
Elasticity Controller for Cloud-Based Key-Value
Stores

Ala Arman, Ahmad Al-Shishtawy, and Vladimir Vlassov

KTH Royal Institute of Technology, Stockholm, Sweden
{aarman, ahmadas, vladv}@kth.se

Abstract—Clouds provide an illusion of an infinite amount of
resources and enable elastic services and applications that are
capable to scale up and down (grow and shrink by requesting and
releasing resources) in response to changes in its environment,
workload, and Quality of Service (QoS) requirements. Elasticity
allows to achieve required QoS at a minimal cost in a Cloud
environment with its pay-as-you-go pricing model.

In this paper, we present our experience in designing a
feedback elastically controller for a key-value store. The goal
of our research is to investigate the feasibility of the control
theoretical approach to the automation of elasticity of Cloud-
based key-value stores. We describe design steps necessary to
build a feedback controller for a real system, namely Voldemort,
which we use as a case study in this work. The design steps
include defining touchpoints (sensors and actuators), system iden-
tification, and controller design. We have designed, developed,
and implemented a prototype of the feedback elasticity controller
for Voldemort. Our initial evaluation results show the feasibility
of using feedback control to automate elasticity of distributed
key-value stores.

Keywords-Cloud Computing; Elasticity; Feedback Control;
Key-Value Store; Voldemort.

I. INTRODUCTION

Cloud computing is leveraged by various IT companies
and organizations. A Cloud is an infrastructure that provides
resources, information and services as a utility over the In-
ternet [1]. In recent years, Cloud storage, such as Amazon
S3, has become rather popular and widely used in many
different application domains, including Web 2.0 and mobile
applications.

There are several features defined for Cloud computing
such as scalability and elasticity that can be leveraged when
developing Cloud-based applications. There are two main ad-
vantages of Cloud computing over other large scale computing
alternatives. The first one is that the end-user does not need to
be involved in the configuration and maintenance of the Cloud.
A developer does not have to buy servers, security solutions,
etc, and set them up; rather, she builds her applications on
Cloud resources [2] of a Cloud provider. The second advantage
and probably the most important one, is that the end-user
only pays for resources she requests and uses. That is why
the Cloud computing approach is less expensive than its
alternatives. However, this property, called “pay-as-you-go”
has an important drawback. If allocated resources exceed the
required amount, it will incur a waste of money. On the other
hand, if the obtained resources are not adequate, the system

might not meet the Service Level Objectives (SLOs), resulting
in a negative impact on its performance and, as a consequence,
negative impact on user experience with the system.

Considering these issues, the concept of elasticity comes
to the attention of many Cloud users. There is a difference
between elasticity and scalability. In the context of this work,
scalability means the expansion capacity of the system, which
is expected to be reached in the future. This approach has a
very important drawback, which is that the ultimate size of the
system should be specified in advance. There is a contradiction
between this concept and the “pay-as-you-go” property of
Cloud computing, because in this approach the end-user should
pay for the ultimate size of the system which might never be
fully utilized. Another disadvantage is, as scaling up means
adding more physical resources; it might be not easy to scale
down by removing them.

To deal with these problems, a new approach, called Elastic-
ity, has become favorite in recent years. In this approach, the
final size of the system is not predefined. But an elastic system
is capable of scaling up and down (growing and shrinking by
requesting and releasing resources) at runtime in response to
changes in its environment, workload, and Quality of Service
(QoS) requirements. In the case of increasing the load, a new
instance is added to meet SLOs; whereas, if the load decreases,
a number of instances are removed from the system in order to
reduce the cost. In order to effectively and efficiently utilize the
elasticity property of the system, the elasticity control should
be automated.

In this paper, we present our experience in designing an
elasticity controller for a key-value store. The goal of our
research is to investigate the feasibility of a control theoretical
approach to automation of elasticity of a Cloud-based storage
by performing all design steps necessary to build a feedback
controller for a real system, namely Voldemort [3], [4], used
as a case study. The design steps include defining touchpoints
(sensors and actuators), system identification, and controller
design. We have designed and developed a prototype of the
feedback elasticity controller for Voldemort.

There has been several related work in the area of the
automation of elasticity Cloud-based storage services such
as [5]–[7]. For example, in [5], the SLO is specified as a
requirement on the average response time. The system variable
monitored and used in feedback control is the CPU utilization,
because, as shown by the authors, the CPU utilization (which



is relatively easy to monitor) is highly correlated with the
response time. In the case of high CPU utilization, the number
of active nodes is increased by adding new nodes to the
system. Similarly, the number of active nodes is decreased
in the case of low CPU utilization. However, in a Cloud
environment the aforementioned correlation might not hold
due to the variable performance of Cloud VMs [8], [9].

In [10], one of the system variables is the response time,
i.e., the time it takes to send a request from a client to an
application, to process the request, and to return the result
to the client. The round trip time depends on several metrics
such as physical medium and distance between the source and
the destination, the existence of interference in the system etc.
These metrics do not reflect the amount of the load in the
system. Thus, the round-trip time is not a good option as a
system variable to be monitored and used for control. In [10],
only scalability has been considered; however, in an elastic
system, resources can be removed in the case of low workload.

In this paper, we consider service time as a system variable
monitored and used in feedback control. It is the time needed
for an operation to be served in the system (a distributed
storage, namely Voldemort [3], in our case). In other words, it
does not include the network round-trip time. This time reflects
changes in the workload fashion.

We design, implement, and evaluate an automatic controller,
which is built based on control theory considering the elasticity
property in a distributed storage. We use the Voldemort
distributed key-value store as a case study. In other words,
the controller would be an extension to Voldemort in a way
that it scales a Voldemort cluster up by allocating more nodes
in the case of a high load and scales it down by removing a
number of nodes in the case of a decreasing load. The goal
here is that a system uses the resources in an efficient way, so
that it does not waste resources in the case of a low load. On
the other hand, it adds a number of nodes to meet the SLO in
case of increasing workload. In this work, we define the SLO
as the 99th percentile of read operation latency over 1 minute
period. Moreover, the automatic controller eliminates the need
for the administrator of the system to configure the system
manually to leverage the main advantage of Cloud computing
(as a utility), “pay-as-you-go”.

The rest of paper is organized as follows. In Section II we
present the architecture of our elasticity controller integrated
with the Voldemort key-value store. Section III describes the
system identification process followed by the controller design
described in Section IV. Evaluation of our elasticity controller
is discussed in Section V. Finally, we present conclusions and
future work in Section VI.

II. ELASTICITY CONTROLLER FRAMEWORK

We have designed and implemented a controlling framework
to automate elasticity in distributed key-value stores. Elasticity
control can be manual in a way that adding or releasing
resources would be done by the administrator of the system.
However, our framework has been designed to monitor the
load in the system and allocate or release resources based on

a feedback controller as described in this section. When the
load increases, the nodes probably cannot handle the requests
in appropriate time (the SLO). Therefore, the controller would
detect this and handle this issue by adding a number of nodes
according to its parameters. In other word, the role of the
controller is deciding about the time of adding the nodes to
the system and the number of nodes that are going to be
added. Similarly, when the load decreases and the service
time becomes less than the SLO, the nodes are less busy
and the storage can handle the requests with less number of
nodes. Therefore by removing some nodes, we can save more
resources and reduce the cost of using resources as a result.
In our work, we define the SLO as the 99th percentile of read
operation latency over 1 minute period.

A. System Architecture

We mentioned that in a Cloud environment which is dy-
namic, the management of resources becomes very important.
They should be managed in such way that they would keep
their efficiency. We design and implement a controller that
monitors the performance of the storage system and requests
to allocate or release the nodes based on the deviation from
the desired performance caused by changes in the workload.
Fig. 1 shows a generic control framework.

We can see that system has a reference input (Set point)
which is the desired value of the service parameter which is set
by administrators. In our case, it is the desired 99th percentile
of read latency that is compared with measured output from
the Sensor. This is done by the calculating the error between
the measured and the desired value. The result is error signal
which is used by the Controller to make decisions. Control
decisions are passed to the actuator, which makes change in
the controlled system that typically result in a change in the
measured output bringing it closer to the Set point.

Now we consider our framework in more details. Fig. 2
shows the architecture of the framework which consists of the
following six major components.

• Voldemort: A distributed key-value store that consists of
a cluster of nodes.

• YCSB: A benchmark tool which is an open source frame-
work that allows creating various load scenarios [11].

• Sensor: It is a component that monitors the load by
measuring the 99th percentile of read operation latency
over a fixed period of time (1 minute in our case) and
then gives it to the Filter.

• Actuator (rebalance tool): It gets a target cluster file
from the elasticity controller and updates the cluster.

• Filter: It smooths the service time signal that is given
to the controller by avoiding spikes in output values
resulting from noise.

• Elasticity controller: It is a PID (Proportional Integral
Derivative) controller that gets the average service time in
each interval from the Filter and decides on the number
of nodes that should be added or removed based on gain
parameters that has been specified before.

Table I summarizes components of the controlling framework.



+ _

Desired

Serves Level Objective

(Set Point) Error Controller

Control Input

Actuator
Controlled

System

Smoothing

Filter

Measured Output

(Measured SLO)

Sensor

Feedback

Fig. 1. Generic Control Framework

Fig. 2. Framework Architecture

Component Tool used / Implemented in
YCSB Embedded benchmark tool in Voldemort

Actuator Embedded rebalance tool in Voldemort
Voldemort Storage Java

PID Controller Matlab / Java
Sensor Java
Filter Java

TABLE I
COMPONENTS IN THE CONTROLLING FRAMEWORK

In the following we present in more details the components
of the framework.

B. Voldemort

Voldemort is an open-source, distributed, fault-tolerant non-
relational key-value hash table. It is used, in particular, in
LinkedIn for highly-scalable storage services. Voldemort sup-
ports automatic data replication and data partitioning among
multiple servers, as well as data versioning to improve data
integrity in the case of failures without compromising avail-
ability. Voldemort is decentralized as the Voldemort nodes are
independent from each other, and hence there is no single point
of failure. Voldemort includes a rebalance tool that allows

adding and removing nodes. For more details on the Voldemort
key-value store, the reader is referred to [3], [4].

C. Yahoo! Cloud Serving Benchmark (YCSB)

In order to generate client requests, we have used an
open source benchmark tool called Yahoo! Cloud Serving
Benchmark (YCSB) [11]. The most important characteristic
of this tool is its extensibility which means that it can be used
to benchmark Cloud storage systems and also to generate new
types of workload.

D. Touchpoints

According to [12], a touchpoint is an interface to the
managed resource that implements the sensor and actuator
behaviors for the resource. In our work, we define a touchpoint
as an interface to Voldemort that include sensors and actuators,
which allow measuring the service time in each Voldemort
server, aggregate these measurements, and actuate by adding
or removing Voldemort nodes.

Sensor: A sensor is a software component that is able to
monitor a Voldemort server (e.g., measure the read operation
latency). We use server sensors to monitor the server load in
the Voldemort cluster by measuring service time (which is the



99th percentile of get operation latency). The system sensor
in Fig. 2 use the server sensors to collect and to aggregate
measurements and give the stream of aggregated values to the
Filter.

Actuator: In our system, an actuator is an API provided by
the Voldemort rebalance tool that allows adding and removing
Voldemort nodes and activate data rebalancing among nodes.
An actuator is used to make some changes in the storage
in order to move system performance to a desired region.
From our point of view, a desired system is the one that uses
the resources based on the load changes. This is possible by
adding or removing nodes in Voldemort. If the load increases,
it will add some more resources to handle the increasing load
and if the load decreases, it will remove some nodes not
to waste the resources and save more money. Adding and
removing node is done during rebalancing process. Therefore
we used rebalancing tool as an actuator.

E. Filter

Sometimes values measured by the system sensor are not
smooth enough because of noise. In order to reduce the influ-
ence of noise, we use a smoothing filter that can decrease the
fluctuations in the measured output values. We have designed
a filter component in a way that we give more weight to the
previous filter output and less weight to the new filter input
that is described mathematically as follows.

Filter Output = 0.9(Previous Filter Output)+0.1(New Filter Input)

F. PID Controller

One of the most important components in our controller
framework is the PID controller. It gets the filtered values
form Filter component and decides how many nodes should
be added or removed based on gains that have been calculated
during controller design.

The classical steps in system identification (building a
system model) and controller design are as follows. First,
the designer performs a number of experiments in order to
identify the system. In these experiments, she collects the
data measured by sensors. Second, using the data collected,
she obtains an identified model using PEM (Prediction Error
Minimization) method. Third, based on the obtained model,
she creates a feedback model with the transfer function of
the system. Finally, she designs the controller to be inserted
in the system. Controller design phase includes selecting the
controller type and determining its gains.

In the following sections, first we describe the system iden-
tification process and then present the steps of the elasticity
controller design.

III. SYSTEM IDENTIFICATION

System identification is the process of recognizing relation
between the control input and monitored output of the system
and how output depends on the input. It can be considered as a
link between application in real world and model abstractions.
Identification is about building a formal model of the system.

Starting from a set of measured input and corresponding output
values, by using one of system identification approaches, it is
possible to create a mathematical model, which estimates the
real model.

In this work, we used the black-box approach [13], which
allows building a model without knowing properties of the
system. This is a mathematical approach in which a model
is proposed based on measured input and output values by
means of identification experiments. We used this approach
in our work because the studied system (Voldemort) is a
complex system with many parameters. The black-box system
identification process typically passes the following steps.

• Determining inputs and outputs of the system to be used
in the model;

• Experiment and collect the input and corresponding out-
put values;

• Preprocess data and select the useful part of data;
• Design a model based on the data which have been

collected;
• Observe the system behavior. If the model does not reflect

the system behavior, go to the first step.

A. System Input/Output

Input and output of the system are shown in Fig. 3. System
input is the number of nodes that are going to be added or
removed. System output is the 99th1 percentile of get (read)
operation latency. We measured several possible outputs for
the system. After running various experiments, we found out
that the 99th percentile of read latency is the best parameter
to represent the output of the system. Because it replied
more reasonable results to the different load scenarios that
we applied to Voldemort.

Fig. 3. System Input/output

B. State-Space Model

We used System Identification Tool in Matlab to model the
system. We import input and output data that we gained in the
data acquisition step in this tool and choose linear parametric
models to estimate the model. Command ident opens this
tool for us. We exploited state-space approach to model the
system that models a system based on the input, output
and state variables within the system. The most important

1The 99th percentile of get latency equals x means that 99% of get
operation latencies are below x ms.



advantage of this approach is its extensibility in a way that
we can add input and output to the system easily. We chose
this approach to model the Voldemort key-value store used as
a case study.

The dynamics of basic state-space model is described by
the following equations.

x(k + 1) = Ax(k) +Bu(k) (1)
y(k) = Cx(k) +Du(k) (2)

where x(k) is the vector of state variables, u(k) is output
matrix, y(k) the input matrix, D is the delay scalar. We use
the PEM method to find the identified model of the system. To
use the method, we need to specify two parameters, delay and
the order of the system. Delay is a vector of the number of
input delays which is zero in our case. The order of the system
can be estimated by the following command in Matlab, which
is used to estimates the parameters for the state-space model:

pem(dat,’best’)

The above command specifies the best order for the system
and dat which is an object created by the idata command
that takes the output vector and the input vector as its parame-
ters. By using the pem command, we have found that the best
order for the system is 2. Now we have all parameters to model
the system. After adding the model object to the workspace,
we estimate the initial state of the model by executing the
following command:

pem(dat,’best’,’InitialState’,’estimate’)

and we have the initial states as a scalar:

X0 = [0.32689− 0.96019]

After we have built the model using the system identification
tool, we can determine A,B,C and D (equation 1 and 2) using
the ss function in Matlab. It creates a state-space object from
PEM model that we have built.

sys=ss(pss)

where pss is the PEM model object that was created by
System Identification Tool.

A =

[
0.88577 −0.035944
0.11396 1.0356

]
(3)

B =
[
−0.00069035 0.00059463

]
(4)

C =
[
0.142 0.0054066

]
(5)

D =
[
−0.000091668

]
(6)

C. Transfer Function

The next step in the system identification process is obtain-
ing a transfer function of the system, which can be calculated
by the tf command in Matlab. The command takes the state-
space model object as input parameter (computed by ss) and
converts it to the transfer function form:

Transfer Function=tf(sys)

In our case, the transfer function of the Voldemort system is
as follows.

0.0001565z2 − 0.00009465z + 0.000007484

z2 − 1.921z + 0.9215

IV. CONTROLLER DESIGN

We have used Simulink environment to design the con-
troller. The graphical designed controller in Simulink is shown
in Fig. 4.

To configure the transfer function block, we insert the
dominator and numerator coefficients of the transfer function
that was calculated to the block as well as initial state scalar.
We set the SLO (reference point) as 0.036 seconds. By tuning
the controller, we set the gain parameters Kp, Ki, and Kd

of the PID controller that are the proportional, integral, and
derivative gains of the controller, respectively. After tuning
the gain parameters using PID Tuner (in Matlab), finally we
reach the block response and Tuned response time (using PID
controller):

Now we have the gain parameters of the PID controller:

Kp = 1.19785394231464

Ki = 0.0256625849637579

Kd = −288.920114195685

V. EVALUATION AND EXPERIMENTAL RESULTS

In this section we present the evaluation of the Elasticity
controller for the Voldemort key-value store. We mentioned
that the second step in the system identification is data
acquisition. In the next section we show how we gathered
data to identify the system.

A. Setup

We discuss the experimental setup in two parts, node setup
and benchmark setup. In both parts, the parameters selected
empirically by running various experiments that led us to the
most efficient parameters.

Node Setup: Our cluster consists of 8 Voldemort nodes
running on 8 machines. The node setup of our experiment is
described in Table II.

Benchmark Setup: For effective benchmarking, we used
two powerful machines that are capable of simulating multiple
clients requests in order to load the Voldemort nodes as much
as benchmark parameters were set. Table III, shows the setup
used in our benchmark.

B. Benchmark Experiment for System Identification

We started with three active nodes and run the controller and
two YCSB instances with a specific throughput. Then with a
delay of 30 minutes between each rebalancing, nodes 4th to
8th are added. Afterwards, with the same delay, nodes 8th to
4th are removed to cover the range of input.

Fig. 5 and Fig. 6 show the results of experimental design
and data acquisition. The X-axis shows the sampling time.
Fig. 5, Y-axis shows the number of nodes and In Fig. 6 shows



Fig. 4. Graphical design of the PID controller using Simulink

Machine Setup
Parameter Value
Processor 4

CPU Cores 4
model name Intel Core2 Quad Q9400 @ 2.66GHz

Cache size (MB) 3
Memory (MB) 3887

Node Setup
Parameter Value

Voldemort Version 0.90.1
Database Server Berkely DB

Socket Timeout (ms) 90000
Routing Timeout (ms) 100000

Bdb cache size 1 G
JVM SIZE (Min and Max) 4096 MB

Replication Factor 3
Required Writes 2
Required Reads 2

Key Serializer’s Type String
Value Serializer’s Type String

TABLE II
NODE SETUP FOR DATA ACQUISITION

Machine Setup
Parameter Value
Processor 24

CPU Cores 6
Model Name Intel Xeon X5660 @ 2.80GHz

Cache Size (MB) 12
Memory (MB) 44255

Benchmark Setup
Parameter Value

Number of records inserted in warm-up 10000
Write Percentage (%) 5

Read (%) 95
Showing Result Interval (Sec) 60

Throughput (Ops/Sec) 4000
Sampling Time (min) 5

TABLE III
BENCHMARK SETUP

the average 99th percentile of read operation latency. As we
can see, by increasing the number of nodes, the 99th percentile
of read latency decreases. Similarly, by removing some nodes,
the 99th percentile of read latency increases.

As was mentioned in the previous chapter, the model that is
created by system identification tool is a PEM model in State-
Space structure. Fig. 7 compares the measured output with the
simulated model. The y-axis shows the 99th percentile of read
operation latency. As we can see, the measured and simulated

Fig. 5. The changes in the number of nodes in the experimental design and
data acquisition

Fig. 6. The changes in the 99th percentile of read operation latency changes
in the experimental design and data acquisition

models coincide rather well.

C. First Experiment: Low Workload

Fig. 8 and Fig. 9 show the results of the first experiment.
The experiment is as follows. We run the sensor for half an
hour and then, at point C, we starte the controller. After about
40 minutes (at point L) we decrease the load. The decrease in
the load causes the controller to remove a number of nodes
in order not to waste resources as motivated by the “pay-as-
you-go” pricing model. Table IV shows the configuration of
YCSB instances for this experiment. Other parameters were
the same as in the benchmark experiments described above.

Another important point in our experiments is that, as we
use a filter in our framework so that the controller sees the
filtered values. That is why that the changes in the number of
nodes were done with a short delay; but the controller sees
smoother outputs with less spikes.

D. Second Experiment: High Workload

Fig. 10 and Fig. 11 show the results of the second experi-
ment. In this experiment, we ran the sensor for half an hour and
then the controller started at point C. After about 110 minutes



Fig. 7. Model output. The black curve shows the measured output values
and the blue one shows the output of simulated model by Matlab

Warm-up Period Configuration
Parameter Value

Warm-up Period (min) 30
Throughput during warm-up (Ops/Sec) 4000
Value Size during Throughput (bytes) 1024
Benchmark (YCSB) Setup for decreasing Load

Parameter Value
Throughput(Ops/Sec) 500

Value size (bytes) 512

TABLE IV
THE CONFIGURATION OF YCSB INSTANCES FOR THE FIRST EXPERIMENT

(at point L) we increased the load. Upon the load increase, the
controller added a number of nodes in order to reach a better
performance and meet SLOs. Table V shows the configuration
of YCSB instances for this experiment. Other parameters were
the same as in the benchmark experiments described above.

VI. CONCLUSIONS AND FUTURE WORK

Cloud providers are currently offering “pay-as-you-go” ac-
cess to their resources and services. In order to meet SLOs
(e.g., desired service time) and to leverage this pricing model,
Cloud-based applications should be elastic. In this paper, we

Warm-up Period Configuration
Parameter Value

Warm-up Period (min) 30
Throughput during warm-up (Ops/Sec) 4000
Value Size during Throughput (bytes) 1024
Benchmark (YCSB) Setup for increasing Load

Parameter Value
Throughput(Ops/Sec) 500

Value size (bytes) 6144

TABLE V
THE CONFIGURATION OF YCSB INSTANCES FOR THE SECOND

EXPERIMENT

Fig. 8. The changes in the 99th percentile of read operation latency (the
first experiment)

Fig. 9. The changes in the number of nodes (the first experiment)

have presented the design, implementation, and evaluation
of a feedback controller in order to automate elasticity of
a distributed key-value store called Voldemort. The design
of controller addresses several issues to be considered when
developing a feedback controller such as defining touchpoints
(sensors and actuators), system identification, and controller
implementation. We have chosen service time as a system
variable to be monitored and used for control. In contrast
to other approaches, in our approach the service time does
not include the round-trip time that might introduce noise in
the control system and cause inadequate control. We used the
built-in rebalance tool of Voldemort as an actuator for our
controller.

We have evaluated our feedback elasticity controller inte-
grated with a Voldemort Cluster. Our evaluation shows that



Fig. 10. The changes in the 99th percentile of read operation latency (the
second experiment)

Fig. 11. The changes in the number of nodes (the second experiment)

Voldemort extended with our controller is elastic to varying
workloads and reduces its cost compared to approaches based
on fixed resource allocation. Evaluation results also show that
our controller is also effective for reducing service time. In
other words, Voldemort with our elasticity controller is able
to meet the SLO, while being resource efficient.

In our future work, we intend to study in more detail the
requirements for the system to be elastic and problems that
one might face when automating elasticity by designing a
feedback controller. One of the major problem is nonlinearities
in dependency of SLO metrics (e.g., performance) on the
capacity of the system (e.g., the number of servers and
replicas). One of the possible solutions to this problem is to
use gain scheduling, i.e., defining different gains for different
operating regions (the system size).

ACKNOWLEDGEMENTS

This research has been partially funded by the Complex
Service Systems project, a part of the ICT-TNG Strategic Re-
search Areas initiative at KTH; the End-to-End Clouds project
funded by the Swedish Foundation for Strategic Research; and
the RMAC project funded by EIT ICT Labs. We also thank
the anonymous reviewers for their constructive comments.

REFERENCES

[1] R. L. Grossman, Y. Gu, M. Sabala, and W. Zhang, “Compute and
storage clouds using wide area high performance networks,” Future
Generation Computer Systems, vol. 25, no. 2, pp. 179 – –183,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X08001155

[2] A. Rastogi, “A model based approach to implement cloud computing in
e-governance,” International Journal of Computer Applications, vol. 9,
no. 7, pp. 15–18, 2010. [Online]. Available: http://www.doaj.org/doaj?
func=abstract&id=658965

[3] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project voldemort,”
in The 10th USENIX Conference on File and Storage Technologies
(FAST’12), February 2012.

[4] Project voldemort. [Online]. Available: http://www.project-voldemort.
com/

[5] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for
elastic storage,” in Proceedings of the 7th international conference
on Autonomic computing, ser. ICAC ’10. New York, NY, USA:
ACM, 2010, pp. 1–10. [Online]. Available: http://doi.acm.org/10.1145/
1809049.1809051

[6] B. Trushkowsky, P. Bodı́k, A. Fox, M. J. Franklin, M. I. Jordan, and
D. A. Patterson, “The scads director: scaling a distributed storage
system under stringent performance requirements,” in Proceedings of
the 9th USENIX conference on File and stroage technologies, ser.
FAST’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 12–12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1960475.1960487

[7] M. A. Moulavi, A. Al-Shishtawy, and V. Vlassov, “State-space feedback
control for elastic distributed storage in a cloud environment,” in The
Eighth International Conference on Autonomic and Autonomous Systems
ICAS 2012, St. Maarten, Netherlands Antilles, March 2012, pp. 18–27.

[8] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual
machine performance: challenges and approaches,” SIGMETRICS
Perform. Eval. Rev., vol. 37, no. 3, pp. 55–60, Jan. 2010. [Online].
Available: http://doi.acm.org/10.1145/1710115.1710126

[9] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, and D. Newell,
“VM3: Measuring, modeling and managing VM shared resources,”
Computer Networks, vol. 53, no. 17, pp. 2873–2887, December 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.comnet.2009.04.015

[10] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,” in
Proceedings of the 1st ACM symposium on Cloud computing, ser.
SoCC ’10. New York, NY, USA: ACM, 2010, pp. 205–216. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807162

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings
of the 1st ACM symposium on Cloud computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[12] IBM, “An architectural blueprint for autonomic computing, 4th edition,”
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC Blueprint
White Paper 4th.pdf, June 2006.

[13] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, September 2004.

http://www.sciencedirect.com/science/article/pii/S0167739X08001155
http://www.sciencedirect.com/science/article/pii/S0167739X08001155
http://www.doaj.org/doaj?func=abstract&id=658965
http://www.doaj.org/doaj?func=abstract&id=658965
http://www.project-voldemort.com/
http://www.project-voldemort.com/
http://doi.acm.org/10.1145/1809049.1809051
http://doi.acm.org/10.1145/1809049.1809051
http://dl.acm.org/citation.cfm?id=1960475.1960487
http://doi.acm.org/10.1145/1710115.1710126
http://dx.doi.org/10.1016/j.comnet.2009.04.015
http://doi.acm.org/10.1145/1807128.1807162
http://doi.acm.org/10.1145/1807128.1807152
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf

	Introduction
	Elasticity Controller Framework
	System Architecture
	Voldemort
	Yahoo! Cloud Serving Benchmark (YCSB)
	Touchpoints
	Filter
	PID Controller

	System Identification
	System Input/Output
	State-Space Model
	Transfer Function

	Controller Design
	Evaluation and Experimental Results
	Setup
	Benchmark Experiment for System Identification
	First Experiment: Low Workload
	Second Experiment: High Workload

	Conclusions and Future Work
	References

