Self-Management for Large Scale Distributed **Systems**

Ahmad Al-Shishtawy (ahmadas@kth.se)

Advisors: Vladimir Vlassov (vladv@kth.se)

Seif Haridi (seif@sics.se)

KTH Royal Institute of Technology Stockholm, Sweden

The 5th EuroSys Doctoral Workshop (EuroDW 2011) April 10, 2011

Swedish Science

・ロト ・四ト ・ヨト ・ヨト

- 2

Outline

Introduction

Introduction

Niche Platform Robust Management Elements Future Work The Problem Autonomic Computing The Goal

Outline

- 2 Niche Platform
- 8 Robust Management Elements
- 4 Future Work

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

The Problem Autonomic Computing The Goal

Dealing with Complexity

Problem

All computing systems need to be managed

2

<ロト < 四ト < 三ト < 三ト

The Problem Autonomic Computing The Goal

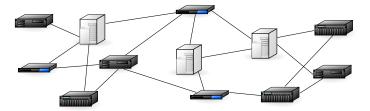
Dealing with Complexity

Problem

All computing systems need to be managed

3

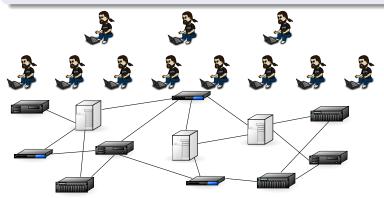
<ロト < 四ト < 三ト < 三ト


The Problem Autonomic Computing The Goal

Dealing with Complexity

Problem

Computing systems are getting more and more complex

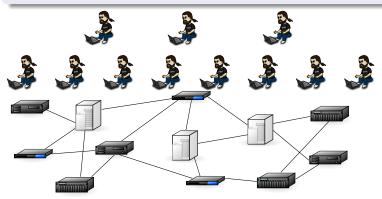


The Problem Autonomic Computing The Goal

Dealing with Complexity

Problem

Complexity means higher administration overheads

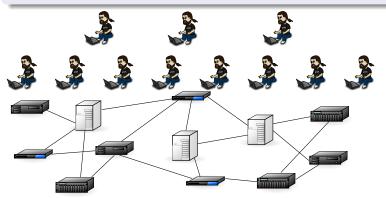


The Problem Autonomic Computing The Goal

Dealing with Complexity

Problem

Complexity poses a barrier on further development

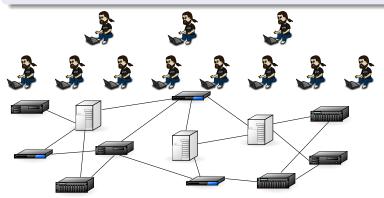


The Problem Autonomic Computing The Goal

Dealing with Complexity

Solution

The Autonomic Computing initiative by IBM

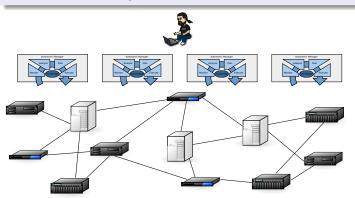


The Problem Autonomic Computing The Goal

Dealing with Complexity

Solution

Self-Management: Systems capable of managing themselves

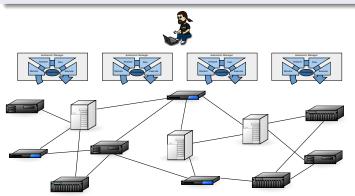


The Problem Autonomic Computing The Goal

Dealing with Complexity

Solution

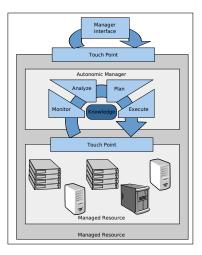
Use Autonomic Managers



The Problem Autonomic Computing The Goal

Dealing with Complexity

Open Question


How to achieve Self-Management?

The Problem Autonomic Computing The Goal

The Autonomic Computing Architecture

- Managed Resource
- Touchpoint (Sensors & Actuators)
- Autonomic Manager
 - Monitor
 - Analyze
 - Plan
 - Execute
- Knowledge Source
- Communication
- Manager Interface

Introduction

Niche Platform Robust Management Elements Future Work The Problem Autonomic Computing The Goal

The Goal

Large-scale distributed systems

- Complex and require self-management
- May run on unreliable resources
- Major sources of complexity:
 - Scale (resources, events, users, ...)
 - Dynamism (resource churn, load changes, ...)

Goal

- A platform (concepts, abstractions, algorithms...) that facilitates development of self-managing applications in large-scale and/or dynamic distributed environment.
- A methodology that help us to achieve self-management.

Introduction

Niche Platform Robust Management Elements Future Work The Problem Autonomic Computing The Goal

The Goal

Large-scale distributed systems

- Complex and require self-management
- May run on unreliable resources
- Major sources of complexity:
 - Scale (resources, events, users, ...)
 - Dynamism (resource churn, load changes, ...)

Goal

- A platform (concepts, abstractions, algorithms...) that facilitates development of self-managing applications in large-scale and/or dynamic distributed environment.
- A methodology that help us to achieve self-management.

The Problem Autonomic Computing The Goal

Research Plan

Self-Management in large-scale distributed systems. Consists of four main parts:

- Part 1: Touchpoints and feedback loops in distributed systems
- Part 2: Robust Management
- Part 3: Improve management logic
- Part 4: Integrate previous parts in a self-managing system.

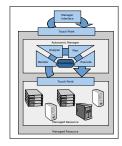
< ロ > < 同 > < 回 > < 回 > < 回 >

Niche Platform Robust Management Elements Future Work liche Overview Management Part Runtime Environment

Outline

3 Robust Management Elements

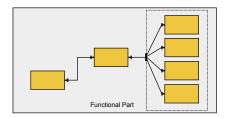
4 Future Work


(日)

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

Niche Overview Management Part Runtime Environment

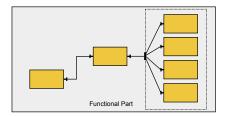
Niche


- Niche is a Distributed Component Management System
- Niche implements the Autonomic Computing Architecture for large-scale distributed environment
- Niche leverages Structured Overlay Networks for communication and for provisioning of basic services (DHT, Publish/Subscribe, Groups, etc.)

Niche Overview Management Part Runtime Environment

Management Part

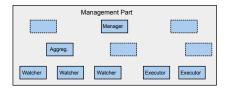
- Management Elements
 - Watchers
 - Aggregators
 - Managers
 - Executors
- Communicate through events
- Publish/Subscribe
- Autonomic Managers (control loops) built as network of MEs
- Sensors and Actuators for components and groups
- Actuation API

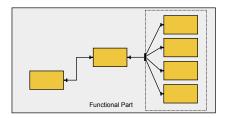


Niche Overview Management Part Runtime Environment

Management Part

- Management Elements
 - Watchers
 - Aggregators
 - Managers
 - Executors
- Communicate through events
- Publish/Subscribe
- Autonomic Managers (control loops) built as network of MEs
- Sensors and Actuators for components and groups
- Actuation API

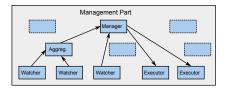


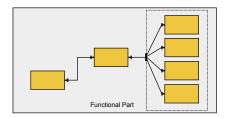


Niche Overview Management Part Runtime Environment

Management Part

- Management Elements
 - Watchers
 - Aggregators
 - Managers
 - Executors
- Communicate through events
- Publish/Subscribe
- Autonomic Managers (control loops) built as network of MEs
- Sensors and Actuators for components and groups
- Actuation API

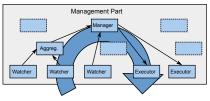


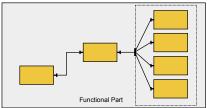


Niche Overview Management Part Runtime Environment

Management Part

- Management Elements
 - Watchers
 - Aggregators
 - Managers
 - Executors
- Communicate through events
- Publish/Subscribe
- Autonomic Managers (control loops) built as network of MEs
- Sensors and Actuators for components and groups
- Actuation API

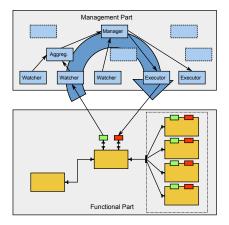




Niche Overview Management Part Runtime Environment

Management Part

- Management Elements
 - Watchers
 - Aggregators
 - Managers
 - Executors
- Communicate through events
- Publish/Subscribe
- Autonomic Managers (control loops) built as network of MEs
- Sensors and Actuators for components and groups
- Actuation API



Niche Overview Management Part Runtime Environment

Management Part

- Management Elements
 - Watchers
 - Aggregators
 - Managers
 - Executors
- Communicate through events
- Publish/Subscribe
- Autonomic Managers (control loops) built as network of MEs
- Sensors and Actuators for components and groups
- Actuation API

Niche Overview Management Part Runtime Environment

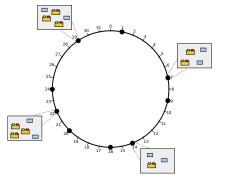
Runtime Environment

- Containers that host components and MEs
- Use a Structured Overlay Network for communication
- Provide overlay services

Niche Overview Management Part Runtime Environment

Runtime Environment

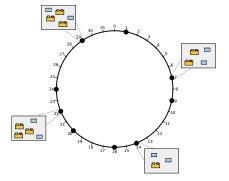
- Containers that host components and MEs
- Use a Structured Overlay Network for communication
- Provide overlay services



Niche Overview Management Part Runtime Environment

Runtime Environment

- Containers that host components and MEs
- Use a Structured Overlay Network for communication
- Provide overlay services

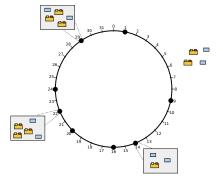


Niche Overview Management Part Runtime Environment

Dealing with Resource Churn

How to deal with failures?

- MEs heal the functional part
- How to heal failed MEs?
 - Programmatically in the management logic
 - Transparently by the platform

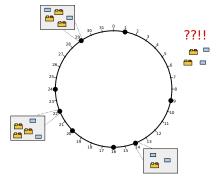


Niche Overview Management Part Runtime Environment

Dealing with Resource Churn

How to deal with failures?

- MEs heal the functional part
- How to heal failed MEs?
 - Programmatically in the management logic
 - Transparently by the platform



Niche Overview Management Part Runtime Environment

Dealing with Resource Churn

How to deal with failures?

- MEs heal the functional part
- How to heal failed MEs?
 - Programmatically in the management logic
 - Transparently by the platform

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Outline

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Robust Management Elements

A Robust Management Element (RME):

- is replicated to ensure fault-tolerance
- tolerates continuous churn by automatically restoring failed replicas on other nodes
- maintains its state consistent among replicas
- provides its service with minimal disruption in spite of resource churn (high availability)
- is location transparent, i.e., RME clients communicate with it regardless of current location of its replicas

(4間) (4 注) (4 注)

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Robust Management Elements

A Robust Management Element (RME):

- is replicated to ensure fault-tolerance
- tolerates continuous churn by automatically restoring failed replicas on other nodes
- maintains its state consistent among replicas
- provides its service with minimal disruption in spite of resource churn (high availability)
- is location transparent, i.e., RME clients communicate with it regardless of current location of its replicas

(4間) (4 注) (4 注)

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Robust Management Elements

- A Robust Management Element (RME):
 - is replicated to ensure fault-tolerance
 - tolerates continuous churn by automatically restoring failed replicas on other nodes
 - maintains its state consistent among replicas
 - provides its service with minimal disruption in spite of resource churn (high availability)
 - is location transparent, i.e., RME clients communicate with it regardless of current location of its replicas

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Robust Management Elements

- A Robust Management Element (RME):
 - is replicated to ensure fault-tolerance
 - tolerates continuous churn by automatically restoring failed replicas on other nodes
 - maintains its state consistent among replicas
 - provides its service with minimal disruption in spite of resource churn (high availability)
 - is location transparent, i.e., RME clients communicate with it regardless of current location of its replicas

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Robust Management Elements

A Robust Management Element (RME):

- is replicated to ensure fault-tolerance
- tolerates continuous churn by automatically restoring failed replicas on other nodes
- maintains its state consistent among replicas
- provides its service with minimal disruption in spite of resource churn (high availability)
- is location transparent, i.e., RME clients communicate with it regardless of current location of its replicas

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Robust Management Elements

A Robust Management Element (RME):

- is replicated to ensure fault-tolerance
- tolerates continuous churn by automatically restoring failed replicas on other nodes
- maintains its state consistent among replicas
- provides its service with minimal disruption in spite of resource churn (high availability)
- is location transparent, i.e., RME clients communicate with it regardless of current location of its replicas

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Solution Outline

• Replicated state machine

- An algorithm to reconfigure the replicated state machine. (We used the SMART algorithm)
- Our decentralized algorithm to automate reconfiguration

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Solution Outline

- Replicated state machine
- An algorithm to reconfigure the replicated state machine. (We used the SMART algorithm)
- Our decentralized algorithm to automate reconfiguration

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Solution Outline

- Replicated state machine
- An algorithm to reconfigure the replicated state machine. (We used the SMART algorithm)
- Our decentralized algorithm to automate reconfiguration

< < >> < </p>

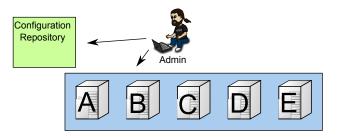
Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

SMART

Э.

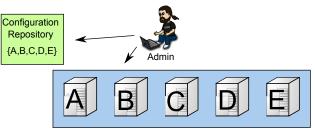
Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

SMART



2

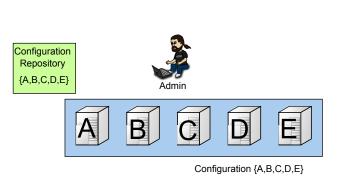
Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation


SMART

Э.

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

SMART

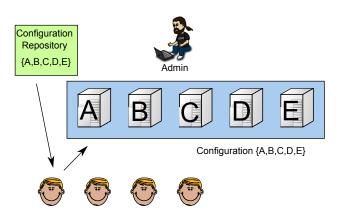

Configuration {A,B,C,D,E}

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)

2

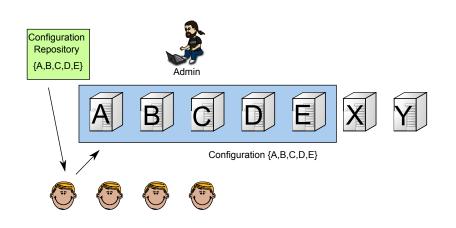
Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

SMART



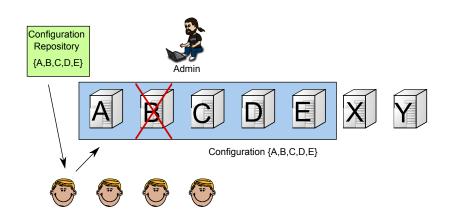
2

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation


SMART

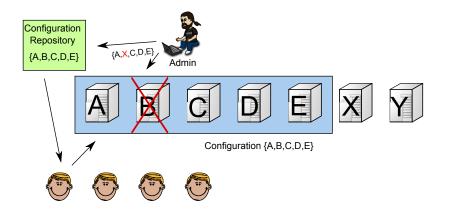
2

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation


SMART

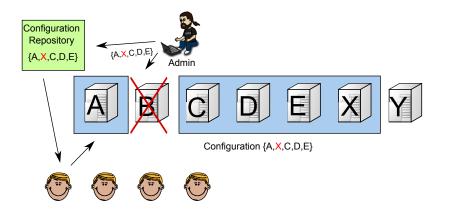
2

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation


SMART

2

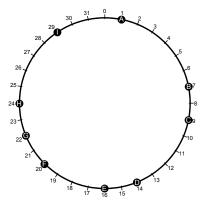
Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation


SMART

2

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

SMART

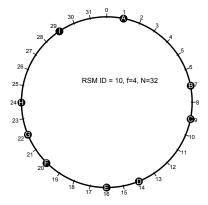

2

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

-

Creating a Replicated State Machine (RSM)

Any node can create a RSM. Select ID and replication degree

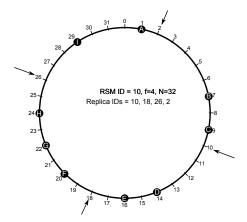


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

-

Creating a Replicated State Machine (RSM)

Any node can create a RSM. Select ID and replication degree

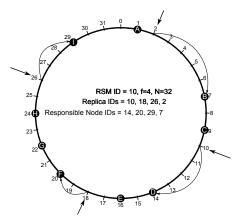

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

< A

-

Creating a Replicated State Machine (RSM)

The node uses symmetric replication scheme to calculate replica IDs

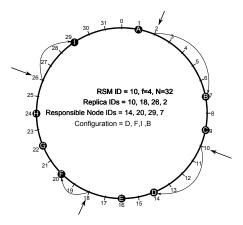


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

< □ > < □ > < □ > < □ >

Creating a Replicated State Machine (RSM)

The node uses lookups to find responsible nodes ...

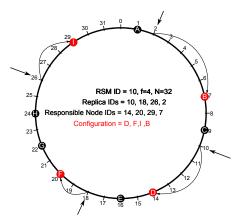


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Creating a Replicated State Machine (RSM)

... and gets direct references to them

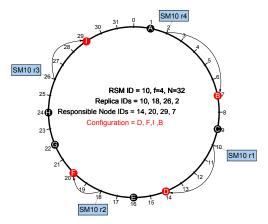


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

< □ > < □ > < □ > < □ >

Creating a Replicated State Machine (RSM)

The set of direct references forms the configuration



Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Creating a Replicated State Machine (RSM)

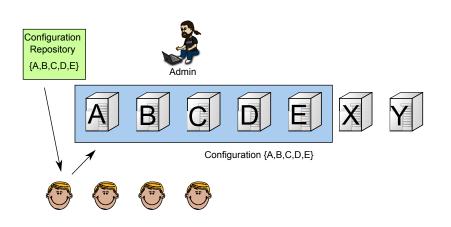
The node sends a Create message to the configuration

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

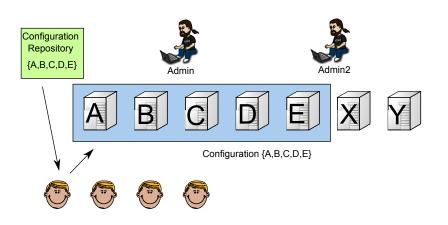
Creating a Replicated State Machine (RSM)

Now replicas communicate directly using the configuration

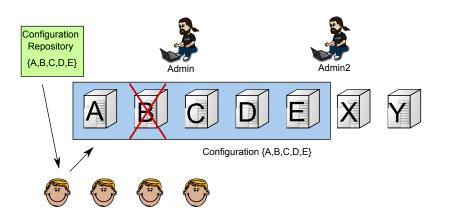
SM10 r4


Configuration_1	D	F	Т	В
	1	2	3	4

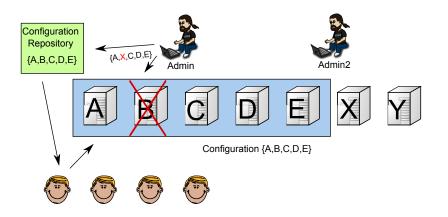
SM10 r1


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

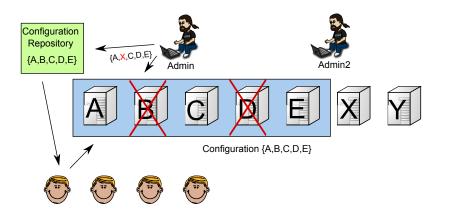
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

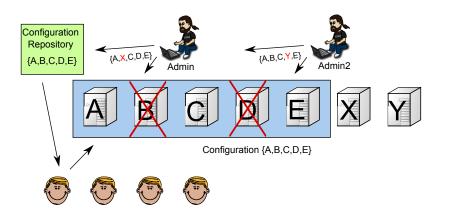
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

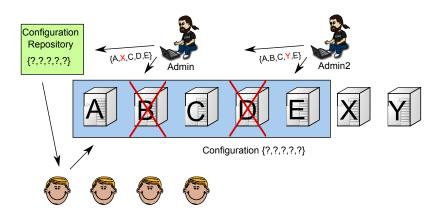
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

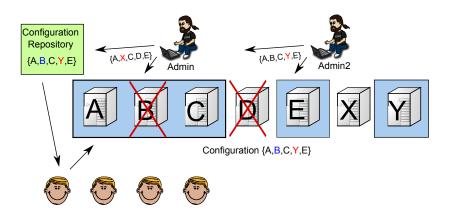
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

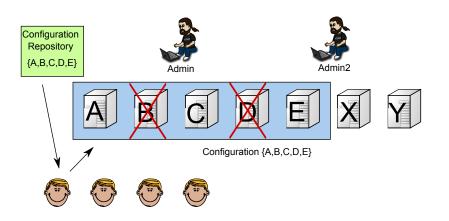
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

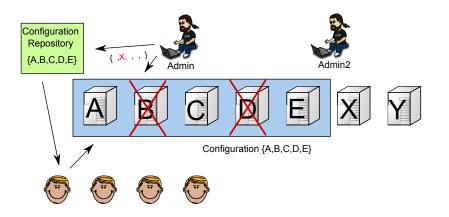
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

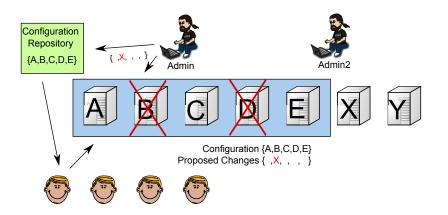
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

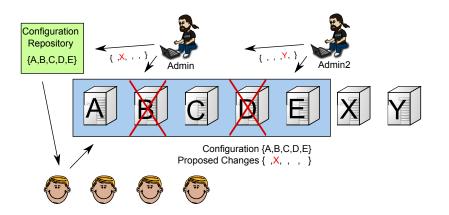
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

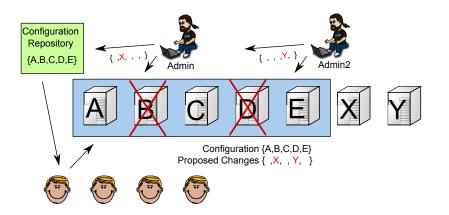
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

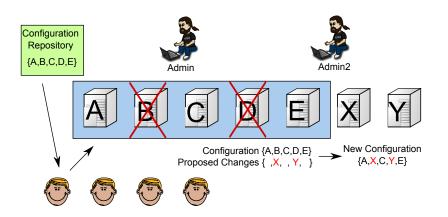
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

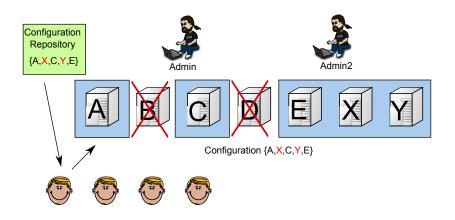
SMART with Multiple Admins


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

SMART with Multiple Admins

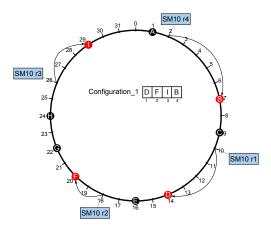

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

SMART with Multiple Admins

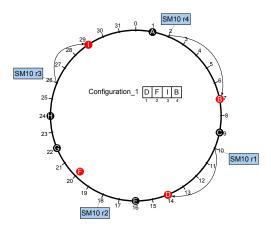

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

SMART with Multiple Admins

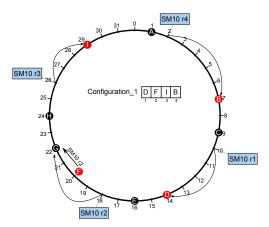
Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation


SMART with Multiple Admins

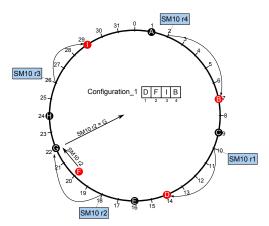
<ロト < 四ト < 三ト < 三ト


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

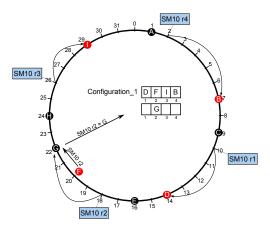
Handling Churn


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

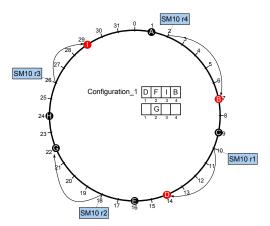
Handling Churn


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

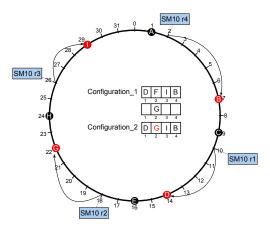
Handling Churn


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Handling Churn


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

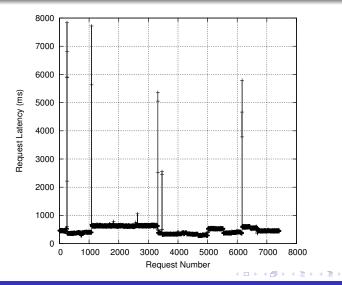
Handling Churn


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Handling Churn

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Handling Churn


Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Evaluation

- Built a prototype implementation of RME
- Simulation-based performance evaluation
- Focused on the effect of the churn rate and replication degree on request critical path and failure recovery
- Used the King latency dataset

Solution Outline The SMART Reconfiguration Algorithm Automatic Reconfiguration Evaluation

Request latency for a single client

Outline

2 Niche Platform

3 Robust Management Elements

Improve Management Logic

- Apply control theory to distributed systems
- Distributed optimization
- Reinforcement Learning

イロト イポト イヨト イヨ

Self-Management in Cloud Applications

- Study elastic services in the Cloud
- Develop self-management techniques for Cloud applications
- Integrate all pieces into an elastic storage system

Thank you for careful listening :-)

Questions?

Self-Management for Large Scale Distributed Systems (A. Al-Shishtawy)