
THE ROLE OF OVERLAY SERVICES IN
A SELF-MANAGING FRAMEWORK FOR
DYNAMIC VIRTUAL ORGANIZATIONS

Per Brand, Joel Höglund and Konstantin Popov
SICS, Sweden

{perbrand,joel,kost}@sics.se

Noel de Palma, Fabienne Boyer and Nikos Parlavantzas
INRIA, France

{noel.depalma,fabienne.boyer,nikolaos.parlavantzas}@inrialpes.fr

Vladimir Vlassov and Ahmad Al-Shishtawy
KTH, Sweden

{vladv,ahmadas}@kth.se

Abstract We combine and extend recent results in autonomic computing and structured
peer-to-peer to build an infrastructure for constructing and managing dynamic vir-
tual organizations. The paper focuses on the middle layer of the proposed infras-
tructure, in-between the Niche overlay system on the bottom, and an architecture-
based management system based on Jade on the top. The middle layer, the overlay
services, are responsible for all sensing and actuation carried out by the VO man-
agement. We describe in detail the API of the resource and component overlay
services both on the management node and the client node side. We present
a simple use case demonstrating resource discovery, initial deployment, self-
configuration as a result of resource availability change, self-healing, self-tuning
and self-protection. The advantages of the design are 1) the overlay services
are in themselves self-managing, and sensor/actuation services they provide are
robust, 2) management can be dealt with declaratively and at a high-level, and 3)
the overlay services provide good scalability in dynamic VOs.

1. Introduction

The context of this work is the effort to combine, integrate and extend re-
cent results in autonomic computing with structured peer-to-peer systems. The
ultimate goal is to build an infrastructure for constructing and managing dy-



2

namic collaborative virtual organizations (VOs) for resource sharing. This
paper focuses on the middle layer of this infrastructure, a number of vital VO-
management services. We outline the design of these overlay services, and
describe in detail two of them. We also briefly show how these services in-
terface with high-level management functions and the underlying structured
peer-to-peer system.

The dynamic VOs that we target are Internet-based. The dynamism is along
two dimensions, churn and evolution. Churn means that the identities of the
individual members of the VO and the resources that they bring into the VO are
constantly changing. Under churn only, the totality of resources and members
remains the same. Evolution means that the number or amount of resources
and members also changes. There are also aspects of both churn and evolution
regarding the types and usage of services that the VO is running and VO policies.

Self-management (or autonomic computing) is actively pursued as human
system administration is expensive, error-prone, and often non-optimal. There
is a considerable body of work in this area, and some progress has been made. In
dynamic VOs with high rates of churn and evolution self-management becomes
crucial. The overlay services enable self-management of the VO.

The infrastructure for managing dynamic VOs can be split into three layers.
The topmost layer, the management policy/logic layer, consists of high-level
management functions and tools. This let VO managers set appropriate poli-
cies for applications and services that are run in the VO. This includes aspects
of application configuration, healing, and tuning, as well as policies that pri-
oritize between applications/services upon resource contention. The bottom-
most layer is a self-organizing overlay network called Niche that connects all
machines/resources in the VO. Niche is based on a DHT, and includes a pub-
lish/subscribe service. The middle layer, the overlay services are the focus of
this paper. They provide VO management services such as discovery, resource
monitoring, member monitoring, and deployment of components.

The paper is organized as follows. First we describe VO management. Then
we give a high-level description of the architecture. Thereafter, in a bottom-up
fashion, we describe the three layers, beginning with Niche, followed by the
overlay services and finally the management policy/logic level. Only the overlay
services are described in detail. We then present a simple use case, involving
deploying an application and instrumenting appropriate self-* policies. The
use case concentrates on the interaction between the overlay services and the
management logic. Finally, we conclude and relate to other work.

2. VO Management

Within the framework set by VO policy, members provide resources and
services to the VO. VO management monitors, aggregates, presents and controls



Overlay Services for Dynamic VOs 3

these resources and services to/for the VO members. Services are also created
within the VO making use of the aggregated resources. The VO management
is thus responsible for deploying and managing applications that make use of
aggregated computation and/or storage facilities. Managing these applications,
presented to members as services, in the face of churn will require frequent
management interventions. We can divide the concerns of VO management
into management of four different kinds of entities.

Resources here are defined as that which members bring into the VO. It
represents such basic things as computation power and data storage. The VO
must be able to aggregate resources upon need.

Components here are defined as the constituent parts of services that are
created in the VO by utilization of aggregated resources. The VO may deploy a
distributed application consisting of several components on a number of member
machines and then maintains the application in the face of individual machine
failure or disconnection. ’Components’ are used here in a generic sense, and
could include, for instance, storage ’components’ used in constructing a data
repository service.

Members come and go. Policy dictates the type of member roles that exist
within the VO. With a given role there are both obligations and privileges, and
it is part of monitoring to check that members meet their obligations.

Services: The VO management ensures that the services provided by the VO
are made available in such a way to allow members to discover and use them.

We illustrate the four kinds of entities as follows: member M joins a VO
and provides the resource R during certain hours. The VO makes use of the
resource R and deploys some component C on R as part of an application A. It
also publishes and wraps A so that other members can discover and use A.

3. Architecture

3.1 Management Logic

Our approach to self-management for dynamic VOs is the architecture-based
control one and based on earlier work on the Fractal component model and the
Jade management system [4]. Our system has one or more manager components
that are continuously monitoring (through sensors) and controlling (via actu-
ators) the VO in a feedback loop in accordance with high-level policies/goals
and system administration input. Self-management includes self-healing, self-
tuning, self-configuration, and self-protection.

The control approach of management distinguishing between three aspects
of management:

Sensing: the ability to sense or observe the state of system and system
elements. In general observation may be active (triggered by the observer)
or passive (triggered by the element).



4

Actuation: the ability to control and affect the system elements.
Decision: the logic that given knowledge of the system elements (provided
by sensing) decides on actions (done by actuation) to ensure proper operation
of the system. This ranges from simple rules to sophisticated AI techniques.

An architecture description language (ADL) is used to specify declaratively the
initial deployment and simple self-configuration and self-healing behaviours of
the system. Architectures are specified in terms of components and bindings.
Component descriptions include requirements and preferences for resources
necessary for deployment of the component. Component descriptions state
also component properties crucial for management logic, such as whether the
component’s state can be extracted into a data structure.

Other self-* behaviours are specified in terms of events and handlers and
abstractions thereof. Events reflect status changes in the VO, such as availability
of resources, and status changes of application components, such as failures.
Event handlers evaluate the status of the application and the environment and
can replace, add and remove application components and bindings.

The high-level ADL descriptions are compiled into the low-level manage-
ment logic assembler that utilizes the VO-management overlay services. While
the ADL descriptions refer to architecture-level notions, the assembler code
works with mutable references to low-level entities such as resource and com-
ponent handlers, entity and VO status watchers, and stateful event handlers.

3.2 Overlay Services

The overlay services are primarily sensor and actuation services and also
provide the infrastructure for delegation of management logic. All nodes in the
system are ’known’ to the sensor and actuating services and are part of the same
overlay. When nodes enter or leave the system they join/leave the overlay. When
resources join/leave the system they report this to their local overlay proxy, an
action that may lead to a management action as some management rule is
triggered. Resources are also monitored for failures. An actuating command
such as deploying a component on a given resource will eventually reach the
correct node and trigger over the client API the appropriate deployment.

The figure on the left shows the system architecture at management nodes.
The management logic senses and actuates through the three overlay services
through well-specified management APIs.

1. Resource sensor and actuator service
2. Component/service sensor and actuator service
3. Member sensor and actuator service
The three services are reflected in three front-end subsystems that perform

only a small amount of computation, packaging and bookkeeping. Communi-
cation with other nodes takes place exclusively in the Niche layer.



Overlay Services for Dynamic VOs 5

Figure 1. System Architecture and the Use Case.

The figure on the right shows the system architecture at client nodes. The
client logic component interacts with the three overlay services through the
client API interfaces. The container contains those resources and components
that are allocated/located on the local machine on behalf of the VO. Examples
of interactions that take place along the interface between the client logic and
the overlay services are 1) notifications of resources joining and leaving the VO
as the owning members withdraws and add resources to the VO and 2) com-
ponents communicating via bindings with other components currently residing
on remote nodes. A physical node may be both a manager and a client, or a
client only representing that it has no management privileges whatsoever.

4. Niche

Overlay services described in this paper exploit the Distributed K-ary System
(DKS) [1, 3]middleware and its extension called Niche. DKS has a circular
identifier space, similarly to Chord [17]. Each node is responsible for IDs in
the interval between its own ID and the ID of its predecessor. A message sent
to a DKS ID is received by the node responsible for that ID.

DKS self-organizes itself as nodes join, leave and fail. The join and leave
operations are locally atomic. Symmetric replication [10]distributes replicas
symmetrically among DKS nodes and enables concurrent requests improving
efficiency and fault-tolerance. DKS provides broadcast and multicast [2, 8].

Niche extends the DKS and provides in particular the “set of network refer-
ences” abstraction, SNR hereafter. A SNR keeps a set of references to abstract
entities. Individual references in a SNR can be accessed by their SNR-specific
IDs. References to entities can be updated. SNR assumes that clients that



6

receive out-of-date references as a result of a concurrent read operation can
recognize the problem. For example, if the entity represents a component that
is relocated to another node, an attempt to access the previous location of the
component will result with an “out-of-date reference” error. Concurrent reads
and updates can be also controlled with a conditional update operation that
proceeds only if the reference supplied as an additional parameter is equal to
the reference currently held in the SNR.

A SNR also monitors the status of its entities and can notify clients that are
subscribed to entity status updates. SNR entities can communicate their status to
SNR, either by “status polling” by the SNR or by asynchronous messages sent to
SNR. SNR failure monitoring of resources is polling-based, using existing DKS
functionality. Resource status updates such as resource leaves is communicated
to the SNR using messages.

SNRs are reliable and scalable using replication. Sets of references are
identified by Niche IDs. Each SNR set element contains the reference ID and
the reference itself. A SNR contains also a possibly empty set of references
to Niche entities that are subscribed for reference status updates. This set
of subscriptions is shared by all references in the SNR. SNRs are stored on
Niche nodes responsible for their set IDs. SNRs are replicated on a number
of consecutive Niche nodes starting from the primary replica. When a primary
replica for a SNR ID fails or leaves, the next replica automatically becomes
Niche-responsible for the ID and thus becomes the new primary replica.

5. Overlay Services

The management logic assembler can be divided into categories of instruc-
tions based on their place in the management feedback loop.
Events: Sensing is realized through events.
Sensor installation: This instruments the sensing, which can be seen as publish
directives. Discovery operations and watchers belong here, where management
asks the overlay services to find resources (active sensing) or monitor specific
entities (passive sensing), respectively. Information on entities will only be
available if there are watchers installed.
Triggers: This is an actuating part of the management logic whereby a com-
mand is sent to a specific entity or groups of entities.
Activation of event handlers: Activating an event handler may be seen as a
subscription. Event handlers can be created and/or stopped. For one event there
may be more than one event handler, which may be triggered in arbitrary order.



Overlay Services for Dynamic VOs 7

5.1 Management API

In the following section the management API is described in an abstract
form. We describe the more important functions of the resource and component
overlay services and all operations used in the use case section.

We use VO-wide identifiers for resources, components, watchers, bindings
and groups. Futures are used to simplify data-flow dependencies. When cre-
ated, a future represents an unknown value which will be instantiated, which
allows waiting for that value. For most futures a failure indication is a possible
value. Futures are identified by a capital F in the variable name.

Sensor Installation wid:discoverResource(req, compare, tCompare, class, curRes)

widF:watchComponent(cid, compParam, compare, tCompare)
widF:watchResource(rid, resParam, compare, tCompare)

stopWatcher(wid)

These instructions install sensors which will continuously report about re-
sources matching given requirements or component and resource changes spec-
ified by parameters. For a sensor to report a change, the change has to be sig-
nificant, as calculated by the given compare-function, and a threshold function
tCompare that determines if a resource is sufficiently better than curRes.

Triggers aridF:allocate(rid, specification)

boolF:deallocate(arid)
cidF:deploy(component, arid)

fcidF:passivate(cidA)

fcidF:checkpoint(cidA)

boolF:start(cid)
gcidF:group(listOfComponentIds)

boolF:addToGroup(gid, cid)
bidF:bind(cid, gcid, bindDescS, bindDescD, type)

boolF:unbind(bid)
rid:oneShotResourceDiscover(req, compare)

The deploy trigger is overloaded. The argument can be code, a checkpoint,
url, etc. The data associated with passivation is stored in Niche under fcidF.
Bindings are assumed to be unidirectional and asynchronous. If needed, binding
descriptions for the sending and delivering side give additional information to
connect the components.

Events resourceReport(wid, oldState, newState)

componentReport(wid, componentParam, oldValue, newValue)

discoveryReport(wid, rid, resourceDescription)

Resource and component report correspond to watch subscriptions, while
discovery report corresponds to discoverResource subscriptions. They are gen-
erated if the change has triggered the initially given threshold function.

Event Handlers upon event eventName(wid, es) with <attributes> do

activateEventHandler(rule, wid, initAttributes)
passivateEventHandler(rule, wid)

The event handler is triggered by an exact match on both the event name, and
the value of the id, wid. Es represents parameters given in the event, attributes
represents parameters given when instantiating the event handler.



8

5.2 Client Side API

The client side of the API works with local ids. The sensor and actuator
services will do the conversion between local and global ids.

Downcalls, Initiated by Client Logic Layer resourceJoin(lrid, description)

resourceLeave(lrid)
componentChange(lcid, description)
send(lbid, Object)

The information generated by resource join can trigger resourceReport(s) or
be found through discoverResource calls. The leave and change calls generates
resource and component reports, if there are subscribers. Send is used when
component make calls on established bindings.

Upcalls Initiated by Overlay Services result:allocate(lrid, description)

result:deallocate(lrid)
lcid:deploy(lrid, componentDescription)

bool:undeploy(lcid)
data:passivate(lcid)

lbid:bind(lcid, description)

bool:unbind(lbid)
lwid:watchComponent(lcid, eventDescriptions)
state:pollComponentState(lcid)

deliver(lbid, Object)

The allocate operation might consume the entire resource or just a part, in
which case a new rid is given for the allocated part, while the old rid refers
to the free remainder. The deallocate operation might return an instruction to
merge two chunks of a previously split resource, or they might remain split.

6. Use Case

We demonstrate the use of the management overlay services with an appli-
cation that consists of a single master component and multiple worker com-
ponents. The master divides a computational task into independent subtasks,
delivers each subtask to a random worker for processing, and collects and col-
lates the results.

6.1 ADL Specification
definition MasterWorkerApplication
component Master
content = MasterImpl;
resourceSpecs requirements = "OS=Linux and MemorySize>4GB", preferences = "MemorySize";
componentAttributes stateful,serializeable;

component Workers
content = WorkerImpl;
cardinality = 3;
resourceSpecs requirements = "CPUSpeed>3GHz", preferences = "CPUSpeed";
componentAttributes stateless;

binding B1
client = Master.OutputInterface; server = Worker.InputInterface; type = any

A tool maps the ADL description to manager assembly code. This code
contains invocations to the overlay services via the management API, as shown



Overlay Services for Dynamic VOs 9

in Section 6.2. The binding element of type “any” causes the invocations to be
delivered to a single, random group member.

The management code for self-configuration and self-healing does not change
the application’s architecture, and can therefore be generated from the same
ADL specification automatically (see for example Section 6.3). For the master
component, the ’componentAttributes’ field states that the component is state-
ful and therefore its state must be moved when the component is relocated, and
that it is serializable meaning that the state can be actually saved into a data
structure, as needed by e.g. the checkpointing code.

Self-tuning involves adjusting the number of workers when their load changes.
The application ADL contains the policy ’self-tuning-workers’ describing this
behaviour. The ’ComponentStateChange’ event specification causes setting up
a watcher for a specific parameter of a source component using a given threshold
value. The handler ’ManageGroupWithLimits’ changes the number of compo-
nents in the ’Workers’ group such that the load moves into the region specified
by “low” and “high” parameters.
policy self-tuning-workers
event = ComponentStateChange(source=Workers, componentParam="Load", threshold="100")
handler = ManageGroupWithLimits(target=Workers, low="1000", high="2000")

6.2 Initial Deployment

The following sections of management assembler code are produced au-
tomatically from the ADL descriptions. Waits are implicit; futures used as
input parameters block calls until instantiated. Error-handling is omitted. The
execution of the code is illustrated in Figure 1.
ridA:oneShotResourceDiscover(reqA, compare)
% + similarly for 3 B resources => ridB[1-3]
desA := specifications(preferenceA, ridA)
% specifications produces a description of how much of the
% resource is to be allocated
aridA:allocate(ridA, desA)
cidA: deploy(A, aridA)
% + similarly for 3 B components => cidB[1-3]
gid:group([cidB[1],cidB[2],cidB[3]])
bid:bind(cidA,gid, BDesA,BDesB, random)
% ’random’ indicates a one-to-some binding
widAR:watchResource(aridA, [used->fail, used->leaving], any, any)
activateEventHandler(self-config-leave, widAR, [bid, cidA, aridA, gid])
widA:discoverResource(reqA, compare, tCompare, 0, ridA)
activateEventHandler(self-config-join, widA, [bid, cidA, aridA, gid]
% do periodic check-pointing to enable self-healing for A:
timeGenerate(checkPoint(cidA), timeInterval)
activateEventHandler(checkpointing, id)
activateEventHandler(self-healing, widAR, [?])
activateEventHandler(self-tuning, widB[X], [?])
activateEventHandler(self-protection, widA, [?])

6.3 Self-* Rules

The rules are active until stopped, so they may be fired many times. Parameter
names are left out when they are understandable from the context.



10

Self-Configuration
upon event discoveryReport(wid, rid, RDes) with <bid, cidA, aridA, gid, preferencesA> do
% the system reports a better resource match for A
boolF: unbind(bid)
pcid: passivate(cidA)
boolF:deallocate(aridA)
aridA: allocate(rid, specification(prefA, RDes))
cidA:deploy(pcid, aridA)
bid:bind(cidA, gid)

upon event resourceReport(widA, from, to) with <bid, cidA, aridA, gid, ...> do
if from==used && to==leaving then
newRidA:oneShotResourceDiscover(reqA, compare)
boolF:unbind(bid)

pcid:passivate(cidA)
boolF:deallocate(aridA)
aridA:allocate(newRidA, specification(preferencesA, newRidA))
cidA:deploy(pcid, aridA)
bid:bind(cidA, gid)
% + update the widA-discoverResource with newRidA

Note that the aridA and other attributes are reset at rule termination so the
rule can be fired again.

Self-healing
upon event resourceReport(widA, from, to) with <?> do
if from==used && to==failed then
newRidA:oneShotResourceDiscover(reqA, compare)

aridA:allocate(newRidA, specification(prefA, desc))
cidA:deploy(fcidA, aridA) % fcidA from periodic checkpoint
bid:bind(cidA, gid)
% + update the widA-discoverResource with newRidA

Self-Tuning
upon event componentReport(widB[X], load, oldLoad, newLoad) with <gid ...> do
if loadMeasure(load[1..NoB])> HighLimit then
% load is high we need another B
newRidB:oneShotResourceDiscover(reqB, compare)
newAridB:allocate(newRidB, specifications(prefB, desc)
newCidB:deploy(B, newAridB)
addToGroup(newCidB, gid)
noB:=noB+1
update(load[])

elseif loadMeasure(load[1..NoB])<LowLimit then
if noB > 3 then
deallocate(lowestLoad(widB[]))
noB:=noB-1
update(load[])

Self-Protection Niche could check for unauthorized access requests on ports
the VO has asked the user to open. An unauthorized request could be attempts
to communicate without using established shared keys, in which case Niche
could generate warnings.
upon event resourceReport(wid,unauthorized) with <...> do
<generate warnings>

7. Related Work

Niche builds on a state-of-the-art overlay, DKS. A good survey of overlays
and comparisons with DKS can be found in [9].



Overlay Services for Dynamic VOs 11

Several P2P-based publish/subscribe systems have been developed, e.g. [5,
7, 12, 18, 6]. To our best knowledge, those systems do not provide a robust
and scalable event-notification mechanism (with high delivery guarantees) that
could tolerate churn in highly dynamic Grids.

There is a considerable industrial and academic interest in self-* systems.
Some approaches, e.g. [14, 11], rely on P2P to support some of self-* aspects
in Grid. Our work aims at utilizing P2P to provide support for all self-* aspects
in Grid component-based applications.

The AutoMate project [15] proposes a programming framework to deal with
challenges of dynamism, scale, heterogeneity and uncertainty in Grid envi-
ronments [13]. The Accord’s approach for self-management is similar to our
approach. Accord is based on the concept of an autonomic element that rep-
resents any (self-)manageable entity, e.g. resource, component, or object. The
autonomic management in the Accord framework is guided by rules of two
types: (i) behaviour rules, which control functional behaviours of autonomic
elements and applications; and (ii) interaction rules, which control the interac-
tions between elements and their environments and coordinate an autonomic
application. The Accord framework provides support for run-time composi-
tion of elements and run-time injection of rules. In Accord, dynamic com-
position of autonomic elements is performed by a multi-agent infrastructure
of the peer element managers and a composition manager. In [13], authors
illustrate how the Accord framework can be used to realize each of the four
aspects of self-management: self-configuration, self-optimization, self-healing
and self-protection.

Our overlay services and approach to ADLs complement the AutoMate’s
architectural stack: AutoMate’s self-* rules can be implemented using our
work. Our work, however, does not stipulate a specific programming model
and can be used to provide self-* management support for legacy applications.

The benefits of overlay-based middleware to support complex, heteroge-
neous, self-configuring Grid applications has been recognized in GridKit [11].
GridKit provides resource discovery and management services, and interaction
services. However, GridKit does not provide specific services for component
management, and did not address all of the self-* issues.

8. Discussion & Conclusions

In our architecture the overlay services form the middle layer of an infras-
tructure for the management of dynamic VOs. In particular overlay services
are responsible for all sensing and actuation within the VO. They provide both
push and pull provisions for sensing, including VO-wide discovery and sensor
(de)installation on specific resources and components.



12

As the overlay services are based on a DHT, we have by leveraging on results
in the area been able to provide services that are both self-managing internally
and robust. The fact that the overlay services are self-managing simplifies
making the VO management itself. Within the limits of network connectivity
a sensing event that takes place is always delivered to the management logic
that has subscribed to it. Within the limits of network connectivity an actuation
command that takes place is always delivered.

Dynamic VOs are characterized by high rates of churn and evolution so
that there is real risk of overwhelming the management with a flood of sta-
tus information and the need to take corrective actions. This might exceed
bandwidth/storage/computation limitations and complicate dealing with man-
agement node failure. This is ameliorated by the following properties of the
overlay services:

Multiple management nodes: The overlay services are potentially available
to all nodes in the VO. Clearly there is a concurrency control issue when multiple
management nodes act/sense on the same system elements; this is up to the
management nodes to deal with.

Abstraction: Abstraction is the key to reducing the amount of sensing events
and actuation commands that need to be handled by the management nodes.
Churn may be hidden from the management. Examples are one free resource
replaced by another, or when a component has been moved from one node to
another. Via threshold functions we can ensure that only significant changes
are reported by sensors. They may be configured to detect aggregate prop-
erties/events rather than individual properties/event. Examples are a watcher
waiting to detect 5 free Linux resources to become available, and actuators
acting on groups.

It needs to to be understood that the abstractions here are handled inside the
overlay. An abstraction may either be an integral part of an overlay service or
something that is executed exclusively on the management node(s). These two
different designs can be made functionally equivalent. In both cases program-
ming management may be simplified which is important for dynamic VOs as
there are so many more basic events, such as resources joining and leaving,
taking place than in static ones.

However, two designs are very different non-functionally. Abstractions in-
corporated in the overlay services make for fewer messages arriving at the
management node, fewer messages overall in the system, and lower latencies.
Our design criterion for incorporating abstractions into overlay services is that
there is something to be gained non-functionally.

Intelligent and dynamic delegation: Delegation is natural in conjunction
with hierarchical component models (e.g. deploying the self-management func-
tion of a subsystem of components on an appropriate resource). Also tasks of
self-management may be split in aspect-oriented manner and decentralized (e.g.



Overlay Services for Dynamic VOs 13

self-healing in one place, self-tuning in another). Dynamic delegation means
that the decision to delegate some management logic can be made dynamically.
One use case would be when the management node becomes heavily loaded that
some management functionality can be delegated (e.g. the management node
sends all logic associated with tuning to some other node, but keeps healing
and configuration functionality in place).

Moreover, delegation can be made intelligent, in the sense that the delegated
management logic may be placed optimally. In particular a management rule
that is triggered by sensor events may be placed close to (or at) where the sensing
events originate. Alternatively the management rule may be placed close to
where actuation commands are to be sent to. There are, of course, cases where
determining optimality is complex, depending on latencies between nodes and
probabilities of various kinds of sensing events. At the same time there are
rules where optimality determination is very easy. An example of the latter is a
management rule that triggers on a resource leaving the system (e.g. member
going off-line) which is best executed at the node containing the resource. The
design is open-ended with respect to the intelligence of delegation.

This is work in progress, to date a number of overlay service functions have
been designed, and some of these have been implemented.

Acknowledgments This research is supported by the European project Grid4All
and the CoreGrid Network of Excellence.

References

[1] Distributed k-ary system (dks). http://dks.sics.se/.
[2] L. Onana Alima, A. Ghodsi, P. Brand, and S. Haridi. Multicast in DKS(N,k,f) overlay

networks. In Proc. of the 7th Int. Conf. on Principles of Dist. Systems. Springer, 2003.
[3] L.O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N,k,f): A family of low commu-

nication, scalable and fault-tolerant infrastructures for P2P applications. In 3rd IEEE Int.
Symp. on Cluster Computing and the Grid, pages 344–350. IEEE, 2003.

[4] Bouchenak et al. Architecture-based autonomous repair management: An application to
J2EE clusters. In Proceedings of the 24th IEEE Symp. on Reliable Distributed Systems.
IEEE, 2005.

[5] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas
in Communications (JSAC), 20(8):1489–1499, 2002.

[6] R. Chand and P. Felber. Semantic peer-to-peer overlays for publish/subscribe networks.
In Proceedings of EuroPAR 2005, volume LNCS 3648, pages 1194–1204. Springer, 2005.

[7] P.-A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Publish/subscribe for RDF-based
P2P networks. In Proceedings of the 1st European Semantic Web Symposium, volume
LNCS 3053, pages 182–197. Springer, 2004.

[8] S. El-Ansary, L. Onana Alima, P. Brand, and S. Haridi. Efficient broadcast in structured
P2P networks. In Proc. 2nd Int. Workshop On Peer-To-Peer Systems. Springer, 2003.



14

[9] A. Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD thesis,
Royal Institute of Technology (KTH), 2006.

[10] A. Ghodsi, L. Onana Alima, and S. Haridi. Symmetric replication for structured peer-
to-peer systems. In Proceedings of The 3rd Int. Workshop on Databases, Information
Systems and P2P Computing, Trondheim, Norway, 2005.

[11] Grace et al. GRIDKIT: Pluggable overlay networks for grid computing. In Proc. Dis-
tributed Objects and Applications (DOA’04), volume LNCS 3291. Springer, 2004.

[12] A. Gupta, O. Sahin, D. Agrawal, and A. El Abbadi. Meghdoot: content-based pub-
lish/subscribe over P2P networks. In Proceedings of the 5th ACM/IFIP/USENIX Int.
Conf. on Middleware, pages 254–273. Springer, 2004.

[13] H. Liu and M. Parashar. Accord: A programming framework for autonomic applications.
IEEE Transactions on Systems, Man and Cybernetics, 36(3):341–352, 2006.

[14] Mayer et al. ICENI: An integrated Grid middleware to support E-Science. In Proceedings
of the Workshop on Component Models and Systems for Grid Applications, CoreGRID
series, pages 109–124. Springer, 2005.

[15] M. Parashar, Z. Li, H. Liu, V. Matossian, and C. Schmidt. Enabling autonomic grid
applications: Requirements, models and infrastructure. In Proceedings of the Conf. on
Self-Star Properties in Complex Information Systems, volume LNCS 3460. Springer, 2005.

[16] F. Schintke, T. Schütt, and A. Reinefeld. A framework for self-optimizing Grids using
P2P components. In 14th Int. Workshop on Database and Expert Systems Applications,
pages 689–693. IEEE, September 2003.

[17] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applications. In Proceedings of the ACM
SIGCOMM ’01 Conference, pages 149–160, San Diego, CA, August 2001.

[18] S. Voulgaris, E. Rivière, A.-M. Kermarrec, and M. van Steen. Sub-2-Sub: Self-organizing
content-based publish subscribe for dynamic large scale collaborative networks. Technical
Report RR-5772, INRIA, December 2005.


