

State-Space Feedback Control for Elastic Distributed Storage in a Cloud Environment

M. Amir Moulavi Ahmad Al-Shishtawy

Vladimir Vlassov

KTH Royal Institute of Technology, Stockholm, Sweden ICAS 2012, March 26, St. Maarten, Netherlands Antilles

OF TECHNOLOGY

Agenda

- Introduction & Problem Definition
- System Identification
- Controller Design
- EStoreSim: Elastic Store Simulator
- Evaluation
- Conclusions

FTECHNOLOGY

Motivation

- Web 2.0 applications
 - WiKis, social networks, media sharing
 - Rapidly growing number of users and the amount of user generated data

You Tube

flickr

facebook

- Challenges for a storage service
 - Growing number of users and the amount of data (scalability)
 - Uneven load, user geographically scattered (low request latency, load balancing)
 - Partial failures, very high load (high availability)
 - Acceptable data consistency guarantees (e.g., eventual consistency)

Cloud-Based Services

- Cloud computing offers an efficient and effective solution to the challenges of scale and the (highly) dynamic load
- Provides the illusion of infinite amount of resources
- "Pay-as-you-go": pay for a service only when/if you use it
- End-user does not need to be involve in the configuration and maintenance of the cloud-based system
- Enables development of Cloud-based Elastic
 Services and Applications

Need for Elasticity

- Web services, e.g. storage, frequently experience high workloads
 - A service can become popular in just an hour
- The high level load does not last for long and keeping resources in the Cloud costs money
- This has led to *Elastic Computing*
 - Ability of a system to grow and shrink at run-time in response to changes in workload
- Cloud computing allows on-the-fly requesting and releasing VM instances to scale the service in order to meet SLOs at a minimal cost

Elasticity versus Static Provisioning

ROYAL INSTITUTE OF TECHNOLOGY

ICAS 2012, March 26, St. Maarten, Netherlands Antilles

Automation of Elasticity

- Elasticity can be done either manually (by the sys-admin) or automatically (by a autonomic manager)
- Automation of elasticity can be achieved by providing an Elasticity Controller
 - Helps to avoid SLO violations while keeping the cost low
 - Automatically adds/removes VMs (servers, service instances) in response to changes in some SLO metrics, e.g., request latency, caused by changes in workload
 - Can be built using elements of Control Theory
 - Feedback-loop (a.k.a. closed-loop) control
 - Model Predictive Control (MPC)

Feedback (Closed Loop) Control [Hel2004]

OF TECHNOLOGY

Automatic Control of Storage Elasticity in the Cloud

Two Phases of a Feedback Controller Design

System identification

• Building a mathematical model of a dynamic system

- How control outputs depend on control inputs
- Two main approaches:
 - First-principle (e.g., using queuing theory)
 - Black-box (e.g., state-space)

Controller design

- Choose a controller type (e.g., PID, State-Space)
- Determine controller gains based on the system model

FTECHNOLOGY

State-Space Model

Advantages

- Provides scalable approach to model systems with large number of inputs/outputs
- Can be extended easily

State variables

- Express the dynamics of the system

Main Steps

- Study system behavior in order to identify the control inputs, control outputs, and state variables of the system
- Construct the characteristic equations
- Design an experiment to estimate the parameters of the characteristic equations

Control Inputs/Outputs of an Elastic Storage System

Characteristic Equations

- A state space model considers relationship between inputs u, outputs y, and state variables x
- State variables used in two ways
 - Describe dynamics (state changes)
 - Determine the measured output from the state

 $\begin{aligned} \mathbf{x}(k+1) &= \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) \\ \mathbf{y}(k) &= \mathbf{C}\mathbf{x}(k) \end{aligned}$

• Allows modeling of a MIMO system with multiple inputs and outputs

Characteristic Equations

ROYAL INSTITUTE OF TECHNOLOGY

Parameter Estimation

Identification: Estimate the coefficient matrices **A** , **B** and **C** from experimental data

- Feed the system with an input signal and observe outputs and internal state variables periodically.
- Compute the matrices from the collected data using the multiple linear regression method
 - The Matlab regress(y,X) function can be used to calculate matrices

$$\mathbf{A} = \begin{bmatrix} 0.9 & 0 & 0\\ 0 & 0.724 & 0\\ 5.927 & 0 & 0.295 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 2.3003\\ 0.0147\\ 77.8759 \end{bmatrix}$$

F TECHNOLOGY

Controller Design

- Dynamic State Feedback
 - a State-Space analogous to PI (Proportional Integral) control
- Has good disturbance rejection properties
- the control error is

e(k) = r - y(k)

• The integrated control error is

$$x_I(k+1) = x_I(k) + e(k)$$

The control law is

$$u(k) = - \begin{bmatrix} \mathbf{K}_p & K_I \end{bmatrix} \begin{bmatrix} \mathbf{x}(k) \\ x_I(k) \end{bmatrix}$$

F TECHNOLOGY

LQR Controller Design

- LQR: Least Quadratic Regulation
- An approach to controller design is to focus on the tradeoff between control effort and control errors
- Minimizing control errors (Defined by matrix R):
 - Improve accuracy and reduce both settling times and overshoot
- Minimizing control effort (Defined by matrix Q):
 - Sensitivity to noise is reduced

$$\mathbf{Q} = \begin{bmatrix} 100 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{R} = \begin{bmatrix} 1 \end{bmatrix}$$

LQR Controller Design

 Given: A and B (from system identification), weighting matrices R and Q (state/input and output, respectively), and the quadratic cost function J;

$$J = \frac{1}{2} \sum_{k=0}^{\infty} \left[\mathbf{x}^{\top}(k) \mathbf{Q} \mathbf{x}(k) + \mathbf{u}^{\top}(k) \mathbf{R} \mathbf{u}(k) \right]$$

- Find: The controller gain vector K (for three outputs) that minimizes the quadratic cost function J for given R and Q;
- Use Matlab dlqr() function: K = dlqr(A, B, Q, R)

$$\mathbf{K} = \begin{bmatrix} 0.134 & 1.470162e - 06 & 0.00318 \end{bmatrix}$$

EStoreSim: Elastic Key-Value Store Simulator

- Simulates a Cloud environment
 - VMs (CPU & Memory)
 - Network (Upload bandwidth)
 - ...
- Generates various workload patterns
- Supports controller design
 - Run system identification experiments and gather data
 - Experiment with different controller designs

EStoreSim: Elastic Key-Value Store Simulator

Implementation

- Based on KOMPIES
- Written in 🔮 Java Scala
- Publicly available on
 - https://github.com/amir343/ElasticStorage

ICAS 2012, March 26, St. Maarten, Netherlands Antilles

Evaluation

SLO Requirements

- Average CPU Load \leq 55%
- Response Time \leq 1,5 seconds
- Average Bandwidth per download > 200 KB/s
- Two Experiments:
 - SLO Experiment
 - Cost Experiment

SLO Experiment

Workload (interarrival time)

SLO Experiment

SLO Experiment

SLO Experiment

ROYAL INSTITUTE OF TECHNOLOGY

ICAS 2012, March 26, St. Maarten, Netherlands Antilles

SLO Experiment

ICAS 2012, March 26, St. Maarten, Netherlands Antilles

Cost Experiment

	w/ controller	w/o controller
Total Cost (\$)	10,5	16,5

OYAL INSTITUTE

Conclusions

- Elasticity in Cloud computing is an ability of a system to scale up and down in response to changes in its environment and workload
 - Improves Cloud-based systems by reducing the total cost for the system while meeting SLOs
- Described the steps in designing an elasticity controller for a Cloud-based key-value store
- EStoreSim: Open source simulation framework for Cloud systems
- Experiments have shown the feasibility of our approach to automate elasticity control of storage services using state-space feedback control.