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Abstract:

Applying intrusion detection to the fast growing computational Grid environments improves the security which is

considered  to  be  the  heart  of  this  new  field.  Flexible  cooperative  distributed  intrusion  detection  architecture  is

introduced that suits and benefits from the underlying computational Grid environment. The proposed architecture was

tested using homogeneous distributed intrusion detection servers that use learning vector quantization neural network

to detect the intrusion if occurred. The paper discusses the different parameters that may affect the proposed intrusion

detection system showing and explaining their effects on the overall system performance.
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1. Introduction

Grid Computing is a new approach for computing and problem solving. It has been proposed in the mid 90's and
still under research, aiming to achieve seamless access to computational power and resources, similar in simplicity to
the access to electricity through the electrical power grid [5]. Grid Computing was defined in [11] as "coordinated
resource  sharing and problem solving in a dynamic,  multi-institutional  virtual  organizations".  Grid Computing has
special  characteristics,  including heterogeneity,  scalability,  and dynamicity  or  adaptability  [14].  It  also has  special
requirements such as to coordinate resources that are not subject to centralized control, use standard open general-
purpose  protocols  and  interfaces,  and  deliver  nontrivial  qualities  of  service  [6].  These  special  characteristics  and
requirements  introduced new challenges to researchers trying to design the architecture, infrastructure, and basic tools
and services necessary to construct computational Grid environments. These challenges can be classified in four main
research fields [20][21]: Resource Management, Data Management, Information Services, and Security.

Security is one of the most important features that must exist to enable the creation of Grid environments that
couple  multiple  locally  administrated  sites  and resources  to  solve real  scientific  and/or  business  applications.  The
special characteristics and requirements of Grid environments have introduced unique security requirements that did
not exist in old security mechanisms  [10]. Most of the available attempts to secure grid environments are based on
public  key infrastructure  focusing  on authentication and access control.  They try  to satisfy,  in addition to normal
security requirements, special requirements for Grid environments including single sign on, interoperability with local
security solutions, exportability, and support for multiple implementations [10]. 

Intrusion detection is considered as a second line of defense. It is very important because the current grid security
mechanisms can be penetrated and also does not provide protection from insiders. Intrusion detection systems are based
on the assumption that normal use of the system is different from malicious use [17]. Due to the special characteristics
of Computational Grids, detecting such difference in behavior in a grid intrusion detection system imposed some new
unique requirements that did not exist in traditional intrusion detection systems. 



Traditional intrusion detection systems such as [13] depend on a centralized server that is capable of monitoring and
analyzing  the  entire  system  to  detect  intruders.  Centralized  intrusion  detection  architectures  are  not  suitable  for
Computational Grids because of its poor scalability and centralized control among others.  Also because of the fact that
the grid consists of resources controlled by different administrative domains it is not possible to find a single intrusion
detection server that all these administrative domains can trust, agree to use and depend on.

A Grid Intrusion Detection Architecture (GIDA) was introduced in [16]. Section 2 will present the proposed GIDA
and discuss its compatibility with Grid environments. Section 3 will present a possible implementation of the GIDA
that will be used in testing. Results and major parameters effects on the system are discussed in Section 4. Conclusions
and Future work are discussed in section 5.

2. The Proposed Grid Intrusion Detection Architecture (GIDA)

Distributed  intrusion  detection  systems  such  as  [12]  are  more  suitable  for  Computational  Grids.  They  have
enhanced scalability by distributing some of the system components, such as the modules responsible for gathering
information about the system while keeping the module responsible for analysis and detection of intruders centralized
or  in  some system taking  a hierarchical  form.  Distributed  systems,  although  enhanced,  are  still  not  sufficient  for
Computational Grids. The components which are left centralized or components near the top of a hierarchy forms a
performance  bottle  neck,  a  single  point  of  failure  and  force  centralized  control  and  administration.  In  Grid
environments, complex trust relationships must be addressed by intrusion detection systems and all the components
must not be subject to a centralized control.

GIDA was designed with all these problems in mind. It is built on top of the Grid Security Infrastructure GIS [10]
which provides a uniform security infrastructure for Computational Grids and inter-operates with the diverse intra-
domain security solutions. As shown in (Figure 1) GIDA has two main parts. The first is the data gathering module,
called  the  Intrusion  Detection  Agent  (IDA),  which  is  responsible  for  gathering  information  about  the  users  and
resources. The second part which is called the Intrusion Detection Server (IDS), consists of two modules. The first
module is responsible for analyzing the gathered information while the second cooperates with other IDSs to detect
intruders. Both  parts, IDA and IDS, are distributed and not subject to centralized control as shown in (Figure 1).

As stated above the Computational Grid consists of resources owned by different administrative domains. This is
represented by the circles in (Figure 1). Each administrative domain will have an intrusion detection agent responsible
for gathering data which is specific to this administrative domain and summarizing these data and converting them to a
standard format. In other words this will deal with the heterogeneity of Computational Grids, while summarizing the
gathered data will reduce the consumed network bandwidth.

Each  intrusion  detection agent  (IDA) will  register  with one  or  more  intrusion detection server  (IDS) this will
increase  the  reliability,   robustness   and  adaptability  of  the  system.  In  the  case  of  the  failure  of  one  IDS  the
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administrative domain resources can still be protected against intruders if its IDA is registered with other IDSs. Of
course there is a trade off between this increased reliability and robustness and an increased bandwidth consumption
and time needed by the IDS to analyze the data because of this replication.

Next the gathered information will be transferred from each intrusion detection agent IDA to all registered intrusion
detection servers IDS. The Grid Information Service (GIS) - which is a major component of most Computational Grids
- can be used to store this information. If the GIS is unavailable or inapplicable a special database can be implemented
in the IDS to store the gathered information for analysis.

The intrusion detection servers will analyze the gathered information and try to detect intruders. These IDSs need
not be homogeneous. Each IDS can use a different approach to analyze the gathered data such as anomaly or misuse
detection based on neural network, statistical, data mining, or other techniques of intrusion detection. The key here is to
use a standard, open, general-purpose protocols between the IDSs that allow them to cooperate and work together. This
allows site administrators to choose among different IDSs according to their QoS.

When an IDS detects an intruder it should warn  the other IDSs which in turn will signal the registered IDAs that
will worn the local security to take an appropriate action.

The  administrative  domains  can  have  local  intrusion  detection  system that  detects  local  intruders.  This  local
intrusion detection system can cooperate with GIDA to help finding the intruders. The architecture represented in this
section is an extensible and open architecture that can be implemented in various ways. It meets the characters and
requirements of Computational Grids as discussed above and shown in (Table 1). 

Characteristic or Requirement GIDA Compatibility

Heterogeneity IDA deals with heterogeneity

Scalability All components are distributed

Dynamicity or adaptability Registration with multiple IDSs

No centralized control Decision is made through cooperation between IDSs

Standard protocols Build on top of GSI and Grid protocols

Nontrivial QoS Different ID algorithms and trust relationships

3. An Implementation of GIDA

The Grid  Intrusion  Detection Architecture  can be divided  into three  modules:  The data gathering  module,  the
analyzing  and  detection  module,  and  the cooperation  module.  For  the purpose  of  validating and testing the  Grid
Intrusion Detection Architecture the data gathering module was simulated to simplify the testing process. The other two
modules  were  implemented then tested using the data generated from the simulation.  This section discusses these
modules in more details. 

3.1. The Data Gathering Module

Computer simulation has always been used as a cost effective solution for the evaluation, testing, and proving the
effectiveness of new architectures and models before implementing them in real world applications. Simulation also
allows researchers to perform experiments repetitively using different combinations and arrangements in a controlled
environment to find the most optimum solution in an effective way that would otherwise be both costly and time
consuming or even impossible.

Researchers  in  the  field  of  Computational  Grids  face  many problems  in  their  research  because  of  the  special
characteristics of Computational Grids.  Most of the researchers do not have access to real  Computational Grids or
testbeds  such  as  [1][18]  to  perform  their  experiments.  This  is  due  to  the  high  cost,  technical  and  organizational
challenges needed to build a real Computational Grid. Even those who have access to real Computational Grids face

Table 1. GIDA compatibility with computational grid 
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problems. Computational Grids contain expensive resources such as super computers, large clusters, other expensive
devices such as electronic telescope, and so on. Dedicating a portion of these resources' time to researchers to perform
their experiments increases research costs and in many cases is infeasible and not applicable.

It is also very difficult to coordinate and control the experiment and gather information about it. This is due to the
large size of Computational Grids and the fact that both the resources and users are geographically distributed and are
owned by different  administrative  domains which makes the coordination  between them very complex,  creating  a
controlled  environment  very  difficult  because  of  their  dynamic  nature,  and  repeating  the  experiment  and  testing
different  combinations  and  different  resource  arrangements  and  scenarios  with  varying  specifications  and  loads
considered impossible. Testing the scalability is another problem which is limited by the size of the Computational Grid
available to the researchers.

Because of the above problems most of the researchers have turned to simulate Computational Grids. Tools for
simulating Computational Grids have been developed and used in research including for  example:   GridSim [15],
SimGrid [7], and MicroGrid [9]. Researchers use this simulated Computational Grid to test their algorithms, models,
and architectures. After they are well established and tested, they are implemented on real Computational Grids and
retested only in the final phase. This reduces the time, cost, effort, and accelerates the research and give better results.

Unfortunately  most  of  the  available  Grid  simulation  tools  are  designed  to  solve  problems related  to  resource
management  and  scheduling  ignoring  security  related  requirements  such  as  authentication,  authorization,  users
behavior,  and managing trust relationships between different administrative domains.  For these reasons a new grid
simulation toolkit was developed that addresses security requirements to be used to test the proposed Grid Intrusion
Detection Architecture.

The simulation environment simulate users, resources,  and registration with IDSs. This allow us to perform the
required experiments. Each experiment will generate a dataset consisting of one or more log file as shown in (Figure
2). These datasets are then used to test the analyzing module and the cooperation module of the IDSs.

3.2. The Analysis and Detection Module

This  module  will  analyze  the  data  generated  from  the  simulation,  taken  advantage  of  results  gained  through
cooperation, with the goal of detecting intruders trying to compromise and misuse a Computational Grid as shown in
(Figure 3).

Intrusion detection systems try to detect, using different mechanisms and approaches, the difference in behavior
caused by an intruder and take appropriate action to stop the intruder. Intrusion detection techniques can be classified
(Table 2) either according to the source of the data used for the analysis into network based and host based intrusion
detection systems [4],  or  according  to  the approach  taken  to  analyze  the data into misuse detection  and anomaly
detection [8].

Network intrusion detection systems get their data by installing a device on the network capable of monitoring all
network traffic and passed packets. They rely on raw network packets in their analysis. On the other hand host based
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intrusion detection systems use log files created on each host, containing all the operations performed on the host, as
the data source. In the context of Computational Grids the network intrusion detection has many disadvantages and
problems including:
 It is impossible to have a device installed on the grid capable of monitoring all the passing packets. Even if this

device is distributed, moving the raw network packets to the IDS is not efficient so it must be preprocessed and
summarized at each administrative domain before being sent to the IDS. This may add undesired overheads and
complications to the systems.

 Because of security requirements in the grid most of the raw packets used are encrypted and this cause problems in
network based intrusion detection.

 Analysis at a low level such as raw network packets makes higher level information, such as the global name of the
user, not available or hard to discover.

 Network based intrusion detection systems analyze the raw network packets to guess what is the user is trying to do.
While this information is already available in log files.
For  these  reasons  the  presented  GIDA  implementation  is  based  on  host  based  intrusion  detection.  The  data

gathering module is responsible for gathering the data from the log files on each host (or administrative domain) and
transferring it  to the IDS. Because of these reasons areas labeled (1)  and (2) in (Table 2) that use network based
approach will not be used.

Misuse detection technique search the gathered data for patterns and signatures of well known attack types stored in
a knowledge base, on the other hand anomaly detection technique tries to identify events that appear to be anomalous
with respect to normal system behavior [2].  The Grid is still under research and no signatures of known attacks is
available to implement miss use detection techniques and so areas labeled (1) and (3) in (Table 2) are excluded.

From the previous discussion only host based anomaly detection intrusion detection technique is currently suitable
for Computational Grids (area  (4) in Table 2) so it was used to implement the Grid Intrusion Detection Architecture as
described in this paper.

Because the GIDA is an open architecture, the analyzing and detection module can be implemented using various
techniques. Such as neural networks, statistical analysis, data mining, and so on. It is possible also to be implemented
using different technique in different IDSs in the same Computational Grid to increase the QoS.

The implementation described in this paper employs anomaly detection using neural networks on all the IDSs. The
neural network used is Learning Vector Quantization (LVQ) [19]. The LVQ was chosen because it dose not require
anomalous records in the training data, and because the classes and their labels (global user name) are known. The
preprocessing module is responsible for converting attributes in the log file to a format suitable for the neural network.
The decision module will analyze the LVQ result then, with information from the cooperation module, will decide
wither a user is normal or intruder (Figure 4).

3.3. The Cooperation Module

Each IDS has a scope. This scope is defined by the administrative domains (resources) that chose to register with
this IDS as shown in (Figure 1). The analyzing and detection module will make decisions about users based on the data
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available in its scope. This will not produce the best results because other important events may occur in the scope of
other IDSs. Here arises the important rule of the cooperation module. It is responsible for distributing the intrusion
detection problem among IDSs. Instead of having one IDS, there will be several IDSs each responsible for a portion of
the Computational  Grid.  The cooperation  module will  be responsible for  sharing the results  obtained at  each IDS
among the other IDSs. This sharing will be achieved through a protocol that defines how will an IDS query and share
its results with other IDSs.

This sharing can be either implemented using peer-to-peer techniques [3] or by using the Grid Information System
(GIS) to share the results. Both techniques are distributed, do not rely on a central server and support the dynamic
nature of Computational Grids.

The protocol used in this implementation is simple. Each IDS has a subset of users that are in its scope. For each
user, the IDS will query other IDSs (peers) for their results of this user. Then the received results will be used to  decide
whether the user is intruder or normal. When an intruder is detected at an IDS, a warning will be sent to other IDSs to
take appropriate actions. 

4. Testing of GIDA

The performance of the proposed GIDA implementation is measured by five main parameters:

 False positive percentage: This measures the percentage of normal users that are miss classified by the system as

intruders.

 False negative percentage: This measures the percentage of intruders that are miss classified by the system as

normal users.

 Training time: The time needed to train the LVQ neural network.

 Detection duration: The time duration needed by the system to detect the intrusion.

 Recognition percentage: This measures the accuracy of the LVQ to correctly classify and recognize users with the

absence of intruders.
The value of these parameters is affected by the environment in which the system is running. There are controllable

issues such as data preprocessing and number of IDSs that must be adapted to best fit uncontrollable issues such as the
number of users, number of resources, and number of intruders in a given environment. These issues are discussed
below.

4.1. Data preprocessing

The records  in the log file are preprocessed (Figure 4) before applying them to the LVQ by grouping several
records  that  are  in  the same window.  The window can take several  forms (Figure  5)  depending  on whether  it  is
controlled by a fixed number of records in each window (Type 1), a fixed time period for the window regardless of the
number of records in this period (Type 2), or  a hybrid window with both size and time limits that determines the
number of records in the window depending on which limit is reached first (Type 3, 4, and 5).  Generally, increasing
the  number  of  records  in  the  window  –  by  increasing  window  size  or  duration  –  decreases  the  false  negative
percentage; but meanwhile increases the false positive and the detection duration which is not desired.  The hybrid
window (Type 5) gave better results because it kept the number of records in the window at the desired value even
when using multiple IDSs which resulted in fewer number of available records. The hybrid approach also kept the
detection duration relatively constant. The window type slightly affected the training time. Results are shown in (Figure
6).

4.2. Number of IDSs

This is an important issue that shows the scalability of the system and that it is possible to distribute the intrusion
detection problem among multiple IDSs. Increasing the number of IDSs increased the percentage of false positive
(Figure  7.a).  This  is  because  fewer  information  is  available  to  each  IDS about  the  user  behavior.  Meanwhile  it
decreased the percentage  of  false negative (Figure  7.b)  because among the few user  actions monitored at  an IDS
detecting deviation form them is easier. This trade of between false positive and false negative percentages exist in all



intrusion detection systems. Increasing the number of IDSs has a great effect on reducing the training time (Figure 7.c)
while only slightly decreasing the LVQ recognition (Figure 7.d). This shows that it is possible to distribute the intrusion
detection problem but the number of IDSs must be carefully chosen to deliver the desired values of false positive and
negative  percentages.  The detection duration  was kept  at  an average  of  25 minutes  by using  the hybrid  window
approach.

4.3. Number of users

This is another important issue that measure the scalability of the system at a specific configuration in accepting
larger number of users. As shown in (Figure 8) increasing the number of users slightly increased the false positive
percentage and reduced the false negative percentage. Centralized systems with one IDS was not scalable as training
time increased exponentially, multiple IDSs kept training time low.

4.4. Number of resources

Increasing  resources  reduced  the  false  positive  percentage  and  increased  the  LVQ  recognition  while  slightly
affecting false negative percentage. This is because users have wider variety of resources to choose from and this gives
them better distinct behavior. These results are shown in (Figure 9)

Figure 6. The Effect of window type.
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4.5. Number of intruders

Increasing the number of intruders has only slightly increased the percentage of the false negative as shown in
(Figure 10). It did not affect the other system parameters.

Figure 7. The Effect of the Number of IDSs.

Figure 8. The Effect of Increasing the Users.
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5. Conclusions and future work

Security  is an important  issue for  the future of the Grid.  As Grid technologies improve and real  Grids start  to
appear, security will be more critical to protect the Grid resources in large collaborations and commercial applications.
To increase security intrusion detection is needed as a second line of defense and to protect the Grid from insiders.

The proposed Grid Intrusion Detection Architecture (GIDA) is an open and flexible architecture that addresses the
special  requirements  of  the  Grid.  The  implementation  of  this  Architecture  presented  in  this  paper  proved  the
applicability of such architecture in grid environments. The main issues affecting the system have been discussed to
help  in  deciding  the  value  of  different  parameters  to  increase  the  performance  of  the  system  in  different  Grid
environments. This work helps to understand the problem of intrusion detection in Grid environments and to build
future systems.

The effect of trust relationships between different resource owners and the use of heterogeneous IDSs should be
further investigated. Also these two issues will raise a question about their effects on different QoSs and how these
QoSs can be selected and measured. With Heterogeneous IDSs and trust relationships more complex algorithms will be
needed for the cooperation module that will need further investigations. The application of the Grid in real problems

Figure 9. The Effect of the Number of Resources.

Figure 10. The Effect of the number of Intruders.
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will help in building a knowledge base of attack signatures that will enable the use of misuse intrusion detection with
the Grid. 
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