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Abstract—Community Network Cloud is an emerging dis-
tributed cloud infrastructure that is built on top of a community
network. The infrastructure consists of a number of geograph-
ically distributed compute and storage resources, contributed
by community members, that are linked together through the
community network. Stream processing is an important enabling
technology that, if provided in a Community Network Cloud,
would enable a new class of applications, such as social anal-
ysis, anomaly detection, and smart home power management.
However, modern stream processing engines are designed to be
used inside a data center, where servers communicate over a
fast and reliable network. In this work, we evaluate the Apache
Storm stream processing framework in an emulated Community
Network Cloud in order to identify the challenges and bottlenecks
that exist in the current implementation. The community network
emulation was performed using data collected from the Guifi.net
community network, Spain. Our evaluation results show that,
with proper configuration of the heartbeats, it is possible to run
Apache Storm in a Community Network Cloud. The performance
is sensitive to the placement of the Storm components in the
network. The deployment of management components on well-
connected nodes improves the Storm topology scheduling time,
fault tolerance, and recovery time. Our evaluation also indicates
that the Storm scheduler and the stream groupings need to be
aware of the network topology and location of stream sources
in order to optimally place Storm spouts and bolts to improve
performance.

Keywords—Stream processing, Community network cloud,
Community network, Apache Storm.

I. INTRODUCTION

Community Network Cloud is to maintain cloud services
on top of community networks. The idea is that the cloud
resources are provided by the community members [1]. The
cloud services are hosted over multiple geographically dis-
tributed servers that forms the cloud’s infrastructure. There is
no control over the underlying network topology nor on its size
which grows naturally as the community grows. Community
Network Cloud enables community users to deploy and access
a wider range of services, such as Video-on-Demand, Cloud
storage and Internet of Things. Introducing new Cloud services
and more user involvement will need processing more data,
having more automation and fast decision makings. Stream
processing is one of the paradigms that can enable us to satisfy
these requirements. It enables us to process streams of data and
extract information in real time [2] for different applications,
e.g., churn prediction, social analysis, anomaly detection and
sensor data interpretation.

Apache Storm is an open source distributed stream pro-
cessing framework that has an active community [3]. Storm
is designed to be used inside a data center, where all the
data being accessed and processed through intra data center
communications. Servers inside a data center are connected
with a tree-like topology and top of the rack switches. How-
ever, topology of a community network can be variant and the
servers of a community network are connected through hetero-
geneous links. Therefore, the performance of a Storm cluster
inside a Community Network Cloud depends on the topology
of the host servers and the links quality. To our knowledge,
there has been no prior work to evaluate a distributed stream
processing framework in a Community Network. Therefore, in
this work, we evaluate Apache Storm as a popular distributed
stream processing framework in a community network and
identify the challenges and bottlenecks on leveraging it in such
a network.

Our contributions include,

• Emulation of a community network with the CORE
network emulator using real network traces from
Guifi.net.

• Evaluation of Apache Storm stream processing system
on top of the emulated community network.

• Identification of the main performance bottlenecks in
leveraging Apache Storm on a community network
and providing guidelines to increase the performance
of the Storm in such an environment.

The structure of this paper is as follows. In Section II,
we give an overview of Apache Storm and its components.
Section III describes community network Clouds and the
community network data set that we use in this paper. In
Section IV, we explain the emulated environment. We discuss
our evaluation results in Section V. In Section VI, we give
our guidelines for the deployment of Storm in a community
network. Finally, we give some conclusions and future work
in Section VII.

II. APACHE STORM

In this section we explain the main notions about Apache
Storm and its components. Apache Storm is an open source
distributed real time computation system. It is designed to
process queries on unbounded streams of data. Its main dif-
ference with batch processing is that queries in Storm will be
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processing forever unless they are killed by its user. Storm is
designed to be scalable and fault tolerant.

A query in Storm is defined by creating a graph of compu-
tation called a topology [4]. Each node of the topology contains
a processing logic, and connections between the nodes indicate
the way data should be propagated between them. A stream in
Storm is an unbounded sequence of tuples. A topology is made
of two types of nodes for doing stream transformations, spouts
and bolts. A spout is a source of streams, e.g., a spout may read
tuples from a message queuing system or connect to Twitter
API to emit a stream of tweets. A bolt receives any number of
input streams, process them and may emit new streams either
to another bolt or another application. Bolts can do any kind of
processing, e.g., running functions, aggregating streams, doing
streaming joins and talking to databases or filesystems.

Each node in a Storm topology consists of one or multiple
tasks, which do the actual data processing. One or multiple
tasks are executed in parallel through one or multiple threads
inside a number of predefined workers. Each thread is called
an executor. Each worker is a Java Virtual Machine process.
Workers can execute only the executors of the same topology.
The amount of parallelism for each node can be defined by the
user and Storm will execute the node across the cluster using
that number of threads. Stream grouping is an important notion
in Storm. A stream grouping specifies how tuples should be
sent to bolts. There are seven predefined stream grouping in
Storm:

• Shuffle:Tuples are uniformly randomly distributed
across the bolt’s tasks.

• Fields:Tuples are partitioned by a specified field.
Tuples with the same value for that field will always
go to the same task.

• Partial key:Tuples are partitioned as in fields group-
ing, but load balancing between two bolts when the
incoming data is skewed.

• All:Tuples are replicated across all the tasks.

• Global:All tuples will be sent to only one task.

• Direct:The producer decides which task of its con-
sumers will receive this tuple.

• Local or shuffle:Colocated tasks in the same worker
will do in-process shuffling. Otherwise, this acts as a
normal shuffling group.

Storm has a master-worker architecture. There are three
types of nodes in the cluster. It has a master node, which runs
a daemon called Nimbus. Nimbus uploads the user defined
topologies for execution and distributes the code across the
clusters. It launches workers and monitors and reallocate work-
ers as needed. Supervisors are supervisor daemons running on
each worker node that communicate with Nimbus and manage
workers. ZooKeeper nodes coordinate the storm cluster. All the
communications between Nimbus and Supervisors are through
the ZooKeeper nodes.

A logical topology, at the execution time, will be compiled
and transformed into a physical execution plan. On the physical
level, each worker node has a predefined number of slots

Fig. 1: A snapshot of the QMP Sants-UPC community network taken
from [6]. Axes are in km.

available to execute worker processes. Nimbus will use a
scheduler to plan the execution of tasks in the cluster. The
default scheduler of the Nimbus, using a round-robin strategy,
evenly distributes the execution plan on the available nodes.

III. COMMUNITY NETWORK CLOUD

A Community Network Cloud provides cloud services on
top of community networks. Cloud resources are provided by
the community members [1] and due to the distributed nature
of the community networks, cloud services are hosted over
multiple geographically distributed servers. There is no control
over the underlying network topology and it grows naturally
as the community grows.

In this work, we evaluate our work on the data collected
from a small part of Guifi.net [5]. We collected a data set
of the QMP Sants-UPC (Figure 1) [6] network for doing our
experiments. This network is a wireless multi-hop network. A
monitoring system collects information of nodes and links on
an hourly basis. We use the data collected in 24 hours. To
make an estimation about the quality of links, we calculate
the average bandwidth and latency of the links. We filter the
links that their monitoring information is missing. This can be
due to either a very bad quality link or they’re nodes are off.
We also rule out all the disconnected nodes. The final data set
contains 52 nodes and 112 edges. In this work, we assume
that all the nodes have enough resources to host at least one
Storm component.

IV. CORE NETWORK EMULATOR

CORE (Common Open Research Emulator) is a network
emulation tool made by NCS group in United States Naval
Research Laboratory (NRL) [7]. CORE is an open source
application based on IMUNES [8] with more features of cre-
ating virtual wireless network, distributed emulation between
physical machines, python scripting, remote API, and easy-to-
use GUI.

In CORE, users can create virtual nodes with different
roles, e.g., PCs, Servers, Routers, Hubs, and Switches. Nodes
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Fig. 2: CORE network emulator

Fig. 3: Representation of Guifi.net community network on CORE

can be connected through the links, which can be configured
to set maximum bandwidth, delay, and jitter for each way
or both. CORE’s main application runs as a daemon that
can be connected from any core-GUI located in the same
or a different machine. The daemon will create the virtual
nodes and network links inside its own machine. This feature
enables the management of multiple core-daemons located on
multiple machines. This is useful to run the emulation with
high number of nodes and links that requires load distribution
among multiple machines. Fig. 2 shows a sample emulation of
two connected data centers.In this figure, Datacenter A runs
on server named ”sky2” and Datacenter B runs on ”sky4”.
The dashed link, that connects the two data centers, is a GRE
tunnel between the two machines.

Emulation of Guifi.net community network, that is ex-
plained in section III, can be seen in Fig. 3. We use physical
connection between the virtual nodes rather than wireless net-
work because Guifi.net use directed radio wave communication
between the devices [5]. Every link is assigned a maximum
bandwidth and latency according to the data set.

V. EVALUATION

We evaluate Apache Storm in a community network in
two series of experiments. First, we evaluate how the different

Fig. 4: Storm-perf-test topology

placement of management components, namely Nimbus and
Zookeeper, on nodes of different types (with various degrees
of connectivity) effects the Storm topology scheduling time. In
the second series, we evaluate the run-time behaviour of Storm
in terms of network traffic for different tasks assignments to
different types of nodes and different types of stream grouping.

We create 52 network nodes emulated in one physical
machine (HP ProLiant DL380 server with 2 x Intel Xeon
X5660, 24 threads in total, 44GB of RAM, and 2TB of storage,
RHEL 6 OS). In evaluation experiments, the Storm topology
is based on the storm-perf-test benchmark by Yahoo [9]. The
design of the storm-perf-test topology is shown in Fig. 4.
The topology starts by a Spout (level 0) that creates dummy
tuples with the size of 500 bytes and the rate of 20 tuples per
second and sends the messages to the processing tasks (bolts)
at level 1. Each tuple is passed to the higher level bolts until
it reaches the last level specified by the user. There is a 33%
chance that a tuple is discarded on every bolt. The discard
probability is defined based on the idea that aggregation or
filtering processes are common in stream processing, where the
number of input tuples on each task is higher than the number
of output tuples. Every run in this evaluation experiment uses
the same topology.

We categorize community network nodes based on their
degree of connectivity. A node with 5 or more direct connec-
tions to other nodes is called a SuperNode; whereas a node
with less than 5 connections is called an EdgeNode. According
to our categorization, in the network considered in this study,
22 nodes are SuperNodes and 30 nodes are EdgeNodes. As
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TABLE I: Storm.yaml configuration for the experiment

Parameters Storm Default value Modified value

Worker Heartbeat frequency (s) 1 10
Worker timeout (s) 30 80
Supervisor heartbeat frequency (s) 5 20
Supervisor timeout (s) 60 150
Nimbus task timeout (s) 30 80
Nimbus monitor frequency (s) 10 40
Zookeeper session timeout (ms) 20000 50000
Zookeeper connection timeout (ms) 15000 40000

one can observe in Fig. 3, a group of multiple SuperNodes
can appear as a cluster, where nodes have high availability
and good connectivity.

A. Placement of Management components

Storm supervisors (worker nodes) and nimbus (a master
node) are tightly connected with Zookeeper that serves as
coordinator. Zookeeper continuously receives heartbeats from
worker processes, supervisors and nimbus. These heartbeats
are used to detect failures in the system and are configurable.
The default value for the parameters related to the heartbeats
are shown in Table I. We have observed that applying default
configuration, when running Storm on the QMP Sants-UPC
community network, leads to false-positive detection of fail-
ures. In other words, some worker nodes are detected as failed
nodes even though they are still healthy. Therefore, there is a
need for reconfiguration of these parameters in order to adapt
the Storm cluster to work on such heterogeneous network.
Table I shows the configuration of heartbeat parameters used
in our experiments. As it can be seen, we have increased the
timeouts for around 2.5 times of their default values. The new
configuration avoids the wrong failure detection of the nodes.
We have also decreased the heartbeat frequencies in order to
reduce the network traffic. By reducing the heartbeat rate and
increasing timeouts, it is expected to prolong the recovery time
of the system. Study on the recovery time of Storm cluster is
beyond the scope of this paper.

When a topology is submitted to Nimbus, the scheduler
inside Nimbus assigns the tasks to worker nodes. Distribution
of the tasks among the worker nodes can be different depend-
ing on the scheduler considerations. The default scheduler of
Storm is round-robin that distributes tasks evenly among the
worker nodes to achieve load balancing. In [10], the authors
propose a more sophisticated scheduler that takes into account
the Storm topology, nodes capabilities and the network traffic
when making scheduling decisions. Every scheduling process
takes an amount of time, which we call scheduling time, to
make scheduling decisions and to assign the tasks to worker
nodes. In the case of latency-critical stream processing, the
scheduling time becomes even more important as the tasks
rescheduling is considered as the system downtime (overhead).
We evaluate how the placement of the Nimbus and Zookeeper
components on the community network nodes affects the
scheduling time. The result is presented in Fig. 5.

We select two nodes out of the 52 nodes: one for Nimbus
and one for Zookeeper, and 30 nodes to be worker nodes. In
total, in each run there are 32 nodes hosting Storm components.
We give permanent locations to the worker nodes, which
are spread in the whole network, because we want to focus
only on the placement of Nimbus and Zookeeper. We run

Fig. 5: Average time until all tasks assigned to workers and acknowledged
by the Zookeeper

Fig. 6: Number of tasks running at run-time. Nimbus and Zookeeper located
on EdgeNodes

the experiment three times (Run-1,2,3) for each category of
nodes (SuperNodes and EdgeNodes). On each run, we place
Nimbus and Zookeeper on different nodes but still close (at
most two hops) to each other in order to ensure that the
high network traffic at run-time does not affect communication
between Nimbus and Zookeeper. Our evaluation shows that if
the management components are deployed on the highly con-
nected nodes (SuperNodes), the scheduling time significantly
improves by around 4 times compare to scheduling time in the
case of placing management components on the EdgeNodes.
This is because better connectivity of the SuperNodes (higher
bandwidth, shorter latency and larger number of links). If
the Nimbus and Zookeeper are placed on the EdgeNodes,
the heterogeneity of latency and bandwidth between nodes in
the network may negatively affect the speed and time of the
information distribution to the worker nodes. The effect may
get worse for the nodes with farther distance from Nimbus.

B. Worker nodes placement

Fig. 6 and Fig. 7 show a detailed view on state of the
tasks in each run for different placements of the management
components, Nimbus and Zookeeper. By default, there exists
one executor per task. The executors are considered ”Running”
after their process is created in the worker node and is
registered to Zookeeper. ”Max Executors” is the total number
of executors that should be running. Executors running in the
worker nodes with good connectivity to Zookeeper reach to the
”Running” state much faster than those executors that their
worker nodes have poor connectivity. As it can be seen in
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Fig. 7: Number of tasks running at run-time. Nimbus and Zookeeper located
on SuperNodes

Fig. 6 RUN-2, it takes even more than 140 (214) seconds for
some executors to establish connection with Zookeeper. It can
also be seen that some of the executors fail and restart during
the run-time. Therefore, the number of running executors
fluctuates during the run-time. This is more frequent when
Zookeeper and Nimbus are placed in the EdgeNodes than when
they are placed in the SuperNodes. This is due to the fact that
workers that run the executors keep losing their connections
with Zookeeper, and therefore, Nimbus considers them as dead
workers. However, as it can be seen in Fig. 7, the executors
fail rarely when the management components are hosted on
the SuperNodes.

Inside the community network, stream processing can be
used to process the data closer to the source of the data,
e.g., where sensors (temperature, humidity and etc) or logs
from different processes are accessible through the community
network nodes. Assuming that we know on which nodes
sources of the data are located, our idea is to allocate the
Storm topology tasks on those nodes. This concept is a bit
different from the data center stream processing deployment
where the data sources from different places are usually pooled
into a message broker system such as Kafka [11] or non-SQL
databases such as HBase [12], Cassandra [13].

From 52 nodes available in the emulation, we choose 29
nodes randomly to serve as worker nodes and 2 SuperNodes
for Nimbus and Zookeeper. In contrast to the first experiment,
in this experiment, the placement of Nimbus and Zookeeper
is static. Each worker nodes have a single spout task that
generates the tuples, to emulate the distributed sources. We
create 10 bolts on each topology level and deploy them based
on two types of placements: random placement and a cluster
of SuperNodes. In each placement, there are 10 nodes with
collocated spout and bolt tasks, and 19 nodes with only spout
tasks. For the SuperNodes cluster, the group of 10 SuperNodes
with high connectivity between each other have been chosen to
form the cluster. In this experiment, we measure the amount of
inout network traffic in each of 52 nodes using the ifstat utility.
This information allows to quantify how the stream processing
effects the whole community network, not only nodes that host
the Storm cluster. Fig. 8 shows the average network traffic for
different placements of bolts. Bolts placed in the SuperNodes
cluster generate 30% less traffic compare to the amount of
traffic generated by bolts placed randomly. This is because the
network traffic generated by Storm in the SuperNodes cluster
configuration is mostly circulated within the cluster; whereas
in the configuration with randomly placed bolts, the tuples
need to travel more number of hops between bolts.

Fig. 8: Average nodes traffic for different Bolt placement scenario

Fig. 9: Average nodes traffic for Shuffle and Local grouping. Bolt tasks only
assigned on Cluster of SuperNodes

Fig. 10: Average nodes traffic for Shuffle and Local grouping. Bolt tasks
assigned randomly between the available worker nodes

Other interesting thing to explore is to see the effect of
using different types of Storm stream grouping (described
in Section II) on the amount of network traffic generated
by Storm in the community network. In this experiment, we
compare two types of Storm stream groupings, namely, the
default shuffle grouping and the local-or-shuffle grouping. As
one can see in Fig. 9 and Fig. 10, for each of two studied
configurations (a SuperNodes cluster and a cluster of randomly
selected nodes) apparently there is no significant difference
in the amount of network traffic between shuffle and local-
or-shuffle groupings. This is because the number of bolts is
lower (around 1

3 ) than the number of spouts. Therefore, there
are few bolts that are collocated with the spouts and in most of
the cases local-or-shuffle grouping behaves similar as shuffle
grouping.

VI. GUIDELINES FOR THE DEPLOYMENT OF APACHE

STORM IN A COMMUNITY NETWORK

In order to deploy the Apache Storm stream processing
system in a community network, we need to consider the
situation of running stream processing on distributed nodes
with imperfect connectivity, rather than in a well-connected
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data center. In this situation, as our evaluation has shown,
placement of Storm components on distributed nodes is very
important as it affect the amount of network traffic, and as a
consequence, the stream processing performance. There are a
number of issues to be considered when deploying Storm in a
community network.

First issue is the heterogeneity of the latency and bandwidth
between the nodes. A node with good computation power
could perform very poorly if it has poor/imperfect connectivity
with other nodes. There is a need to carefully position the
Storm management components, Nimbus and Zookeeper, in
the network on those nodes that have good connectivity with
the nodes, which will serve as Storm worker nodes. The
user also has to properly specify the Storm configuration
parameters (shown in Table I) related to failure detection
and fault tolerance, such as Worker heartbeat frequency and
timeout, taking into account that Storm will operate in an
inhospitable environment such as a community network with
unreliable and heterogeneous nodes and links. Specifically, the
values of all the parameters should be enlarged, as shown
in Table I in order to prevent false-positive failure detection
caused mostly by poor connectivity rather than node failures.
The false-positive failure detection has negative impact on
the system performance because it manifests task failures and
requires restarting of tasks that actually did not fail. However,
the values of the parameters should not be set too high in order
to reduce the downtime in the case of actual failures.

Another important issue to be considered when deploying
Storm in a community network is the topology of spouts
(stream sources) and bolts (processing units). Spouts might
be spread all over the community network, therefore it is
important with respect to the system performance to achieve
a good locality of bolts and spouts, i.e., to place bolts in
close proximity to spouts in order to reduce network traffic,
especially, if the links are heterogeneous and unreliable.

In this context, one important parameter is parallelism
factor that defines the number of bolts and spouts assigned to
the workers. The parallelism factor is mostly used to be able
to cope up with the high data rates. When deploying Storm
in the community network as explained in the Section V-B,
the parallelism factor becomes important also with respect to
location of spouts (data sources) because spouts are spread all
over the network. If we try to distribute the bolts and spouts
as close as possible to location of the data sources, we should
consider the balance between the number of the bolt and spout
tasks. If the parallelism factor for bolts is equal or close to the
parallelism factor for spouts when using the local-or-shuffle
grouping, more data can be processed locally to reduce the
network traffic. On the other side, if the parallelism factor of
bolts is less than the parallelism factor of spouts, then stream
processing consumes less compute resources; however, the
positioning of the bolts becomes important to reduce the inter-
node communication. The Storm scheduler should find best
nodes with good connectivity and betweenness centrality value
based on the location of the spouts. Design of a new Storm
scheduler, research on stream grouping as well as investigation
on other Storm stream grouping such as field grouping, are
subjects to our future work.

VII. CONCLUSION

In order to deploy a stream processing system, such as
Apache Storm, in a community network, we need to consider
the situation of stream processing on inhospitable environment
of a community network with heterogeneous nodes and imper-
fect connectivity, rather than in a well-connected data center.
Heterogeneity of the network bandwidth and latency in the
community network raises an extra challenge in running the
system smoothly. Default values of the heartbeat parameters
need to be revised (enlarged) in order to prevent false-positive
failure detection and, as a consequence, to decrease the down-
time and to improve performance. The placement of the Storm
components as well as tasks is important to reduce the traffic
in the system. Our evaluation shows that the default stream
grouping methods, namely, Shuffle and Local groupings, have
similar results on network usage.

It is an open problem to make the Storm scheduler and
stream groupings aware of the network topology, in order to
provide optimal placement of spouts and bolts in the commu-
nity network so that the traffic and inter-node communication
are reduced. This is a subject for our future work.
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