH

We, like many others, use the feedback control loop
approach to achieve self-management. Referring
back to Figure 1 we can identify the constituent
parts of what is needed at runtime.

246

Niche

Container: Each available machine has a
container (the boxes in the figure). The container
hosts running components and directs actuation
(control) commands addressed to a particular com-
ponent. The container can be told by management
to install a new component. Ideally the container
can completely isolate and protect components
from one another (particularly important when
components belonging to different applications are
hosted in the same container). This can be achieved
by using Virtual Machine technology (currently
the containers in Niche do not guarantee this).

Sensing: Management needs to sense or be
informed about changes in the application state.
Some events are independent of the applica-
tion type. For example, the failure of a machine
(or container) necessarily entails failure of the
hosted components, as does the leave of a ma-
chine. Other events are application-specific,
with a component programmed to report certain
events to management (via the management
interface of the component). There is a choice
with application-independent events (failure and
leaves) if the reporting to management is on the
level of the container/machine (in which case the
management must make the appropriate mapping
to components), or on the level of the individual
components.

Resource Discovery: Management needs to
sense or be informed about changes in available
resources, or alternatively management needs to be
able, upon need, to discover free (or underutilized)
resources. This could be seen as part of sensing,
but note that in general more than a single appli-
cation is running on the same infrastructure and
resource discovery/allocation is an infrastructure-
wide service, in contrast to sensing as described
above which is directly linked to components in
a given application.

Actuation: Management needs to be able to
control applications and the components that they
are composed of.

Management Hosting: Management needs to
be hosted as well. In general the management of

a single application is divided into one or more
management elements. These management ele-
ments are programs that are triggered by some
event, perform some planning, and thereafter send
the appropriate actuation commands to perform
the required reconfiguration.

In a static and constrained environment, these
elements of the runtime support may be straight-
forward or even trivial. For instance, if manage-
ment is centralized, then the management should
know exactly where each application component
is hosted, and it is straightforward to send the ap-
propriate command message to a component at
its known host. If management is decentralized,
it is possible that a component has been moved
as a result of the action of another management
element without the first management element
having been made aware of this. If management
never moves, then it is straightforward to find
it, and deliver sensing messages to it. If all re-
sources are known statically, then management
will always know what resources are potentially
available. However, as explained in the next sec-
tion, to handle dynamic environments we cannot
make such simplifying assumptions and the five
described elements of the runtime are non-trivial.

The runtime support for management is, of
course, only part of the story. Developing the
management for a distributed application is a
programming task, and a programming model is
needed. This will be covered later in the section
about the Niche platform.

CHALLENGES

Achieving self-management in a dynamic envi-
ronment characterized by volatile resources and
high churn (leaves, failures and joins of machines)
is challenging. State-of-the-art techniques for
self-management in clusters are not suitable. The
challenges are:

247

Niche

1. Resource discovery: Discovering and utiliz-
ing free resources;

2. Robust and efficient sensing and actuation:
Churn-tolerant, efficient and robust sensing
and actuation infrastructure;

3. Management bottleneck: Avoiding manage-
ment bottleneck and single-point-of-failure;

4. Scale.

In our driving scenarios resources are ex-
tremely volatile. This volatility is partly related
to churn. There are many scenarios where high
churn is expected. In community Grids and other
collaborations across the Internet machines may
be at any time removed when the owner needs
the machine for other purposes. At the edge both
the machines and the networks are less reliable.

There are other aspects of volatility. Demand-
ing applications may require more resources than
are available in the current infrastructure and
additional resources then need to be obtained
quickly from an external provider (e.g., Cloud).
These new resources need to be integrated with
existing resources to allow applications to run over
the aggregated resources. Furthermore we do not
assume over provisioning within the infrastructure
- it may be working close to available capacity so
that even smaller changes of load in one application
may trigger a reconfiguration as other applications
need to be ramped up or down depending on the
relative priorities of the applications (according to
policy). We see the need for a system-wide infra-
structure where volatile resources can efficiently
be discovered and utilized. This infrastructure (i.e.,
the resource discovery service) itself also needs
to be self-managing.

The sensing and actuation infrastructure needs
to be efficient. The demand for efficiency rules
out, at least as the main mechanism, a probing
monitoring approach. Instead, the publish/sub-
scribe paradigm needs to be used. The sensing
and actuation infrastructure must be robust and
churn-tolerant. Sensing events must be delivered
(at least once) to subscribing management ele-

ments, irrespective of failure events, and irrespec-
tive of whether or not the management element
has moved. In a dynamic environment it is quite
normal for a management element to move from
machine to machine during the lifetime of the
application as resources leave and join.

It is important that management does not
become the bottleneck. For the moment, let us
disregard the question of failure of management
nodes. The overall management load for a single
application depends on both the size of the sys-
tem (i.e., number of nodes in the configuration
graph) and the volatility of the environment. It
may well be that a dynamic environment of a few
hundred nodes could generate as many events
per time unit as a large data centre. The standard
mechanism of a single management node will
introduce a bottleneck (both in terms of manage-
ment processing, but also in terms of bandwidth).
Decentralization of management is, we believe,
the key to solving this problem. Of course, de-
centralization of management introduces design
and synchronization issues. There are issues on
how to design management that requires minimal
synchronization between the manager nodes and
how to achieve that necessary synchronization.
These issues will be discussed later in the section
about design methodology.

The issue of failure of management nodes
in centralized and decentralized solutions is, on
the other hand, not that different. (Of course,
with a decentralized approach, only parts of the
management fail). If management elements are
stateless, fault-recovery is relatively easy. If they
are stateful, some form of replication can be used
for fault-tolerance, e.g., hot standby in a cluster or
state machine replication (Al-Shishtawy, Fayyaz,
Popov, & Vlassov, 2010).

Finally, there are many aspects of scale to con-
sider. We have touched upon some of them in the
preceding paragraphs, pointing out that we have
to take into account the sheer number of environ-
mental sensing events. Clearly the system-wide
resource discovery infrastructure needs to scale.

248

Niche

But there are other issues to consider regarding
scale and efficiency. We have used two approaches
in dealing with these issues. The first, keeping in
mind our decentralized model of management,
is to couple as loosely as possible. In contrast to
cluster management systems, not only do we avoid
maintaining a centralized system map reflecting
the “current state” of the application configura-
tion, we strive for the loosest coupling possible.
In particular, management elements only receive
event notifications for exactly those events that
have been subscribed to. Secondly, we have tried
to identify common management patterns, to see
if they can be optimized (in terms of number of
messages/events or hops) by supporting them di-
rectly in the platform as primitives, rather than as
programmed abstractions when and if this makes
for a difference in messaging or other overhead.

NICHE: A PLATFORM FOR SELF-
MANAGING DISTRIBUTED
APPLICATIONS

In this section, we present Niche, which is a plat-
form for development, deployment, and execution
of component-based self-managing applications.
Niche includes a distributed component program-
ming model, APIs, and a runtime system (including
a deployment service) that operates on an internal
structured overlay network. Niche supports sens-
ing changes in the state of components and an
execution environment, and it allows individual
components to be found and appropriately manipu-
lated. It deploys both functional and management
components and sets up the appropriate sensor
and actuation support infrastructure.

Niche has been developed assuming that its
runtime environment and applications might
execute in a highly dynamic environment with
volatile resources, where resources (computers,
virtual machines) can unpredictably fail or leave.
In order to deal with such dynamicity, Niche lever-
ages self-organizing properties of the underlying

structured overlay network, including name-based
routing and the DHT functionality. Niche provides
transparent replication of management elements
for robustness. For efficiency, Niche directly sup-
ports a component group abstraction with group
bindings (one-to-all and one-to-any).

There are aspects of Niche that are fairly
common in autonomic computing. Firstly, Niche
supports the feedback control loop paradigm
where management logic in a continuous feed-
back loop senses changes in the environment and
component status, reasons about those changes,
and then, when needed, actuates, i.e., manipulates
components and their bindings. A self-managing
application can be divided into a functional part
and a management part tied together by sensing
and actuation. Secondly, the Niche programming
model is based on a component model, called
Fractal component model (Bruneton, Coupaye,
& Stefani, 2004), in which components can be
monitored and managed. In Fractal, components
are bound and interact functionally with each
other using two kinds of interfaces: (1) server in-
terfaces offered by the components; (2) and client
interfaces used by the components. Components
are interconnected by bindings: a client interface
of one component is bound to a server interface
of another component. Fractal allows nesting of
components in composite components and shar-
ing of components. Components have control
(management) membranes, with introspection
and intercession capabilities. It is through this
control membrane that components are started,
stopped, configured. It is through this membrane
that the components are passivated (as a prelude
to component migration), and through which the
component can report application-specific events
to management (e.g., load). Fractal can be seen
as defining a set of capabilities for functional
components. It does not force application compo-
nents to comply, but clearly the capabilities of the
programmed components must match the needs
of management. For instance, if the component
is both stateful and not capable of passivation (or

249

Niche

checkpointing) then management will not be able
to transparently move the component.

The major novel feature of Niche is that, in
order to enable and achieve self-management
for large-scale dynamic distributed systems, it
combines a suitable component model (Fractal)
with a Chord-like structured overlay network to
provide a number of robust overlay services. Niche
leverages the self-organizing properties of the
structured overlay network, e.g., automatic cor-
rection of routing tables on node leaves, joins and
failures. The Fractal model supports components
that can be monitored and managed through com-
ponent introspection and control interfaces (called
controllers in Fractal), e.g., lifecycle, attribute,
binding and content controllers. The Niche execu-
tion environment provides a number of overlay
services, notably, name-based communication, the
key-value store (DHT) for lookup services, a con-
trolled broadcast for resource discovery, a publish/
subscribe mechanism for event dissemination, and
node failure detection. These services are used by
Niche to provide higher level abstractions such
as name-based bindings to support component
mobility; dynamic component groups; one-to-any
and one-to-all group bindings, and event based
interaction. Note that the application program-
mer does not need to know about the underlying
overlay services, this is under the hood, and his/
her interaction is through the Niche API.

An important feature of Niche is that all archi-
tectural elements such as component interfaces,
singleton components, components groups, and
management elements, have system-wide unique
identifiers. This enables location transparency,
transparent migration and reconfiguration (rebind-
ing) of components and management elements
at run time. In Niche, components can be found,
monitored and controlled – deployed, created,
stopped, rebound, started, etc. Niche uses the DHT
functionality of the underlying structured overlay
network for its lookup service. This is especially
important in dynamic environments where compo-
nents need to be migrated frequently as machines

leave and join frequently. Furthermore, each
container maintains a cache of name-to-location
mappings. Once a name of an element is resolve to
its location, the element (its hosting container) is
accessed directly rather than by routing messages
though the overlay network. If the element moves
to a new location, the element name is transpar-
ently resolved to the new location.

We now proceed to describe both the Niche
runtime and, to a lesser extent, the Niche program-
ming model. The Niche programming model will
be presented in more detail in the following section
interleaved with examples.

Building Management with Niche

Niche implements (in the Java™ programming
language2) the autonomic computing reference
architecture proposed by IBM in (IBM, 2006), i.e.,
it allows building MAPE-K (Monitor, Analyze,
Plan and Execute; with Knowledge) control loops.
An Autonomic Manager in Niche can be organized
as a network of Management Elements (MEs) that
interact through events, monitor via sensors and act
via actuators (e.g., using the actuation API). The
ability to distribute MEs among Niche containers
enables the construction of decentralized feedback
control loops for robustness and performance.

A self-managing application in Niche consists
of functional and management parts. Functional
components communicate via component bind-
ings, which bind client interfaces to server
interfaces; whereas management elements com-
municate mostly via a publish/subscribe event
notification mechanism. The functional part is
developed using Fractal components and com-
ponent groups, which are controllable (e.g., can
be looked up, moved, rebound, started, stopped,
etc.) and can be monitored by the management
part of the application. The management part
of an application can be constructed as a set of
interactive or independent control loops each of
which monitors some part of the application and
reacts on predefined events such as node failures,

250

Niche

leaves or joins, component failures, and group
membership events; and application-specific
events such as component load change events,
and low storage capacity events.

In Figure 2, we show what an abstract con-
figuration might look like when all management
elements are passive in the sense that they are all
waiting for some triggering events to take place.
The double-headed arrows in the functional part
are bindings between components (as the concrete
configuration is not shown the bindings may or
may not be between different machines). The man-
agement elements have references to functional
components by name (e.g., component id) or are
connected to actuators. The management and func-
tional parts are also “connected” by sensors (this
is also actually by name, because management,
as well as functional components can migrate) In
the picture there are sensors from the A group of
functional components (A1, A2 and A3) to two
management elements (sensors connected to the
other management elements are not shown). The
management architecture in Figure 2 is flat, and
later we show how management can be structured
hierarchically (see section Development of Self-

Managing Applications Using Niche), which is
important for larger more complex applications.

The form of a management element is show
in Exhibit 1, together with a high level description
of the features available in the Niche actuation
API.

Actuation is a sequence of invocations (actions)
that are listed in Exhibit 2 (in no specific order).
Note that all of the following actions are pro-
vided in the Niche actuation API. The list is ex-
tensible with user-defined actions.

For implementing the touchpoints (sensors
and actuations), Niche leverages the introspection
and dynamic reconfiguration features of the Frac-
tal component model in order to provide sensing
and actuation API abstractions. Sensors and ac-
tuators are special components that can be attached
to the application’s functional components. There
are also built-in sensors in Niche that sense
changes in the environment such as resource and
component failures, joins, and leaves, as well as
modifications in application architecture such as
creation of a group.

The application programmer also needs to in-
stall/deploy management elements (components).
To a large degree this is done in an analogous

Figure 2. Abstract configuration of a self-managing application

251

Niche

manner to dealing with functional components.
There are two important differences, however. One
concerns allocating resources to host management
components, and the other concerns connections
between management elements. In Niche the appli-
cation programmer usually lets the Niche runtime
find a suitable resource and deploy a management
component in one step. Niche reserves a slice of
each machine for management activity so that
management elements can be placed anywhere
(ideally, optimally so as to minimize latency
between the management element and its sen-
sors and references). Note that this assumes that
the analyze/plan step in management logic are
computationally inexpensive. Secondly there are
other ways to explicitly share information between
management elements, and they are rarely bound
to one another (unless they are always co-located).

In Figure 2, there are no connections between
management elements whatsoever, therefore the
only coordination that is possible between manag-
ers is via stigmergy. Knowledge (as in MAPE-K)
in Niche can be shared between MEs using two
mechanisms: first, the publish/subscribe mecha-
nism provided by Niche; second, the Niche DHT
to store/retrieve information such as references
to component group members, name-to-location
mappings. In section A Design Methodology for
Self-Management in Distributed Environments, we
discuss management coordination in more detail
in conjunction with design issues involved in the
decentralization of management.

Although programming in Niche is on the level
of Java, it is both possible and desirable to program
management at a higher level (e.g., declaratively).
Currently in Niche such high-level language sup-

Exhibit 1. Niche actuation API

loop

 wait SensorEvent

 change internal state // e.g., for monitoring and aggregation

 analyze/plan

 actuate

Exhibit 2. Actuation

reconfigure existing components // functional components / changing con-

crete configuration only

passivate/move existing components

discover resources // functional components / chang-

ing configuration.

allocate and deploy new components on a given resource

kill/remove existing components

remove/create bindings

add subscriptions/sensors // may cause sensors to be installed

remove subscriptions

discover resources // management components

allocate resources and deploy new management elements

trigger events // for management coordination

252

Niche

port includes a declarative ADL (Architecture
Description Language) that is used for describing
initial configurations at a high-level which is inter-
preted by Niche at runtime for initial deployment.
Policies (supported with a policy language and a
corresponding policy engine) can also be used to
raise the level of abstraction on management (see
section Policy-Based Management).

Execution Environment

The Niche execution environment (see Figure 3)
is a set of distributed containers (hosting com-
ponents, groups and management elements) con-
nected via the structured overlay network, and a
number of overlay services including name-based
communication, resource discovery, deployment,
a lookup service, component group support, the
publish/subscribe service for event dissemination
including predefined event notification (e.g., com-
ponent failures). The services allow an application
(its management part) to discover and to allocate
resources, to deploy the application and reconfig-
ure it at runtime, to monitor and react on changes

in the application and in its execution environment,
and to locate elements of the application (e.g.,
components, groups, managers). In this section,
we will describe the execution environment. We
begin with the aspects of the execution environ-
ment that the application programmer needs to be
aware of. Thereafter we will describe the mecha-
nisms used to realize the execution environment,
and particularly the overlay services. Although
the application programmer does not need to
understand the underlying mechanisms they are
reflected in the performance/fault model. Finally
in this section, we describe the performance/fault
model and discuss how Niche meets the four chal-
lenges discussed in section Challenges.

Programmer View

Containers

The Niche runtime environment is a set of distrib-
uted containers, called Jade3 nodes, connected via
the Niche structured P2P overlay network. Con-
tainers host functional components and manage-
ment elements of distributed applications executed

Figure 3. Niche architecture

253

Niche

in Niche. There are two container configurations
in the current Niche prototype: (1) the JadeBoot
container that bootstraps the system and interprets
given ADL (*.fractal) files describing initial con-
figuration of an application on deployment; (2)
the JadeNode container, which does not include
the ADL interpreter but supports a deployment
API to deploy components programmatically.

We use a Webcache PHP application (deployed
on an Apache server) to maintain a list of nodes
used as access points to join the overlay network.
The URL of the Webcache is a part of the configu-
ration information to be provided when installing
and configuring the Niche platform. When started,
a new Jade node sends an HTTP request to the
Webcache to get an address of any of the Jade
nodes that can be contacted to join the overlay.

Niche allows a programmer to control the
distribution of functional components and man-
agement elements among Niche containers, i.e.,
for every component or/and ME, the programmer
can specify the container (by a resource id) where
that element should reside (e.g., to co-locate com-
ponents for efficiency). If a location is not speci-
fied, the deployment service of the Niche runtime
environment will deploy (or move on failure) an
ME on any container selected randomly or in a
round-robin manner. Collocation of an ME with
a controlled component in the same container
allows improving performance of management
by monitoring and/or controlling the component
locally rather than remotely over the network.

Group Support

Niche provides support for component groups
and group bindings. Components can be bound
to groups via one-to-any (where a member of the
group is chosen at random) or one-to-all bind-
ings. The use of component groups is a fairly
common programming pattern. For instance, a
tier in a multi-tier application might be modeled
as a component group. The application program-
mer needs to be aware of the fact that component
groups are supported directly in the runtime for

efficiency reasons (the alternative would be to
program a group abstraction).

Resource Discovery and Deployment Service

Niche is an infrastructure that loosely connects
available physical resources/containers (comput-
ers), and provides for resource discovery. The
Niche execution environment is a set of contain-
ers (hosting components and managers), which
upon joining and leaving the overlay, inform the
Niche runtime environment and its applications
in a manner completely analogous to peer-to-peer
systems (e.g., Chord).

For initial deployment and runtime recon-
figuration Niche provides a deployment ser-
vice (including resource discovery) that can be
performed either by the ADL interpreter given
an ADL (possibly incomplete) description of
architecture of an application to be deployed;
or programmatically using a deployment Niche
API. ADL-driven deployment of an application
does not necessary deploy the entire application
but rather some primary components that in their
turn can complete deployment programmati-
cally by executing deployment process logic. A
deployment process includes resource discovery,
placement and creation of components and com-
ponent groups, binding component and groups,
placement and creation of management elements,
subscription to predefined or application-specific
events. The deployment service (API) uses the
Niche resource discovery service to find resources
(Niche containers) with specified properties to
deploy components.

All planned removal of resources, like con-
trolled shutdown, should be done by performing
a leave action a short time before the resource is
removed. It is generally easier for management to
perform the necessary reconfiguration on leaves
than on failures. Hopefully, management has had
the necessary time to successfully move (or kill)
the components hosted by the resource by the
time the resource is actually removed from the
infrastructure (e.g., shut down).

254

Niche

Management Support

In addition to resource discovery and deployment
services described above, runtime system support
for self-management includes a publish/subscribe
service used for monitoring and event-driven
management; and a number of server interfaces
to manipulate components, groups, and manage-
ment elements, and to access overlay services
(discovery, deployment, and pub/sub).

The publish/subscribe service is used by man-
agement elements for publishing and delivering
of monitoring and actuation events. The service is
accessed though NicheActuatorInterface and Trig-
gerInterface runtime system interfaces described
below. The service provides built-in sensors to
monitor component and node failures/leaves and
group membership changes. The sensors issue cor-
responding predefined events (e.g., Component-
FailEvent, CreateGroupEvent, MemberAddedE-
vent, ResourceJoinEvent, ResourceLeaveEvent,
ResourceStateChangeEvent), to which MEs can
subscribe. A corresponding pub/sub API allows
the programmer also to define application-specific
sensors and events. The Niche runtime system
guarantees event delivery.

The runtime system provides a number of in-
terfaces (available in each container) used by MEs
to control the functional part of an application and
to access the overlay services (discovery, deploy-
ment, pub/sub). The interfaces are automatically
bound by the runtime system to corresponding
client interfaces of an ME when the manage-
ment element is deployed and initialized. The
set of runtime interfaces includes the following
interfaces (Niche, 2010):

• NicheActuatorInterface (named “actua-
tor”) provides methods to access overlay
services, to (un)bind functional compo-
nents, to manipulate groups, to get access
to components in order to monitor and con-
trol them (i.e., to register components and
MEs with names and to lookup by names).
Methods of this interface include, but are

not limited to, discover, allocate, deallo-
cate, deploy, redeploy, subscribe, unsub-
scribe, register, lookup, bind, unbind, cre-
ate group, remove group, add to group;

• TriggerInterface (named “trigger”) used to
trigger events;

• NicheIdRegistry (named “nicheIdRegis-
try”) is an auxiliary low-level interface
used to lookup components by system-
wide names;

• OverlayAccess (named “overlayAccess”)
is an auxiliary low-level interface used to
obtain access to the runtime system and the
NicheActuatorInterface interface.

When developing a management part of an
application, the developer should mostly use
the first two interfaces. Note that in addition to
the above interfaces, the programmer also uses
a component and group APIs (Fractal API) to
manipulate component and groups for the sake
of self-management. Architectural elements
(components, groups, MEs) can be located in
different Niche containers; therefore invocations
of methods of the NicheActuatorInterface inter-
face as well as group and component interfaces
can be remote, i.e., cross container boundaries.
All architectural elements (components, groups,
management elements) of an application are
uniquely identified by system-wide IDs assigned
on deployment. An element can be registered at
the Niche runtime system with a given name to be
looked up (and bound with) by its name.

Execution Environment: Internals

Resource Discovery

Niche applications can discover and allocate re-
sources using an overlay-based resource discovery
mechanism provided by Niche. Currently the
Niche prototype uses a full broadcast (i.e., sends
an inquiry to all nodes in the overlay) which scales
poorly. However, there are approaches to make
broadcast-based discovery more efficient and scal-

255

Niche

able, such as an incremental controlled broadcast
e.g., (El-Ansary, Alima, Brand, & Haridi, 2003).

Mobility and Location Transparency

The DHT-based lookup (registry) service built
into Niche is used to keep information (metadata)
on all identifiable architectural elements of an
application executed in the Niche environment,
such as components, component groups, bind-
ings, management elements, subscriptions. Each
architectural element is assigned a system-wide
unique identifier (ID) that is used to identify the
element in the actuation API. The ID is assigned
to the element when the element is created. The
ID is used as a key to lookup information about
the element in the DHT of the Niche overlay. For
most of the element types, the DHT-based lookup
service contains location information, e.g., an end-
point of a container hosting a given component,
or end-points of containers hosting members of a
given component group. Being resolved, the loca-
tion information is cached in the element’s handle.
If the cached location information is invalid (the
element has moved to another container), it will
be automatically and transparently updated by the
component binding stub via lookup in the DHT.
This enables location transparency, transparent
migration of component, members of component
groups, and management elements at runtime.
In order to prevent losing of data on failures of
DHT nodes, we use a standard DHT replication
mechanism.

For example, Figure 4 depicts steps in execut-
ing a (remote) method invocation on a component
located in a remote container. Assume a client
interface of component A in node 0 is bound
to a server interface of component B in node 1;
whereas the information about the binding of A
to B (i.e., the end-point of B) is stored at node
2. When A makes its first call to B (Step 1), the
method call is invoked on the binding stub of B at
node 0 (Step 2). The stub performs lookup, using
the binding ID as a key, for current location of

component B (Step 3). The lookup result, i.e., the
end-point reference of B, is cached at node 0 for
further calls. When the reference to B is resolved,
the stub makes a remote call to the component B
using the reference. All further calls to B from
node 0 will use the cached end-point reference.
If, for any reason, B migrates to another container
(not shown in Figure 4), the location of B will be
updated in the DHT, and the stub of B in node 0
can lookup the new location in the next call to
component B. If a node hosting component B fails,
a component failure event will be sent to all sub-
scribers, including a manager (if any) responsible
for restoring component B in another container.
In this case, component A, which is bound to B,
does not need to be informed; rebinding of A to
the new instance of B is done transparently to A.

Location information is stored in the Niche
DHT in the form of a data structure called Set of
Network References, SNR, which represents a set
of references to identifiable Niche elements (e.g.,
components, component groups). A component
SNR contains one reference, whereas an SNR of
a component group contains references to mem-
bers of the corresponding group. SNRs are stored
under their names (used as keys) in the Niche
DHT-based key-value store. SNRs are used to
find Niche elements by names and can contain
either direct or indirect references. A direct refer-
ence contains the location of an element; where-
as an indirect reference refers to another SNR
identified by its name. The indirect reference must
be resolved before use. An SNR can be cached
by a client in order to improve access time to the
referenced element(s). Niche transparently detects
out-of-date (invalid) references and refreshes
cache contents when needed. Niche supports
transparent sensing of elements referenced in an
SNR. When a management element is created to
control (sense and actuate) functional components
referenced by the SNR, the Niche runtime system
transparently deploys sensors and actuators for
each component. Whenever the references in the

256

Niche

SNR are changed, the runtime system transpar-
ently (un)deploys sensors and actuators for the
corresponding components. For robustness, SNRs
are replicated using a DHT replication mechanism.
The SRN replication provides eventual consis-
tency of SNR replicas, but transient inconsisten-
cies are allowed. Similarly to handling of SNR
caching, the framework recognizes out-of-date
SNR references and retries SNR access when-
ever necessary.

Groups are implemented using SNRs con-
taining multiple references. Since a group SNR
represents a group, a component bound to the
group is actually bound to the group SNR. An
invocation through “one-to-any” or “one-to-all”
group binding is performed as follows. First, the
target group name (the name of the group binding)
is resolved to its SNR that contains references to
all members of the group. Next, in the case of
the one-to-any binding, one of the references is
(randomly) selected and the invocation request is
sent to the corresponding member of the group. In
the case of the one-to-all binding, the invocation

request is sent to all members of the group, i.e.,
to all references in the group SNR. Use of SNRs
allows changing the group membership (i.e.,
growing or shrinking the group) transparently to
components bound to the group. Niche supports
monitoring of group membership and subscribing
to group events issued by group sensors when
new members are added or removed from the
monitored groups.

Meeting the Challenges

In this section, we discuss how Niche meets
the four challenges (see Section Challenges)
for self-management in dynamic and volatile
environments. The challenges are chiefly con-
cerned with the non-functional properties of the
execution environment, so we shall also present
the performance/fault model associated with the
basic operations of Niche. For most operations
the performance model is in terms of network
hops, ignoring local computation which is in-
significant. Sometimes the number of messages

Figure 4. Steps of method invocation in Niche

257

Niche

is also taken into account. Clearly, the best that
can be obtained for any remote operation is one
or two hops, for asynchronous and synchronous
operations, respectively.

Resource Discovery

Niche is an infrastructure that loosely connects
available physical resources (computers), and
provides for resource discovery by using the struc-
tured overlay. Using total broadcast to discover
resources means that at most it take O(log N) hops
to find the required resource(s) (where N is the
number of physical nodes). However, the total
number of messages sent is large, O(N). In large
systems controlled incremental interval broadcast
can be used to decrease the number of messages
sent, at the price of greater delay if and when the
discovery search needs to be expanded (i.e., when
searching for a rare type of available resource).
Finally, we note that, often there is actually little
net increase in the number of messages, as the
resource discovery messages are sent along the
same links that continuously need to be probed
anyway for overlay self-management.

The use of a structured overlay allows Niche to
deal with the first challenge (Resource discovery).

Mobility and Location Transparency

In Niche all the architectural elements are po-
tentially mobile. In much of the Niche actuation
API, element identifiers are passed to Niche. An
example would be to install a sensor on a given
component. Associated with the element identifier
is a cached location. If the cached entry is cor-
rect, then the action is typically one or two hops,
i.e., the minimum. However, due to the action of
other management elements the cached location
may be invalid in which case a lookup needs to be
performed. In the worst case a lookup takes log N
hops (where N is the number of physical nodes).
What is to be expected depends on the rate of
dynamicity of the system. Additionally if the rate
of churn is low the overlay can be instrumented

so as to decrease the average lookup hops (by
increasing the size of routing table at the price
of increasing the self-management overhead of
the overlay itself).

In our view, the network or location trans-
parency of element identifiers is an important
requisite for efficient decentralization of manage-
ment and directly relates to the second (Robust
and efficient sensing and actuation) and third
(Management bottleneck) challenges of the previ-
ous section. Management elements do not need
to be informed when the components that they
reference are moved, and neither do sensors need
to be informed when the management elements
that they reference are moved. For example, in a
dynamic environment both a given component and
a related management element might be moved
(from container to container) many times before
the component triggers a high-load event. In this
case a DHT-lookup will occur, and the event will
reach the management element later than it would
be if the location of architectural elements was
kept up-to-date, but fewer messages are sent.

Sensing and Actuation

The sensing and actuation services are robust and
churn-tolerant, as Niche itself is self-managing.
Niche thus meets the second challenge (Robust and
efficient sensing and actuation). Niche achieves
this by leveraging the self-management properties
of an underlying structured overlay. The necessary
information to relay events to subscribers (at least
once) is stored with redundancy in the overlay.
Upon subscription Niche creates the necessary
sensors that serve as the initial detection points.
In some cases, sensors can be safely co-located
with the entity whose behavior is being monitored
(e.g., a component leave event). In other cases,
the sensors cannot be co-located. For instance, a
crash of a machine will cause all the components
(belonging to the same or different applications)
being hosted on it to fail. Here the failure sensors
need to be located on other nodes. Niche does all

258

Niche

this transparently for the developer; the only thing
the application developer must do is to use the
Niche API to ensure that management elements
subscribe to the events that it is programmed to
handle, and that components are properly pro-
grammed to trigger application-specific events
(e.g., load change).

Self-management requires monitoring of the
execution environment, components, and compo-
nent groups. In Niche monitoring is performed by
the push rather than pull method for the sake of
performance and scalability (the fourth challenge:
Scale) using a publish/subscribe event dissemina-
tion mechanism. Sensors and management ele-
ments can publish predefined (e.g., node failure)
and application-specific (e.g., load change) events
to be delivered to subscribers (event listeners).
Niche provides the publish/subscribe service that
allows management elements to publish events and
to subscribe to predefined or application-specific
events fired by sensors and other MEs. A set of
predefined events that can be published by the
Niche runtime environment includes resource
(node) and component failure/leave events, group
change events, component move events, and other
events used to notify subscribers (if any) about
certain changes in the execution environment and
in the architecture of the application. The Niche
publish/subscribe API allows the programmer to
define application specific events and sensors to
issue the events whenever needed. A list of sub-
scribers is maintained in an overlay proxy in the
form of an SNR (a Set of Network References
described above). The sensor triggers the proxy
which then sends the events to subscribers.

Decentralized and Robust Management

Niche allows for maximum decentralization of
management. Management can be divided (i.e.,
parallelized) by aspects (e.g., self-healing, self-
tuning), spatially, and hierarchically. Later, we
present the design methodology and report on
use-case studies of decentralized management. In

our view, a single application has many loosely
synchronized managers. Niche supports the mobil-
ity of management elements. Niche also provides
the execution platform for these managers; they
typically get assigned to different machines in the
Niche overlay. There is some support for optimiz-
ing this placement of managers, and some support
for replication of managers for fault-tolerance.
Thus Niche meets, at least partly, the challenge
to avoid the management bottleneck (the third
challenge: Management bottleneck). The main
reason for the “at least partly” in the last sentence,
is that more support for optimal placement of
managers, taking into account network locality,
will probably be needed (currently Niche recog-
nizes only some special cases, like co-location).
A vanilla management replication mechanism is
available in the current Niche prototype, and, at
the time of writing this chapter, work is ongoing
on a robust replicated manager scheme based on
the Paxos algorithm, adapted to the Niche overlay
(Al-Shishtawy, Fayyaz, Popov, & Vlassov, 2010).

Groups

The fact that Niche provides support for com-
ponent groups and group bindings contributes
to dealing with the fourth challenge (Scale).
Supporting component groups directly in the
runtime system, rather than as a programming
abstraction, allows us to adapt the sensing and
actuation infrastructure to minimize messaging
overhead and to increase robustness.

DEVELOPMENT OF SELF-
MANAGING APPLICATIONS
USING NICHE

The Niche programming environment enables
the development of self-managing applications
built of functional components and management
elements. Note that the Niche platform (Niche,

259

Niche

2010) uses Java for programming components
and management elements.

In this section, we describe in more detail the
Niche programming model and exemplify with
a Hello World application (singleton and group).
The Niche programming model is based on Frac-
tal, a modular and extensible component model
intended for designing, implementing, deploying,
and reconfiguring complex software systems.
Niche borrows the core Fractal concepts, which
are components, interfaces, and bindings, and adds
new concepts related to group communication,
deployment, and management. The following
section discusses the main concepts of the Niche
programming model and how they are used. Then
we describe typical steps of developing a self-
managing application illustrated with an example
of programming of a self-healing group service.

Niche Programming Concepts

A self-managing application in Niche is built
of functional components and management ele-
ments. The former constitute the functional part
of the application; whereas the latter constitute
the management part.

Components are runtime entities that commu-
nicate exclusively through named well-defined
access points, called interfaces, including control
interfaces used for management. Component
interfaces are divided into two kinds: client
interfaces that emit operation invocations and
server interfaces that receive them. Interfaces are
connected through communication paths, called
bindings. Components and interfaces are named
in order to lookup component interfaces by names
and bind them.

Components can be primitive or composite,
formed by hierarchically assembling other compo-
nents (called sub-components). This hierarchical
composition is a key Fractal feature that helps
managing the complexity of understanding and
developing component systems.

Another important Fractal feature is its support
for extensible reflective facilities, allowing inspec-
tion and adaptation of the component structure and
behavior. Specifically, each component is made of
two parts: the membrane, which embodies reflec-
tive behavior, and the content, which consists of a
finite set of sub-components. The membrane ex-
poses an extensible set of control interfaces (called
controllers) for reconfiguring internal features of
the component and to control its life cycle. The
control interfaces are server interfaces that must
be implemented by component classes in order to
be manageable. In Niche, the control interfaces
are used by application-specific management
elements (namely, sensors and actuators), and by
the Niche runtime environment to monitor and
control the components, e.g., to (re)bind, change
attributes, and start. Fractal defines the following
four basic control interfaces: attribute, biding,
content, and life-cycle controllers. The attribute
controller (AttributeController4) supports config-
uring named component properties. The binding
controller (BindingController) is used to bind and
unbind client interfaces to server interfaces, to
lookup an interface with a given name, and to list
all client interfaces of the component. The content
controller (ContentController) supports listing,
adding, and removing sub-components. Finally,
the life-cycle controller (LifeCycleController)
supports starting and stopping the execution of
a component and getting the component state.

The core concepts of the Fractal component
model are illustrated in Figure 5 that depicts a
client-server application HelloWorld, which is
a composite Fractal component containing two
sub-components, Client and Server. The client
interface of the Client component is bound to the
server interface of the Server component. Mem-
branes of components contain control interfaces.
Note that on deployment, the composite, the Cli-
ent, and the Server components can be placed in
different containers.

Building a component-based application in-
volves programming primitive components and

260

Niche

assembling them into an initial configuration
either programmatically, using methods of the
NicheActuatorInterface interface of the Niche
runtime environment; or declaratively, using an
Architecture Description Language (ADL) (Frac-
tal ADL, 2009). In the former case, at least one
(startup) component must be described in ADL
to be initially deployed and started by the ADL
interpreter. The startup component can deploy the
remaining part of the application by executing a
deployment and configuration workflow pro-
grammed using the Niche runtime actuation API,
which allows the developer to program complex
and flexible deployment and configuration work-
flows. The ADL used by Niche is based on Frac-
tal ADL, an extensible language made of modules,
each module defining an abstract syntax for a
given architectural concern (e.g., hierarchical
containment, deployment). Primitive components
are programmed in Java.

Niche extends the Fractal component model
with abstractions for group communication
(component group, group bindings) as well as
abstractions for deployment and resource man-

agement (package, node). All these abstractions
are described later in this section.

A management part of a Niche application
is programmed using the Management Element
(ME) abstractions that include Sensors, Watchers,
Aggregators, Managers, Executors and Actua-
tors. Note that the distinction between Watch-
ers, Aggregators, Managers and Executors is an
architectural one. From the point of view of the
execution environment they are all management
elements, and management can be programmed
in a flat manner (managers, sensors and actua-
tors only). Figure 6 depicts a typical hierarchy
of management elements in a Niche application.
We distinguish different types of MEs depending
on the roles they play in self-management code.
Sensors monitor components through interfaces
and trigger events to notify appropriate manage-
ment elements about different application-specific
changes in monitored components. There are sen-
sors provided by the Niche runtime environment
to monitor component failures/leaves (which
in turn may be triggered by container/machine
failures and leaves), component groups (changes
in membership, group creations), and container

Figure 5. A composite fractal component HelloWorld with two sub-components client and server

261

Niche

failures. Watchers receive notification events from
a number of sensors, filter and propagate them
to Aggregators, which aggregate the informa-
tion, detect and report symptoms to Managers.
A symptom is an indication of the presence of
some abnormality in the functioning of monitored
components, groups or environment. Managers
analyze the symptoms, make decisions and request
Executors to act accordingly. Executors receive
commands from managers and issue commands
to Actuators, which act on components through
control interfaces. Sensors and actuators interact
with functional components via control interfaces
(e.g., life-cycle and biding controllers), whereas
management elements typically communicate
by events using the pub/sub service provided
by the Niche runtime environment. To manage
and to access Niche runtime services, MEs use
the NicheActuatorInterface interface bound to
the Niche runtime environment which provides
useful service and control methods such as dis-

cover, allocate, de-allocate, deploy, lookup, bind,
unbind, subscribe, and unsubscribe. To publish
events, MEs use the TriggerInterface interface of
the runtime environment. Both client interfaces,
NicheActuatorInterface and TriggerInterface,
used by an ME are automatically bound to cor-
responding server interfaces of the Niche runtime
environment when the ME is deployed (created).
In order to receive events, an ME must implement
the EventHandlerInterface server interface and
subscribe to the events of interest.

Development Steps

When developing a self-managing distributed
component-based application using Niche, the
developer makes the following steps.

Development of architecture of the functional
and management parts of the application. This
step includes the following work: definition
and design of functional components (includ-

Figure 6. Hierarchy of management elements in a Niche application

262

Niche

ing server and client interfaces) and component
groups, assigning names to components and
interfaces, definition of component and group
bindings, definition and design of management
elements including algorithms of event handlers
for application-specific management objectives,
definition of application-specific monitoring and
actuation events, selection of predefined events
issued by the Niche runtime environment, defini-
tion of event sources and subscriptions.

Description of (initial) architecture of func-
tional and management parts in ADL, including
components, their interfaces and bindings. Note
that it is not necessary to describe the entire
configuration in ADL, as components, groups
and management elements can be deployed and
configured also programmatically using the Niche
actuation API rather than the ADL interpreter.

Programming of functional and management
components. At this stage, the developer defines
classes and interfaces of functional and manage-
ment components, implements server interfaces
(functional), event handlers (management), Fractal
and Niche control interfaces, e.g., life-cycle and
binding controllers.

Programming a (startup) component that
completes initial deployment and configuration
done by the ADL interpreter. An initial part of the
application (including the startup component) de-
scribed in ADL in Step 2 is to be deployed by the
ADL interpreter; whereas the remaining part is to
be deployed and configured by the programmer-
defined startup component using the actuation
interface NicheActuatorInterface of the Niche
runtime system. Completion of the deployment
might be either trivial if ADL is maximally used
in Step 2, or complicated if a rather small part
of the application is described in ADL in Step 2.
Typically, the startup component is programmed
to perform the following actions: bind components
deployed by ADL, discover and allocate resources
(containers) to deploy components; create, config-
ure and bind components and groups; create and

configure management elements and subscribe
them to events; and start components.

Programming of Functional
Components and
Component Groups

This section demonstrates how the above concepts
are practically applied in programming the simple
client-server HelloWorld application (Figure
4) which is a composite component containing
two sub-components, Client and Server. The ap-
plication provides a singleton service that prints
a message (the greeting “Hello World!”) speci-
fied in the client call. In this example, the server
component provides a server interface of type
Service containing the print method. The client
component has a client interface of type Service
and a server interface of type Main containing
the main method. The client interface of the cli-
ent component is bound to the server interface
of the service component. The composite Hello-
World component provides a server interface that
exports the corresponding interface of the client
component; its main method is invoked when the
application is launched.

Primitive Components

Primitive components are realized as Java classes
that implement server interfaces (e.g., Service
and Main in the HelloWorld example) as well as
any necessary control interfaces (e.g., Binding-
Controller). The client component class called
ClientImpl, implements the Main interface. Since
the client component has a client interface to be
bound to the server, the class implements also the
BindingController interface, which is the basic
control interface for managing bindings. The code
fragment in Exhibit 3 presents the ClientImpl
class that implements the Main and the binding
controller interfaces. Note that the client interface
Service is assigned the name “s”.

263

Niche

Exhibit 3. ClientImpl

public class ClientImpl implements Main, BindingController {
 private Service service; // Client interface to be bound to server in-
terface of Server component

 private String citfName = “s”; // Name of the client interface
 // Implementation of the Main interface

 public void main (final String[] args) {
 service.print (“Hello world!”); // call the service to print

the greeting

 }

 // All methods below belong to the Binding Controller interface with

the default implementation

 // Returns names of all client interfaces of the component

 public String[] listFc () {
 return new String[] { citfName };
 }

 // Returns the interface to which the given client interface is bound

 public Object lookupFc(final String citfName) throws NoSuchInterface-
Exception {

 if (!this.citfName.equals(citfName)) throw new NoSuchInterface
Exception(itfName);

 return service;
 }

 // Binds the client interface with the given name to the given server

interface

 public void bindFc(final String citfName, final Object sItf) throws
NoSuchInterfaceException {

 if (!this.citfName.equals(citfName)) throw new NoSuchInterface
Exception(itfName);

 service = (Service)sItf;

 }

 // Unbinds the client interface with the given name

 public void unbindFc (final String citfName) throws NoSuchInterfaceEx-
ception {

 if (!this.citfName.equals(citfName)) throw new NoSuchInterface
Exception(itfName);

 service = null;
 }

}

264

Niche

The server component class, called ServerIm-
pl, implements only the Service interface as shown
in Exhibit 4.

Assembling Components

The simplest method to assemble components is
through the ADL, which specifies a set of com-
ponents, their bindings, and their containment
relationships, and can be used to automatically
deploy a Fractal system. The main concepts of
the ADL are component definitions, components,
interfaces, and bindings. The ADL description
of the HelloWorld application with the singleton
service presented in Exhibit 5.

Component Groups and Group
Bindings

Niche bindings support communication among
components hosted in different machines. Apart
from the previously seen, one-to-one bindings,
Niche also supports groups and group bindings,
which are particularly useful for building decen-
tralized, fault-tolerant applications. Group bind-
ings allow treating a collection of components,
the group, as a single entity, and can deliver
invocations either to all group members (one-
to-all semantics) or to any, randomly-chosen
group member (one-to-any semantics). Groups
are dynamic in that their membership can change
over time (e.g., increase the group size to handle
increased load in a tier).

Exhibit 5. ADL description of the HelloWorld application

<definition name=”HelloWorld”>

 <interface name=”m” role=”server” signature=”Main”/>

 <component name=”client”>

 <interface name=”m” role=”server” signature=”Main”/>

 <interface name=”s” role=”client” signature=”Service”/>

 <content class=”ClientImpl”/>

 </component>

 <component name=”server”>

 <interface name=”s” role=”server” signature=”Service”/>

 <content class=”ServerImpl”/>

 </component>

 <binding client=”this.m” server=”client.m” />

 <binding client=”client.s” server=”server.s” />

</definition>

Exhibit 4. ServerImpl

public class ServerImpl implements Service {
public void print (final String msg) {
 for (int i = 0; i < count; ++i)
 System.err.println(“Server prints:” + msg);

 }

}

265

Niche

Exhibit 6. HelloGroup application

<definition name=”HelloGroup”>

 <interface name=”m” role=”server” signature=”Main”/>

 <component name=”client”>

 <interface name=”m” role=”server” signature=”Main”/>

 <interface name=”s” role=”client” signature=”Service”/>

 <content class=”ClientImpl”/>

 </component>

 <component name=”ServiceGroup”>

 <interface name=”s” role=”server” signature=”Service”/>

 <interface name=”clients” role=”client” signature=”Service”

cardinality=”collection”/>

 <content class=”GROUP”/>

 </component>

 <component name=”server1”>

 <interface name=”s” role=”server” signature=”Service”/>

 <content class=”ServerImpl”/>

 </component>

 <component name=”server2”>

 <interface name=”s” role=”server” signature=”Service”/>

 <content class=”ServerImpl”/>

 </component>

 <binding client=”this.r” server=”client.r” />

 <binding client=”client.s” server=”group.s” bindingType=”groupAny”/>

 <binding client=”group1.clients1” server=”server1.s”/>

 <binding client=”group1.clients2” server=”server2.s”/>

</definition>

Figure 7. HelloGroup application

266

Niche

Groups are manipulated through the Niche
API, which supports creating groups, binding
groups and components, and adding/removing
group members. Moreover, the Fractal ADL has
been extended to enable describing groups as part
of the system architecture.

Figure 7 depicts the HelloGroup application,
in which the client component is connected to a
group of two stateless service components (server1
and server2) using one-to-any invocation seman-
tics. The group of service components provides
a service that prints the “Hello World!” greeting
by any of the group members on a client request.

The initial configuration of this example ap-
plication (without management elements) can be
described in ADL as seen in Exhibit 6.

As seen in this description, the service group
is represented by a special component with con-
tent “GROUP”. Group membership is then rep-
resented as binding the server interfaces of
members to the client interfaces of the group. The

bindingType attribute represents the invocation
semantics (one-to-any in this case). Groups can
also be created and bound programmatically using
the Niche actuation API (namely the NicheAc-
tuatorInterface client interface bound to the Niche
runtime system). As an example, the Java code
fragment presented in Exhibit 7 illustrates group
creation performed by a management element.

Programming of Management
Elements

The management part of a Niche application is
programmed using the Management Element
(ME) abstractions that include Sensors, Watchers,
Aggregators, Managers, Executors and Actuators.
MEs are typically reactive event-driven compo-
nents; therefore developing of MEs is mostly
programming event handlers, i.e., methods of
the EventHandlerInterface server interface that
each ME must implement in order to receive

Exhibit 7. Java code fragment

// Code fragment from the StartManager class

// References to the Niche runtime interfaces bound on init or via binding

controller

private NicheIdRegistry nicheIdRegistry;
private NicheActuatorInterface myActuatorInterface;
…

// Lookup the client component and all server components by names

ComponentId client = (ComponentId) nicheIdRegistry.lookup(“HelloGroup _0/cli-

ent”);

ArrayList<ComponentId> servers = new ArrayList();
servers.add((ComponentId) nicheIdRegistry.lookup(“HelloGroup _0/server1”);

servers.add((ComponentId) nicheIdRegistry.lookup(“HelloGroup_0/server2”);

// Create a group containing all server components.

GroupId groupTemplate = myActuatorInterface.getGroupTemplate();

groupTemplate.addServerBinding(“s”, JadeBindInterface.ONE_TO_ANY);

GroupId serviceGroup = myActuatorInterface.createGroup(groupTemplate, serv-

ers);

// Bind the client to the group with one-to-any binding

myActuatorInterface.bind(client, “s”, serviceGroup, “s”, JadeBindInterface.

ONE_TO_ANY);

267

Niche

sensor events (including user-defined events and
predefined events issued by the runtime system)
and events from other MEs. The event handler is
eventually invoked when a corresponding event
is published (generated). The event handlers can
be programmed to receive and handle events of
different types. A typical management algorithm
of an event handler includes, but not necessarily
and not limited to, a sequence of conditional if-
then(-else or -else-if) control statements (manage-
ment logic rules) that examine rule conditions (IF
clause) based on information retrieved from the
received events or/and its internal state (which in
turn reflects previous received events as part of
monitoring activity); make a management deci-
sion and perform management actions and issue
events (THEN clause) (see section Policy-Based
Management).

When programming an ME class, the program-
mer must implement the following three server
interfaces: the InitInterface interface to initial-
ize an ME instance, the EventHandlerInterface
interface to receive and handle events; and the
MovableInterface interface to get a checkpoint,
when the ME is moved and redeployed for repli-
cation or migration (the checkpoint is passed to a
new instance through its InitInterface). To perform
control actions, to subscribe and publish events,
an ME class must include the following two client
interfaces: the NicheActuatorInterface interface,
named “actuator”; and the TriggerInterface inter-
face, named “trigger”. Both client interfaces are
bound to the Niche runtime system when the ME
is deployed either through its InitInterface or via
the BidingController interface.

When developing the management code of
an ME (event handlers) to control the functional
part of an application and to subscribe to events,
the programmer uses methods of the NicheAc-
tuatorInterface client interface that includes a
number of actuation methods such as discover,
allocate, de-allocate, deploy, create a component
group, add a member to a group, bind, unbind,
subscribe, unsubscribe. Note that the program-

mer can subscribe/unsubscribe to predefined
built-in events (e.g., component failure, group
membership change) issued by built-in sensors
of the Niche runtime system. To publish events,
the programmer uses the TriggerInterface client
interface of the ME.

For example, Figure 7 depicts the HelloGroup
application that provides a group service with
self-healing capabilities. Feedback control in the
application maintains the group size (a specified
minimum number of service components) de-
spite node failures, i.e., if any of the components
in the group fails, a new service component is
created and added to the group so that the group
always contain the given number of servers. The
self-healing control loop includes the Service
Supervisor aggregator that monitors the number
of components in the group, and the Configura-
tion manager that is responsible to create and add
a new service component on a request from the
Service Supervisor. Figure 8 depicts a sequence
of events and control actions of the management
components. Specifically, if one of the service
components of the service group fails, the group
sensor issues a component failure event received
by the Service Supervisor (1), which checks
whether the number of components has dropped
below a specified threshold (2). If so, the Server
Supervisor fires the Service-Availability-Change
event received by the Configuration Manager (3),
which heals the component, i.e., creates a new
instance of the server component and adds it to
the group (4). When a new member is added to the
group, the Service Supervisor, which keeps track
of the number of server components, is notified
by the predefined Member-Added-Event issued
by the group sensor (5, 6).

The shortened Java code fragment presented
in Exhibit 8 shows the management logic of the
Configuration Manager responsible for healing
of a failed server component upon receiving a
Service-Availability-Change event issued by the
Service Supervisor (steps 3 and 4 in Figure 8)

268

Niche

While MEs interact with each other mostly by
events, sensors and actuators are programmed to
interact with functional components via interface
bindings. Interfaces between sensors and compo-
nents are defined by the programmer, who may
choose to use either the push or pull methods of
interaction between a sensor and a component.
In the case of the push method, the component
pushes the sensor to issue an event. In this case,
the component’s client interface is bound to the
corresponding sensor’s server interface. In the
case of the pull method, a sensor pulls the state
from a component. In this case, the sensor’s client
interface is bound to a corresponding component’s
server interface. A sensor and a component are
auto-bound when the sensor is deployed by a
watcher. Actuation (control actions) can be done
by MEs either through actuators bound to func-
tional components or directly on components via
their control interfaces using the Niche actuation

API. Actuators are programmed in a similar way
as sensors and are deployed by executors. By
analogy to sensors, an actuator can be programmed
to interact with a controlled component in the
push and/or pull manner. In the former case (push),
the actuator pushes a component through compo-
nent’s control interfaces, which can be either
application-specific interfaces defined by the
programmer or the Fractal control interfaces, e.g.,
LifeCycleController and AttributeController. In
the case of the pull-based actuation, the controlled
component checks its actuator for actions to be
executed.

Deployment and Resource
Management

Niche supports component deployment and re-
source management through the concepts of com-
ponent package and node. A component package

Figure 8. Events and actions in the self-healing loop of the HelloGroup application

269

Niche

Exhibit 8. Healing of a failed server component

// Code fragment from the ConfigurationManager class

public class ConfigurationManager implements EventHandlerInterface, MovableIn-
terface,

 InitInterface, BindingController, LifeCycleController {

private static final String DISCOVER_PREFIX = “dynamic:”;
// Reference to the Actuation interface of the Niche runtime (automatically

bound on deployment).

private NicheActuatorInterface myManagementInterface;
…

public void init(NicheActuatorInterface managementInterface) { // invoked by
the runtime system

 myManagementInterface = managementInterface;

 }

public void init(Serializable[] parameters) { // invoked by the runtime system
on deployment

 initAttributes = parameters;

 componentGroup = (GroupId) initAttributes[0];

 serviceCompProps = initAttributes[1];

 nodeRequirements = DISCOVER_PREFIX + initAttributes[2];

}

...

public void eventHandler(Serializable e, int flag) { // event handler, invoked
on an event

 // For any case, check event type, ignore if it is not the

event of interest (should not happen)

 if (! (e instanceof ServiceAvailabilityChangeEvent)) return;
 // Find a node that meets the requirements for a server compo-

nent.

 try {
 newNode = myManagementInterface.oneShotDiscoverResour

ce(nodeRequirements);

 } catch (OperationTimedOutException err) {
 ... // Retry later (the code is removed)

 }

 // Allocate resources for a server component at the found

node.

 try {
 List allocatedResources = myManagementInterface.

allocate(newNode, null);
 } catch (OperationTimedOutException err) {

continued on following page

270

Niche

is a bundle that contains the executables necessary
for creating components, the data needed for their
correct functioning as well as metadata describing
their properties. A node is the physical or virtual
machine on which components are deployed and
executed. A node provides processing, storage,
and communication resources, which are shared
among the deployed components.

Niche exposes basic primitives for discover-
ing nodes, allocating resources on those nodes,
and deploying components; these primitives are
designed to form the basis for external services
for deploying components and managing their
underlying resources. In the current prototype,
component packages are OSGi™5 bundles (OSGi
Service Platform Release 4, 2010) and managed
resources include CPU time, physical memory,
storage space, and network bandwidth. The Frac-
tal ADL has been extended to allow specifying
packages and resource constraints on nodes. These

extensions are illustrated in the ADL extract pre-
sented in Exhibit 9, which refines the client and
composite descriptions in the HelloGroup example
(added elements are show in Bold).

The packages element provides information
about the OSGi bundles necessary for creating a
component; packages are identified with their
unique name in the OSGi bundle repository (e.g.,
“ClientPackage v1.3”). The virtual-node element
describes resource and location requirements of
components. At deployment time, each virtual
node is mapped to a node (container) that conforms
to the given resource requirements specified in
the resourceReqs attribute. The necessary bundles
are then installed on this node and the associated
component is created. In the example, the client
and the composite components are co-located at
a node with memory larger than 1GB and CPU
speed larger than 1Ghz.

 ... // Retry later (the code is removed)

 }

 …

 String deploymentParams = Serialization.serialize(serviceCompProps);

 // Deploy a new server component instance at the allocated

node.

 try {
 deployedComponents = myManagementInterface.

deploy(allocatedResource,

 deploymentParams);

 } catch (OperationTimedOutException err) {
 ... // Retry later (the code is removed)

 }

 ComponentId cid = (ComponentId) ((Object[]) deployedCompo-

nents.get(0))[1];

 // Add the new server component to the service group and start

the server.

 myManagementInterface.update(componentGroup, cid,

 NicheComponentSupportInterface.ADD_

TO_GROUP_AND_START);

 }

Exhibit 8. Continued

271

Niche

Initialization of Management Code

The ADL includes support for initializing the
management part of an application in the form of
start manager components. Start managers have
a predefined definition “StartManagementType”
that contains a set of client interfaces correspond-
ing to the Niche API. These interfaces are implic-
itly bound by the system after start managers are
instantiated. The declaration of a start manager
is demonstrated in the ADL extract presented in
Exhibit 10, which refines the HelloGroup example.

Typically, the start manager contains the code
for creating, configuring, and activating the set
of management elements that constitute the man-

agement part of an application. In the HelloGroup
example, the management part realizes self-
healing behavior and relies on an aggregator and
a manager, which monitors the server group and
maintains its size despite node failures. The start
manager implementation (the StartManager class)
then contains the code for deploying and config-
uring the elements of the self-healing loop shown
in Figure 7 (i.e., ServiceSupervisor and Configu-
rationManager). The code is actually located in
the implementation of the LifeCycleController
interface (startFc operation) of the startup man-
ager, as seen in Exhibit 11.

Exhibit 9. Fractal ADL

<definition name=”HelloGroup”>

 <interface name=”m” role=”server” signature=”Main”/>

 <component name=”client”>

 <interface name=”m” role=”server” signature=”Main”/>

 <interface name=”s” role=”client” signature=”Service”/>

 <content class=”ClientImpl”/>

 <packages>

 <package name=”ClientPackage v1.3” >

 <property name=”local.dir” value=”/tmp/j2ee”/>

 </package>

 </packages>

 <virtual-node name=”node1” resourceReqs=”(&(memory>=1)(CPUSpeed>=1))”/>

 </component>

 <!-- description of other components and bindings (is not shown) -->

 …

 <virtual-node name=”node1”>

</definition>

Exhibit 10. Declaration of a start manager

 <component name=”StartManager” definition=”org.ow2.jade.StartManage-

mentType”>

 <content class=” helloworld.managers.StartManager”/>

 </component>

272

Niche

Exhibit 11. LifeCycleController interface

// Code fragment from the StartManager class of the HelloGroup application

public class StartManager implements BindingController, LifeCycleController {

// References to the Niche runtime interfaces bound on init or via binding control-

ler

private NicheIdRegistry nicheIdRegistry;

private NicheActuatorInterface myActuatorInterface;

…

public void startFc() throws IllegalLifeCycleException { // Invoked by the Niche

runtime system

 …

 // Lookup client and servers, create service group and bind client to the

group (code is not shown)

 GroupId serviceGroup = myActuatorInterface.createGroup(...);

...

 // Configure and deploy the Service Supervisor aggregator

 GroupId gid = serviceGroup;

 ManagementDeployParameters params = new ManagementDeployParameters();

 params.describeAggregator(ServiceSupervisor.class.getName(), “SA”, null,

 new Serializable[] { gid.getId() });

 NicheId serviceSupervisor = myActuatorInterface.

deployManagementElement(params, gid);

 // Subscribe the aggregator to events from group

 myActuatorInterface.subscribe(gid, serviceSupervisor, ComponentFailEvent.

class.getName());

 myActuatorInterface.subscribe(gid, serviceSupervisor, MemberAddedEvent.

class.getName());

 // Configure and deploy the Configuration manager

 String minimumNodeCapacity = “200”;

 params = new ManagementDeployParameters();

 params.describeManager(ConfigurationManager.class.getName(), “CM”, null,

 new Serializable[] { gid, fp, minimumNo-

deCapacity });

 NicheId configurationManager = myActuatorInterface.

deployManagementElement(params, gid);

 // Subscribe the manager to events from the aggregator

 myActuatorInterface.subscribe(serviceSupervisor, configurationManager,

 ServiceAvailabilityChan-

geEvent.class.getName());

 …

}

273

Niche

Support for Legacy Systems

The Niche self-management framework can be
applied to legacy systems by means of a wrap-
ping approach. In this approach, legacy software
elements are wrapped as Fractal components that
hide proprietary configuration capabilities behind
Fractal control interfaces. The approach has been
successfully demonstrated with the Jade manage-
ment system, which relied also on Fractal and
served as a basis for developing Niche (Sicard,
Boyer, & De Palma, 2008). Another example of
the use of a “legacy” application (namely the VLC6
program) in a self-managing application devel-
oped using Niche, is the gMovie demo application
that performs transcoding of a given movie from
one format to another. The description and the
code of the gMovie application can be found in
(Hannesson, 2009) and (Niche, 2010).

To briefly illustrate the wrapping approach,
consider an enterprise system composed of an
application server and a database server. The
two servers are wrapped as Fractal components,
whose controllers are implemented using legacy
configuration mechanisms. For example, the life-
cycle controllers are implemented by executing
shell scripts for starting or stopping the servers.
The attribute controllers are implemented by
modifying text entries of configuration files. The
connection between the two servers is represented
as a binding between the corresponding compo-
nents. The binding controller of the application
server wrapper is then implemented by setting the
database host address and port in the application
server configuration file.

The wrapping approach produces a layer of
Fractal components that enable observing and
controlling the legacy software through standard
interfaces. This layer can be then complemented
with a Niche-based management system (e.g.,
sensors, actuators, managers), developed accord-
ing to the described methodology. Of course, the
degree of control exposed by the Fractal layer
to the management system depends heavily on

the legacy system (e.g., it may be impossible to
dynamically move software elements). Moreover,
the wrapping approach cannot take full advantage
of Niche features such as name-based commu-
nication and group bindings. The reason is that
bindings are only used to represent and manage
connections between legacy software elements,
not to implement them.

A DESIGN METHODOLOGY
FOR SELF-MANAGEMENT IN
DISTRIBUTED ENVIRONMENTS

A self-managing application can be decomposed
into three parts: the functional part, the touch-
points, and the management part. The design
process starts by specifying the functional and
management requirements for the functional
and management parts, respectively. In the case
of Niche, the functional part of the application is
designed by defining interfaces, components, com-
ponent groups, and bindings. The management part
is designed based on management requirements,
by defining autonomic managers (management
elements) and the required touchpoints (sensors
and actuators). Touchpoints enable management
of the functional part, i.e., make it manageable.

An Autonomic Manager is a control loop that
continuously monitors and affects the functional
part of the application when needed. For many
applications and environments it is desirable to de-
compose the autonomic manager into a number of
cooperating autonomic managers each performing
a specific management function or/and controlling
a specific part of the application. Decomposition of
management can be motivated by different reasons
such as follows. It avoids a single point of failure.
It may be required to distribute the management
overhead among participating resources. Self-
managing a complex system may require more
than one autonomic manager to simplify design by
separation of concerns. Decomposition can also be
used to enhance the management performance by

274

Niche

running different management tasks concurrently
and by placing the autonomic managers closer to
the resources they manage.

We define the following iterative steps to be
performed when designing and developing the
management part of a self-managing distributed
application in a decentralized manner given the
management requirements and touchpoints.

Decomposition: The first step is to divide the
management logic into a number of management
tasks. Decomposition can be either functional (e.g.,
tasks are defined based which self-* properties
they implement) or spatial (e.g., tasks are defined
based on the structure of the managed application).
The major design issue to be considered at this
step is granularity of tasks assuming that a task
or a group of related tasks can be performed by
a single manager.

Assignment: The tasks are then assigned to
autonomic managers each of which becomes
responsible for one or more management tasks.
Assignment can be done based on self-* properties
that a task belongs to (according to the functional
decomposition) or based on which part of the ap-
plication that task is related to (according to the
spatial decomposition).

Orchestration: Although autonomic manag-
ers can be designed independently, multiple
autonomic managers, in the general case, are not
independent since they manage the same system
and there exist dependencies between management
tasks. Therefore they need to interact and coordi-
nate their actions in order to avoid conflicts and
interference and to manage the system properly.
Orchestration of autonomic managers is discussed
in the following section.

Mapping: The set of autonomic managers are
then mapped to the resources, i.e., to nodes of
the distributed environment. A major issue to be
considered at this step is optimized placement of
managers and possibly functional components
on nodes in order to improve management per-
formance.

In this section, our major focus is on the or-
chestration of autonomic managers as the most
challenging and less studied problem. The ac-
tions and objectives of the other stages are more
related to classical issues in distributed systems
such as partitioning and separation of concerns,
and optimal placement of modules in a distributed
environment.

Orchestrating Autonomic Managers

Autonomic managers can interact and coordinate
their operation in the following four ways as dis-
cussed below and illustrated in Figure 9: indirect
interactions via the managed system (stigmergy);
hierarchical interaction (through touch points);
direct interaction (via direct bindings); sharing of
management elements.

Stigmergy

Stigmergy is a way of indirect communication and
coordination between agents (Bonabeau, 1999).
Agents make changes in their environment, and
these changes are sensed by other agents and
cause them to do more actions. Stigmergy was
first observed in social insects like ants. In our
case, agents are autonomic managers and the
environment is the managed application.

The stigmergy effect is, in general, unavoid-
able when you have more than one autonomic
manager and can cause undesired behavior at
runtime. Hidden stigmergy makes it challenging
to design a self-managing system with multiple
autonomic managers. However, stigmergy can be
part of the design and used as a way of orchestrat-
ing autonomic managers.

Hierarchical Management

By hierarchical management we mean that some
autonomic managers can monitor and control
other autonomic managers. The lower level auto-
nomic managers are considered to be a managed

275

Niche

resource for the higher level autonomic manager.
Communications between levels take place using
touchpoints. Higher level managers can sense and
affect lower level managers.

Autonomic managers at different levels often
operate at different time scales. Lower level auto-
nomic managers are used to manage changes in
the system that need immediate actions. Higher
level autonomic managers are often slower and
used to regulate and orchestrate the system by
monitoring global properties and tuning lower
level autonomic managers accordingly.

Direct Interaction

Autonomic managers may interact directly with
one another. Technically this is achieved by
direct communication (via bindings or events)
between appropriate management elements in the
autonomic managers. Cross autonomic manager
bindings can be used to coordinate autonomic
managers and avoid undesired behaviors such as
race conditions or oscillations.

Figure 9. Interaction patterns

276

Niche

Shared Management Elements

Another way for autonomic managers to commu-
nicate and coordinate their actions is by sharing
management elements. This can be used to share
state (knowledge) and to synchronize their actions.

DEMONSTRATOR APPLICATIONS

In order to demonstrate Niche and our design
methodology, we present two self-managing
services developed using Niche: (1) a robust
storage service called YASS – Yet Another Stor-
age Service; and (2) a robust computing service
called YACS – Yet Another Computing Service.
Each of the services has self-healing and self-
configuration capabilities and can execute in a
dynamic distributed environment, i.e., the services
can operate even if computers join, leave or fail
at any time. Each of the services implements
relatively simple self-management algorithms,
which can be extended to be more sophisticated,
while reusing existing monitoring and actuation
code of the services. The code and documenta-
tion of YASS and YACS services can be found
at (Niche, 2010).

YASS (Yet Another Storage Service) is a robust
storage service that allows a client to store, read
and delete files on a set of computers. The service
transparently replicates files in order to achieve
high availability of files and to improve access
time. The current version of YASS maintains the
specified number of file replicas despite nodes
leaving or failing, and it can scale (i.e., increase
available storage space) when the total free storage
is below a specified threshold. Management tasks
include maintenance of file replication degree;
maintenance of total storage space and total free
space; increasing availability of popular files;
releasing extra allocate storage; and balancing the
stored files among available resources.

YACS (Yet Another Computing Service) is a
robust distributed computing service that allows
a client to submit and execute jobs, which are
bags of independent tasks, on a network of nodes
(computers). YACS guarantees execution of jobs
despite nodes leaving or failing. YACS scales, i.e.,
changes the number of execution components,
when the number of jobs/tasks changes. YACS
supports checkpointing that allows restarting
execution from the last checkpoint when a worker
component fails or leaves.

Demonstrator I: Yet Another
Storage Service (YASS)

In order to illustrate our design methodology, we
have developed a storage service called YASS (Yet
Another Storage Service), using Niche. The case
study illustrates how to design a self-managing
distributed system monitored and controlled by
multiple distributed autonomic managers.

YASS Specification

YASS is a storage service that allows users to
store, read and delete files on a set of distributed
resources. The service transparently replicates the
stored files for robustness and scalability.

Assuming that YASS is to be deployed and
provided in a dynamic distributed environment,
the following management functions are required
in order to make the storage service self-managing
in the presence of dynamicity in resources and
load: the service should tolerate the resource
churn (joins/leaves/failures), optimize usage of
resources, and resolve hot-spots. We define the
following tasks based on the functional decompo-
sition of management according to self-* proper-
ties (namely self-healing, self-configuration, and
self-optimization) to be achieved:

• Maintain the file replication degree by re-
storing the files which were stored on a

277

Niche

failed/leaving resource. This function pro-
vides the self-healing property of the ser-
vice so that the service is available despite
of the resource churn;

• Maintain the total storage space and total
free space to meet QoS requirements by al-
locating additional resources when needed.
This function provides self-configuration
of the service;

• Increasing the availability of popular files.
This and the next two functions are related
to the self-optimization of the service.

• Release excess allocated storage when it is
no longer needed.

• Balance the stored files among the allocat-
ed resources.

YASS Functional Design

A YASS instance consists of front-end components
and storage components as shown in Figure 10. The
front-end component provides a user interface that
is used to interact with the storage service. Storage
components represent the storage capacity avail-
able at the resource on which they are deployed.

The storage components are grouped together
in a storage group. A user issues commands (store,

read, and delete) using the front-end. A store re-
quest is sent to an arbitrary storage component
(using one-to-any binding between the front-end
and the storage group) which in turn will find
some r different storage components, where r is
the file’s replication degree, with enough free
space to store a file replica. These replicas to-
gether will form a file group containing the r
storage components that will host the file. The
front-end will then use a one-to-all binding to the
file group to transfer the file in parallel to the r
replicas in the group. A read request is sent to any
of the r storage components in the group using
the one-to-any binding between the front-end and
the file group. A delete request is sent to the file
group in parallel using a one-to-all binding be-
tween the front-end and the file group.

Enabling Management of YASS

Given that the functional part of YASS has been
developed, to manage it we need to provide
touchpoints. Niche provides basic touchpoints
for manipulating the system’s architecture and
resources, such as sensors for resource failures
and component group creation; and actuators for
deploying and binding components. Beside the

Figure 10. YASS functional design

278

Niche

basic touchpoints the following additional, YASS
specific, sensors and actuators are required:

• A load sensor to measure the current free
space on a storage component;

• An access frequency sensor to detect popu-
lar files;

• A replicate-file actuator to add one extra
replica of a specified file;

• A move-file actuator to move files for load
balancing.

Self-Managing YASS

The following autonomic managers are needed
to manage YASS in a dynamic environment.
All four orchestration techniques described in
the previous section on design methodology, are
demonstrated below.

Replica Autonomic Manager

The replica autonomic manager is responsible
for maintaining the desired replication degree
for each stored file in spite of resources failing
and leaving. This autonomic manager adds the
self-healing property to YASS. The replica au-
tonomic manager consists of two management

elements, the File-Replica-Aggregator and the
File-Replica-Manager as shown in Figure 11. The
File-Replica-Aggregator monitors a file group,
containing the subset of storage components that
host the file replicas, by subscribing to resource
fail or leave events caused by any of the group
members. These events are received when a
resource, on which a component member in the
group is deployed, is about to leave or has failed.
The File-Replica-Aggregator responds to these
events by triggering a replica change event to the
File-Replica-Manager that will issue a find and
restore replica command.

Storage Autonomic Manager

The storage autonomic manager is responsible for
maintaining the total storage capacity and the total
free space in the storage group, in the presence of
dynamism, to meet QoS requirements. The dy-
namism is due either to resources failing/leaving
(affecting both the total and free storage space)
or file creation/addition/deletion (affecting the
free storage space only). The storage autonomic
manager reconfigures YASS to restore the total
free space and/or the total storage capacity to meet
the requirements. The reconfiguration is done by
allocating free resources and deploying additional

Figure 11. Self-healing control loop for restoring file replicas

279

Niche

storage components on them. This autonomic
manager adds the self-configuration property to
YASS. The storage autonomic manager consists of
Component-Load-Watcher, Storage-Aggregator,
and Storage-Manager as shown in Figure 12. The
Component-Load-Watcher monitors the stor-
age group, containing all storage components,
for changes in the total free space available by
subscribing to the load sensors events. The Com-
ponent-Load-Watcher will trigger a load change
event when the load is changed by a predefined
delta. The Storage-Aggregator is subscribed to the
Component-Load-Watcher load change event and
the resource fail, leave, and join events (note that
the File-Replica-Aggregator also subscribes to the
resource failure and leave events). The Storage-
Aggregator, by analyzing these events, will be able
to estimate the total storage capacity and the total
free space. The Storage-Aggregator will trigger a
storage availability change event when the total
and/or free storage space drops below a predefined
threshold. The Storage-Manager responds to this
event by trying to allocate more resources and
deploying storage components on them.

Direct Interactions to Coordinate Autonomic
Managers

The two autonomic managers, replica autonomic
manager and storage autonomic manager, de-
scribed above seem to be independent. The first
manager restores files and the other manager
restores storage. But it is possible to have a race
condition between the two autonomic managers
that will cause the replica autonomic manager
to fail. For example, when a resource fails the
storage autonomic manager may detect that more
storage is needed and start allocating resources
and deploying storage components. Meanwhile the
replica autonomic manager will be restoring the
files that were on the failed resource. The replica
autonomic manager might fail to restore the files
due to space shortage if the storage autonomic
manager is slower and does not have time to fin-
ish. This may also prevent the users, temporarily,
from storing files.

If the replica autonomic manager would have
waited for the storage autonomic manager to fin-
ish, it would not fail to recreate replicas. We used
direct interaction to coordinate the two autonomic
managers by binding the File-Replica-Manager
to the Storage-Manager.

Figure 12. Self-configuration control loop for adding storage

280

Niche

Before restoring files the File-Replica-Manag-
er informs the Storage-Manager about the amount
of storage it needs to restore files. The Storage-
Manager checks available storage and informs
the File-Replica-Manager that it can proceed if
enough space is available or ask it to wait.

The direct coordination used here does not
mean that one manager controls the other. For
example, if there is only one replica left of a file,
the File-Replica-Manager may ignore the request
to wait from the Storage-Manager and proceed
with restoring the file anyway.

Optimizing Allocated Storage

Systems should maintain high resource utiliza-
tion. The storage autonomic manager allocates
additional resources if needed to guarantee the
ability to store files. However, users might delete
files later causing the utilization of the storage
space to drop. It is desirable that YASS be able to
self-optimize itself by releasing excess resources
to improve utilization.

It is possible to design an autonomic manager
that will: detect low resource utilization, move
file replicas stored on a chosen lowly utilized
resource, and finally release it. Since the func-
tionality required by this autonomic manager
is partially provided by the storage and replica
autonomic managers we will try to augment them
instead of adding a new autonomic manager, and
use stigmergy to coordinate them.

It is easy to modify the storage autonomic
manager to detect low storage utilization. The
replica manager knows how to restore files. When
the utilization of the storage components drops,
the storage autonomic manager will detect it and
will deallocate some resource. The deallocation
of resources will trigger, through stigmergy, an-
other action at the replica autonomic manager.
The replica autonomic manager will receive the
corresponding resource leave events and will
move the files from the leaving resource to other
resources.

We believe that this is better than adding an-
other autonomic manager for the following two
reasons: first, it allows avoiding duplication of
functionality; and second, it allows avoiding oscil-
lation between allocating and releasing resources
by keeping the decision about the proper amount
of storage at one place.

Improving File Availability

Popular files should have more replicas in order
to increase their availability. A higher level avail-
ability autonomic manager can be used to achieve
this through regulating the replica autonomic
manager. The autonomic manager consists of two
management elements. The File-Access-Watcher
and File-Availability-Manager are shown in Figure
13. The File-Access-Watcher monitors the file ac-
cess frequency. If the popularity of a file changes
dramatically it issues a frequency change event.
The File-Availability-Manager may decide to
change the replication degree of that file. This is
achieved by changing the value of the replication
degree parameter in the File-Replica-Manager.

Balancing File Storage

A load balancing autonomic manager can be used
for self-optimization by trying to lazily balance
the stored files among storage components. Since
knowledge of current load is available at the
Storage-Aggregator, we design the load balanc-
ing autonomic manager by sharing the Storage-
Aggregator as shown in Figure 14. All autonomic
managers we discussed so far are reactive. They
receive events and act upon them. Sometimes
proactive managers might be also required, such
as in this case. Proactive managers are imple-
mented in Niche using a timer abstraction. The
load balancing autonomic manager is triggered,
by a timer, every x time units. The timer event
will be received by the shared Storage-Aggregator
that will trigger an event containing the most and
least loaded storage components. This event will
be received by the Load-Balancing-Manager that

281

Niche

Figure 13. Hierarchical management used to implement the self-optimization control loop for file avail-
ability

Figure 14. Sharing of management elements used to implement the self-optimization control loop for
load balancing

282

Niche

will move some files from the most to the least
loaded storage component.

Demonstrator II: Yet Another
Computing Service (YACS)

This section presents a rough overview of YACS
(Yet Another Computing Service) developed us-
ing Niche (see (Hannesson, 2009; Niche, 2010)
for more detail). The major goal in development
of YACS was to evaluate the Niche platform
and to study design and implementation issues
in providing self-management (in particular,
self-healing and self-tuning) for a distributed
computing service. YACS is a robust distributed
computing service that allows a client to submit
and execute jobs, which are bags of independent
tasks, on a network of nodes (computers). YACS
guarantees execution of jobs despite nodes leaving
or failing. YACS supports checkpointing that al-
lows restarting execution from the last checkpoint
when a worker component fails or leaves. The
YACS includes a checkpoint service that allows
the task programmer to perform task checkpoint-
ing whenever needed. Furthermore, YACS scales,
i.e., changes the number of execution components,
whenever the number of jobs/tasks changes. In
order to achieve high availability, YACS always
maintains a number of free masters and workers
so that new jobs can be accepted without delay.

YACS executes jobs, which are collections
of tasks, where a task represents instance of
work of a particular type that needs to be done.
For example, in order to transcode a movie, the
movie file can be split into several parts (tasks)
to be transcoded independently and in parallel.
Tasks are programmed by the user and can be
programmed to do just about anything. Tasks can
be programmed in any programming language
using any programming environment, and placed
in a YACS job (bag of independent tasks) using
the YACS API.

Figure 15 depicts YACS architecture. The
functional part of YACS includes distributed Mas-

ters (only one Master is shown in Figure 15) and
Workers used to execute jobs. A user submits jobs
via the YACS Frontend component, which assigns
jobs to Masters (one job per Master). A Master
finds Workers to execute tasks in the job. When
all tasks complete, the user is notified, and results
of execution are returned to the user through the
YACS frontend. YACS is implemented in Java,
and therefore tasks to be executed by YACS can
be either programmed in Java by extending the
abstract Task class, or wrapped in a Task subclass.
The execute method of the Task class has to be
implemented to include the task code or the code
that invoke the wrapped task. The execute method
is invoked by a Worker that performs the task.
When the method returns, the Worker sends to its
Master an object that holds results and final status
of execution. When developing a Task subclass, the
programmer can override checkpointing methods
to be invoked by the checkpoint service to make
a checkpoint or by the Worker to restart the task
from its last checkpoint. Checkpoints are stored
in files identified by URLs.

There are two management objectives of the
YACS management part: (1) self-healing, i.e., to
guarantee execution of jobs despite of failures of
Masters and Workers, and failures and leaves of
Niche containers; (2) self-tuning, i.e., to scale
execution (e.g., deploy new Masters and Workers
if needed whenever a new Niche container joins
the system).

The management elements responsible for
self-healing include Master Watchers and Worker
Watchers that monitor and control Masters and
Workers correspondingly (see Figure 15). A Master
Watcher deploys a sensor for the Master group it is
watching, and subscribes to the component failure
events and the state change events that might come
from that group. A State Change Event contains
a checkpoint (a URL of the checkpoint file) for
the job executed by the Master. Master failures
are reported by the Component Fail Event that
causes the Watcher to find a free Master in the
Master group and reassign the failed group to it,

283

Niche

or to deploy a new Master instance if there are
no free Masters in the group. The job checkpoint
is used to restart the job on another Master. A
Worker Watcher monitors and controls a group of
Workers and responsible for healing Workers and
restarting tasks in the case of failures. A Worker
Watcher performs in a in a similar way as a Master
Watcher described above.

The management elements responsible for
self-tuning include Master-, Worker- and Service-
Aggregators and the Configuration Manager,
which is on top of the management hierarchy.
The self-tuning control loop monitors availability
of resources (number of Masters and Workers)
and adds more resources, i.e., deploys Masters
and Workers on available Niche containers upon

requests from the Aggregators. The Aggregators
collect information about the status of job execu-
tion, Master and Workers groups and resources
(Niche containers) from Master, Worker and Ser-
vice Resource Watchers. The Aggregators request
the Configuration Manager to deploy and add to
the service more Masters and/or Workers when
the number of Masters and/or Workers drops (be-
cause of failures) below predefined thresholds or
when there are not enough Masters and Workers
to execute jobs and tasks in parallel.

Evaluation

In order to validate and evaluate the effectiveness
of Niche, in terms of efficacy and overheads, the

Figure 15. Architecture of YACS (yet another computing service)

284

Niche

Niche execution environment and both demo ap-
plications, YASS (Yet Another Storage Service)
and YACS (Yeat Another Computing Services),
were tested and evaluated on the Grid5000 testbed
(https://www.grid5000.fr/). The performance and
overhead of the Niche execution environment
was evaluated mostly using specially developed
test programs: These confirm the expected per-
formance/fault model presented in section Niche:
a Platform for Self-Managing Distributed Ap-
plications.

The effectiveness of Niche for developing
and executing self-managing applications was
validated by YASS, YACS, and, in particular,
with the gMovie demo application built on top
of YACS. The gMovie application has been de-
veloped to validate the functionality and self-*
(self-healing and self-configuration) properties
of YACS, as well as to validate and evaluate ef-
fectiveness and stability of the Niche execution
environment. The gMovie application performs
transcoding of a given movie from one format to
another in parallel on a number of YACS workers.
Results of our validation and evaluation indicate
that the desired self-* properties, e.g., self-healing
in the presence of failures and resource churn
can be obtained, and that the programming is not
particularly burdensome. Programmers with vary-
ing experience were able to learn and understand
Niche to the point that they could be productive in
a matter of days or weeks. For results of perfor-
mance evaluation of YACS, the reader is referred
to (Hannesson, 2009).

POLICY BASED MANAGEMENT

So far in our discussion we have shown how to
program management logic directly in the manage-
ment elements using Java (in addition to ADL for
initial deployment). However, a part of the analysis
and planning phases of the management logic
can also be programmed separately using policy
languages. Note that currently the developer has

to implement the rest of management logic (e.g.,
actuation workflow) in a programming language
(e.g., Java) used to program the management part
of a self-managing application.

Policy-based management has been proposed
as a practical means to improve and facilitate self-
management. Policies are sets of rules which gov-
ern the system behaviors and reflect the business
goals and objectives. Rules dictate management
actions to be performed under certain conditions
and constraints. The key idea of policy-based man-
agement is to allow IT administrators to define a
set of policy rules to govern behaviors of their IT
systems, rather than relying on manually manag-
ing or ad-hoc mechanics (e.g., writing customized
scripts) (Agrawal, Giles, Lee, & Lobo, 2005). In
this way, the complexity of system management
can be reduced, and also, the reliability of the
system’s behavior is improved.

The implementation and maintenance (e.g.,
replacement) of policies in a policy-based manage-
ment are rather difficult, if policies are embedded
in the management logic and programmed in its
native language. In this case, policy rules and
scattered in the management logic and that makes
it difficult to modify the policies, especially at
runtime. The major advantages of using a special
policy language (and a corresponding policy
engine) to program policies are the following:

• All related policy rules can be grouped and
defined in policy files. This makes it easier
to program and to reason about policy-
based management.

• Policy languages are at a higher level than
the programming languages used to pro-
gram management logic. This makes it
easier for system administrators to under-
stand and modify policies without the need
to interact with system developers.

• When updating policies, the new policies
can be applied to the system at run time
without the need to stop, rebuild or rede-
ploy the application (or parts of it).

285

Niche

In order to facilitate implementation and
maintenance of policies, language support,
including a policy language and a policy evalu-
ation engine, is needed. Niche provides ability
to program policy-based management using a
policy language, a corresponding API and a policy
engine (Bao, Al-Shishtawy, & Vlassov, 2010).
The current implementation of Niche includes
a generic policy-based framework for policy-
based management using SPL (Simplified Policy
Language) (SPL Language Reference, 2009) or
XACML (OASIS7 eXtensible Access Control
Markup Language (XACML) TC, 2009). Both
languages allow defining policy rules (rules with
obligations in XACML, or decision statements
in SPL) that dictate the management actions that
are to be enforced on managed resources and ap-
plications in certain situations (e.g., on failures).
SPL is intended for management of distributed
systems; whereas XACML was specially designed
for access control rather than for management.
Nevertheless, XACML allows for obligations
(actions to be performed) conveyed with access
decisions (permit/denied/not-applicable); and we
have adopted obligations for management.

The policy framework includes abstractions
(and corresponding API) of policies, policy-
managers and policy-manager groups. A policy
is a set of if-then rules that dictate what should be
done (e.g., publishing an actuation request) when
something has happened (e.g., a symptom that
require management actions has been detected).
A Policy Manager is a management element that
is responsible for loading policies, making deci-
sions based on policies and delegating obligations
(actuation requests) to Executors. Niche introduces
a policy-manager group abstraction that repre-
sents a group of policy-based managers sharing
the same set of policies. A policy-manager group
can be created for performance or robustness. A
Policy Watcher monitors the policy repositories
for policy changes and request reloading policies.
The Policy Engine evaluates policies and returns
decisions (obligations).

Policy-based management enables self-man-
agement under guidelines defined by humans in
the form of management policies that can be easily
changed at run-time. With policy-based manage-
ment it is easier to administrate and maintain
management policies. It facilitates development
by separating of policy definition and maintenance
from application logic. However, our performance
evaluation shows that hard-coded management
performs better than the policy-based management
due to relatively long policy evaluation latencies
of the latter. Based on our evaluation results, we
recommend using policy-based management for
high-level policies that require the flexibility to
be able to be rapidly changed and manipulated by
administrators at deployment and runtime. Poli-
cies can be easily understood by humans, can be
changed on the fly, and separated from develop-
ment code for easier management.

Policy based management can be introduced to
the management part of an application by adding
a policy manager in the control loop. Figure 16
depicts an example on how to introduce a policy
manager in the Storage Autonomic Manager used
in the YASS demonstrator (see Figure 12). The
policy manager receives monitoring events such
as total load in the system. The policy manager
then evaluates the policies using the policy en-
gine. An example of a policy used by the Storage
Autonomic Manager for releasing extra storage is
shown below. Exhibit 12 shows one policy from
the policy file written in SPL. When a policy fires
(the condition is true) the state of the manager may
change and actuation events may be triggered.

CONCLUSION

The presented management framework enables
the development of distributed component based
applications with self-* behaviors which are
independent from application’s functional code,
yet can interact with it when necessary. The
framework provides a small set of abstractions

286

Niche

that facilitate robust and efficient application
management even in dynamic environments. The
framework leverages the self-* properties of the
structured overlay network which it is built upon.
Our prototype implementation and demonstrators
show the feasibility of the framework.

In dynamic environments, such as community
Grids or Clouds, self-management presents four
challenges. Niche mostly meets these challenges,
and presents a programming model and runtime
execution service to enable application developers
to develop self-managing applications.

Figure 16. YASS self-configuration using policies

Exhibit 12. Releasing extra storage

Policy {

 Declaration {

 lowloadthreshold = 500;

 }

 Condition {

 storageInfo.totalLoad <= lowloadthreshold

 }

 Decision {

 manager.setTriggeredHighLoad(false) &&

 manager.delegateObligation(“release storage”)

 }

}:1;

…

287

Niche

The first challenge is that of the efficient and
robust resource discovery. This was the most
straightforward of the challenges to meet. All
resources (containers) are members of the Niche
overlay, and resources can be discovered using
the overlay.

The second challenge is that of developing
a robust and efficient sensing and actuation in-
frastructure. For efficiency we use a push (i.e.,
publish/subscribe) rather than a pull mechanism.
In Niche all architectural elements (i.e., both func-
tional components and management elements) are
potentially mobile. This is necessary in dynamic
environments but it means that delivering sensing
events and actuation commands is non-trivial. The
underlying overlay provides efficient sensing and
actuation storing locations in a DHT-like struc-
ture, and through replication (as in a peer-to-peer
system) sensing and actuation is robust. In terms
of messaging all sensing and actuation events are
delivered at least once.

The third challenge is to avoid a management
bottleneck or single-point-of-failure. We advo-
cate a decentralized approach to management.
Management functions (of a single application)
should be distributed among several cooperative
autonomic managers that coordinate (as loosely-
coupled as possible) their activities to achieve the
overall management objectives. While multiple
managers are needed for scalability, robustness,
and performance, we found that they are also
useful for reflecting separation of concerns. We
have worked toward a design methodology, and
stipulate the design steps to take in developing the
management part of a self-managing application
including spatial and functional partitioning of
management, assignment of management tasks
to autonomic managers, and co-ordination of
multiple autonomic managers.

The fourth challenge is that of scale, by which
we meant that in dynamic systems the rate of
change (join, leaves, failure of resources, change
of component load etc.) is high and that it was

important to reduce the need for action/communi-
cation in the system. This may be open-ended task,
but Niche contained many features that directly
impact communication. The sensing/actuation
infrastructure only delivers events to manage-
ment elements that directly have subscribed to
the event (i.e., avoiding the overhead of keeping
management elements up-to-date as to component
location). Decentralizing management makes for
better scalability. We support component groups
and bindings to such groups, to be able to map
this useful abstraction to the best (known) efficient
communication infrastructure.

FUTURE WORK

Our future work includes issues in the areas of
platform improvement, management design,
management replication, high-level programming
support, coupled control loops, and the relevance
of the approach in other domains.

Currently, there are many aspects of the Niche
platform that could be improved. This includes
better placement of managers, more efficient
resource discovery, and improved containers, the
limitations of which were mentioned in section
on the Niche platform (e.g., enforcing isolation
of components).

We believe that in dynamic or large-scale
systems that decentralized management is a
must. We have taken a few steps in this direction
but additional case studies with the focus on the
orchestration of multiple autonomic managers for
a single application need to be made.

Robustifying management is another concern.
Work is ongoing on a Paxos-based replication
scheme for management elements. Other com-
plementary approaches will be investigated, as
consistent replication schemes are heavyweight.

Currently, the high-level (declarative) language
support in Niche is limited. ADLs may be used
for initial configuration only. For dynamic recon-

288

Niche

figuration the developer needs to use the Niche
API directly, which has the disadvantage of being
somewhat verbose and error-prone. Workflows
could be used to lift the level of abstraction.

There is also the issue of coupled control
loops, which we did not study. In our scenario
multiple managers are directly or indirectly (via
stigmergy) interacting with each other and it is not
always clear how to avoid undesirable behavior
such as rapid or large oscillations which not only
can cause the system to behave non-optimally but
also increase management overhead. We found
that it is desirable to decentralize management as
much as possible, but this probably aggravates the
problems with coupled control loops. Although
we did not observe this in our two demonstrators,
one might expect problems with coupled control
loops in larger and more complex applications.
Application programmers should not need to
handle coordination of multiple managers (where
each manager may be responsible for a specific
aspect). Future work might need to address the
design of coordination protocols that could be
directly used or specialized.

There is another domain, one that we did
not target, where scale is also a challenge and
decentralization probably necessary. This is the
domain of very large (Cloud-scale) applications,
involving tens of thousands of machines. Even if
the environment is fairly stable the sheer number
of involved machines will generate many events,
and management might become a bottleneck. It
would be of interest to investigate if our approach
can, in part of wholly, be useful in that domain.

FURTHER READING

For more information on topics covered in this
chapter and on previous Niche-related work, see
(Al-Shishtawy, 2010; Al-Shishtawy et al., 2010;
Bao et al., 2010; Al-Shishtawy et al., 2008; Brand
et al., 2007). For more information on Niche, in-

cluding documentation, code (available as open
source) and demo applications, demo videos, see
(Niche, 2010).

EXERCISES

1. Define management objectives that could
be assigned to autonomic managers in
the following applications: a web server,
a storage service using a storage Cloud, a
compute service using a compute Cloud, a
content distribution network (e.g. a video-
on-demand, live media streaming).

2. Define touch-points (sensors and actuators)
and management elements in the systems of
Exercise 1. In particular, define what should
be monitored and what should be controlled
in the systems in order to meet management
objectives? Design control algorithms for
autonomic managers. Optional: Implement
one of the systems using Niche.

3. Consider the design of the YASS (Yet
Another Storage Service) application
described in Section Demonstrator I: Yet
Another Storage Service (YASS). Add a
new management objective, e.g., to achieve
good load balancing by balancing access
requests among YASS storage components,
or to improve access time by limiting the
maximum number of concurrent downloads.
For the new objective, define required touch-
points (sensors and actuators) and design an
autonomic manager. Does it conflict with
other managers? Discuss possible way to
orchestrate the managers in order to avoid
conflicts if any. Optional: Implement the
extension of YASS using Niche.

4. Design a distributed application with self-
management capabilities (e.g., a distributed
key-value store, or a peer-to-peer photo shar-
ing application). First, develop architecture
of the functional part of the application, and,

289

Niche

next, design its management part by perform-
ing the design steps described in Section A
Design Methodology for Self-Management
in Distributed Environments. In particular,
define management objectives, correspond-
ing management tasks, required touch-points
(sensors and actuators), and management
algorithms.

5. Design and compare the following two
possible architectures of the management
part of the application in Exercise 4: (i) a
single autonomic manager that performs all
management tasks; (ii) a set of autonomic
managers assigned different management
tasks. For the second approach, discuss
how the managers must interact in order to
achieve their management objectives with-
out conflicts. Optional: Implement one of
the architectures using Niche.

6. Describe in SPL the management policy
for the manager of the helloGroup example
described in Section Development of Self-
Managing Applications Using Niche.
Modify the policy so that if there are no avail-
able resources to deploy additional services
the policy manager will send a notification
email to the service administrator.

ACKNOWLEDGMENT

We thank Konstantin Popov and Joel Höglund
(SICS), Noel De Palma (INRIA), Atli Thor Han-
nesson, Leif Lindbäck, and Lin Bao, for their
contribution to development of Niche and self-
management demo applications using Niche. This
research has been supported in part by the FP6
projects Grid4All (contract IST-2006-034567) and
SELFMAN (contract IST-2006-034084) funded
by the European Commission. We also thank
the anonymous reviewers for their constructive
comments.

REFERENCES

Abdelwahed, S., & Kandasamy, N. (2006). A
control-based approach to autonomic perfor-
mance management in computing systems.
In Parashar, M., & Hariri, S. (Eds.), Auto-
nomic computing: Concepts, infrastructure,
and applications (pp. 149–168). CRC Press.
doi:10.1201/9781420009354.ch8

Agrawal, D., Calo, S., Lee, K.-W., Lobo, J., &
Res, T. W. (2007, June). Issues in designing a
policy language for distributed management of
it infrastructures. In Integrated network manage-
ment, 2007. IM’07. 10th IFIP/IEEE International
Symposium (pp. 30-39).

Agrawal, D., Giles, J., Lee, K., & Lobo, J. (2005,
June). Policy ratification. In T. Priol & M. Vann-
eschi (Eds.), Policies for distributed systems and
networks, 2005. Sixth IEEE Int. Workshop (pp.
223- 232).

Al-Shishtawy, A. (2010). Enabling and achiev-
ing self-management for large scale distributed
systems. Licentiate thesis, Royal Institute of
Technology (KTH), Stockholm, Sweden.

Al-Shishtawy, A., Fayyaz, M. A., Popov, K., &
Vlassov, V. (2010, October). Achieving robust
self-management for large-scale distributed ap-
plications. In Self-Adaptive and Self-Organizing
Systems (SASO), 2010 4th IEEE International
Conference (pp. 31-40).

Al-Shishtawy, A., Höglund, J., Popov, K., Par-
lavantzas, N., Vlassov, V., & Brand, P. (2008,
July). Enabling self-management of component
based distributed applications. In Priol, T., &
Vanneschi, M. (Eds.), From Grids to service and
pervasive computing (pp. 163–174). Springer, US.
doi:10.1007/978-0-387-09455-7_12

290

Niche

Al-Shishtawy, A., Vlassov, V., Brand, P., & Haridi,
S. (2009, August). A design methodology for
self-management in distributed environments. In
IEEE International Conference on Computational
Science and Engineering, 2009 (vol. 1, pp. 430-
436). Vancouver, BC: IEEE Computer Society.

Bao, L., Al-Shishtawy, A., & Vlassov, V. (2010,
September). Policy based self-management in
distributed environments. Self-Adaptive and
Self-Organizing Systems Workshop (SASOW),
2010 Fourth IEEE International Conference (pp.
256-260).

Bhat, V., Parashar, M., Khandekar, M., Kan-
dasamy, N., & Klasky, S. (2006, Sept.). A self-
managing wide-area data streaming service using
model-based online control. In 7th IEEE/ACM
International Conference on Grid computing
(pp. 176-183).

Bonabeau, E. (1999). Editor’s introduc-
tion: Stigmergy. Artificial Life, 5(2), 95–96.
doi:10.1162/106454699568692

Bouchenak, S., Boyer, F., Krakowiak, S., Hagi-
mont, D., Mos, A., Stefani, J.-B., et al. (2005,
October). Architecture-based autonomous repair
management: An application to J2EE clusters. In
SRDS’05: Proceedings of the 24th IEEE Sympo-
sium on Reliable Distributed Systems (pp. 13-24).
Orlando, Florida.

Brand, P., Höglund, J., Popov, K., de Palma, N.,
Boyer, F., & Parlavantzas, N. (2007). The role of
overlay services in a self-managing framework
for dynamic virtual organizations. In Danelutto,
M., Fragopoulou, P., & Getov, V. (Eds.), Making
Grids work (pp. 153–164). Springer, US.

Bruneton, E., Coupaye, T., & Stefani, J.-B. (2004,
February 5). The fractal component model (Tech-
nical Report). France Telecom R&D and INRIA.

Chan, H., & Arnold, B. (2003). A policy based
system to incorporate self-managing behaviors
in applications. In OOPSLA’03: Companion of
the 18th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (pp. 94-95). New
York, NY, USA.

Cheng, S.-W., Huang, A.-C., Garlan, D., Schmerl,
B., & Steenkiste, P. (2004). An architecture for
coordinating multiple self-management systems.
In WICSA’04 (p. 243). Washington, DC, USA.

Das, R., Kephart, J. O., Lefurgy, C., Tesauro, G.,
Levine, D. W., & Chan, H. (2008). Autonomic
multi-agent management of power and perfor-
mance in data centers. In AAMAS’08: Proceed-
ings of the 7th international joint conference on
autonomous agents and multiagent systems (pp.
107-114). Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems.

El-Ansary, S., Alima, L. O., Brand, P., & Haridi,
S. (2003, October). Efficient broadcast in struc-
tured P2P networks. In Peer-to-Peer Systems II
(p. 304-314). Berlin, Germany: Springer.

Feng, J., Wasson, G., & Humphrey, M. (2007,
Sept.). Resource usage policy expression and
enforcement in grid computing. In 8th IEEE/ACM
International Conference on Grid Computing,
2007 (pp. 66-73).

Hannesson, A. T. (2009). YACS: Yet another
computing service using Niche. Master of Science
Thesis, Royal Institute of Technology (KTH),
Stockholm, Sweden. Retrieved from http://
niche.sics.se/trac/raw-attachment/wiki/WikiStart/
YACS_thesis__athan.pdf

Hellerstein, J. L., Diao, Y., Parekh, S., & Tilbury, D.
M. (2004). Feedback control of computing systems.
John Wiley & Sons. doi:10.1002/047166880X

Horn, P. (2001, October 15). Autonomic comput-
ing: IBM’s perspective on the state of information
technology.

291

Niche

IBM. (2006, June). An architectural blueprint
for autonomic computing, 4th edition. Retrieved
from http://www-01.ibm.com/software/tivoli/
autonomic/pdfs/AC Blueprint White Paper 4th.pdf

Kephart, J., Chan, H., Das, R., Levine, D., Tesauro,
G., Rawson, F., et al. (2007, June). Coordinating
multiple autonomic managers to achieve specified
power-performance tradeoffs. In Fourth Inter-
national Conference on Autonomic Computing,
2007 (p. 24).

Kephart, J. O., & Chess, D. M. (2003, January). The
vision of autonomic computing. Computer, 36(1),
41–50. doi:10.1109/MC.2003.1160055

Kephart, J. O., & Das, R. (2007). Achieving self-
management via utility functions. IEEE Internet
Computing, 11(1), 40–48. doi:10.1109/MIC.2007.2

Kumar, V., Cooper, B. F., Eisenhauer, G., & Schwan,
K. (2007). iManage: Policy-driven self-manage-
ment for enterprise-scale systems. In Middleware
‘07: Proceedings of the ACM/IFIP/USENIX 2007
International Conference on Middleware (pp. 287-
307). New York, NY: Springer-Verlag.

Niche. (2010). Website. Retrieved from http://
niche.sics.se/

OW2 Consortium. (2009). Fractal ADL. Retrieved
October 2009, from http://fractal.ow2.org/fracta-
ladl/

Oasis. (2009). eXtensible Access Control Markup
Language TC (XACML). Retrieved October
2009, from http://www.oasis-open.org/commit-
tees/xacml/

OSGi. (2010). Service platform release 4. Retrieved
June 2010, from http://www.osgi.org/Specifica-
tions/HomePage

Parashar, M., & Hariri, S. (2005). Autonomic
computing: An overview. In Unconventional
Programming Paradigms [Springer Verlag.]. Lec-
ture Notes in Computer Science, 3566, 257–269.
doi:10.1007/11527800_20

Roy, P. V., Haridi, S., Reinefeld, A., Stefani, J.-B.,
Yap, R., & Coupaye, T. (2007, Oct). Self man-
agement for large-scale distributed systems: An
overview of the SELFMAN project. In FMCO’07:
Software Technologies Concertation on Formal
Methods for Components and Objects. Amster-
dam, The Netherlands.

Sicard, S., Boyer, F., & De Palma, N. (2008). Using
components for architecture-based management:
The self-repair case. In ICSE’08: Proceedings of
the 30th International Conference on Software
Engineering (pp. 101-110). New York, NY: ACM.

SPL. (2009). Language reference. Retrieved
October 2009, from http://incubator.apache.org/
imperius/docs/spl_reference.html

Sweitzer, J. W., & Draper, C. (2006). Architecture
overview for autonomic computing. In Parashar,
M., & Hariri, S. (Eds.), Autonomic computing:
Concepts, infrastructure, and applications (pp.
71–98). CRC Press.

The Center for Autonomic Computing. (2010).
Website. Retrieved from http://www.nsfcac.org/

White, S. R., Hanson, J. E., Whalley, I., Chess,
D. M., & Kephart, J. O. (2004). An architectural
approach to autonomic computing. In Proc. In-
ternational Conference on Autonomic Computing
(pp. 2-9).

KEY TERMS AND DEFINITIONS

ADL: Architecture Description Language, a
language to define a configuration or subconfigu-
ration consisting of software components, the bind-
ings between them, their resource requirements
and various configuration constraints.

Churn: In overlay networks (e.g. DHTs) churn
is the continuous turnover in the nodes that par-
ticipate in the overlay as nodes join, leave or fail.

Component: In software engineering a com-
ponent is a software package or a module that

292

Niche

encapsulates a set of related functions or data. Ap-
plications are composed of multiple components,
where the division into components should reflect
a separation of concerns. With regard to system-
wide co-ordination, components communicate
with each other via interfaces.

Component Model: There are many varia-
tions in languages and tools for component-
based programming. These are reflected in the
component model which specifies, among other
things, the semantics and syntax of the interfaces
through which components interact. Examples
of component models are Fractal, Microsoft®
COM (Component Object Model), and CORBA.
Components models vary as to capabilities of the
management interface to components and runtime
access mechanisms.

Container: In Niche, a container is the process
that hosts running components (both functional
and management components), providing the
services through which components interact
(bindings or events).

Distributed Hash Table (DHT): A distributed
hash table (DHT) is a scalable distributed system
that provides hash table functionality to store key/
value pairs on a set of cooperating computers
(nodes) and to retrieve the value associated with
a given key. Requests to store/retrieve values can
be issued at any node in the DHT. Maintenance
of the mapping from keys to values is distributed
among the nodes participating in the DHT so that
each participating node is responsible for portion
of the items, which it stores locally. DHTs can
scale to a large number of nodes and tolerate
nodes joins, leaves and failures.

Management Element: In Niche, a manage-
ment element (ME) is a component in the man-
agement part of an application. An autonomic
manager is built of a network of management
elements that, typically, communicate using events
and are connected to the functional part of the
application through touchpoints (sensors, actua-
tors). Management elements can be divided into

watchers, aggregators, managers and executors,
depending on their roles.

Overlay Network: An overlay network is a
computer network built on top of another network
(underlay). Overlay nodes are connected to each
other with virtual links, where each virtual link
may span any number of links in the underlay.

Resource Discovery: The process of find-
ing suitable resources in a dynamic system. In a
dynamic system the set of available resources is
continuously changing and are not known a priori.

Structured Overlay: Structured overlays are
a class of overlay networks in which virtual links
between overlay nodes follow a given structure.
This structure ensures that any overlay node can
efficiently route a message to a destination (another
overlay node). The structured pattern of virtual
links is continuously maintained by a distributed
algorithm making the overlay self-organizing,
preserving the structure by correction of routing
tables on node leaves, joins and failures.

Touchpoints: In Autonomic Computing the
points of contact between the management and
functional parts of an application (or between
management and the system being managed).
Touchpoints may be divided into sensors and ac-
tuators, depending on the direction of information/
control flow where sensors provide information to
management and actuators operate on the system
as directed by management.

ENDNOTES

1 Tivoli® is a registered U.S. trademark of
IBM®.

2 Oracle® and Java™ are registered trade-
marks of Oracle and/or its affiliates..

3 Called Jade for historical reasons. Jade is
a cluster-based environment for autonomic
management developed at INRIA, France,
parts of which were adapted and integrated
into Niche.

293

Niche

4 The Niche API documentation can be found
at http://niche.sics.se/.

5 OSGi is a trademark or a registered trademark
of the OSGi Alliance in the United States,
other countries, or both.

6 VLC media player is a trademark owned by
the VideoLAN non-profit organization.

7 OASIS is a trademark of OASIS, the open
standards consortium.

