
DESIGN OF A SELF-* APPLICATION USING P2P-
BASED MANAGEMENT INFRASTRUCTURE

Konstantin Popov, Joel Höglund and Per Brand
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Abstract
We use a functionally simple distributed file storage service to demonstrate

a framework for developing and managing self-* component-based applications
for highly volatile Grid environments. The service replicates data for reliabil-
ity, and provides for self-configuration, self-healing andself-tuning. The frame-
work allows to develop application self-* behaviours as a distributed event-driven
management application that is independent from application’s functional code
yet can interact with it when necessary. The framework provides a small set
of abstractions that facilitate fault-tolerant application management, and fault-
tolerance of the management itself. The framework uses and extends the self-*
properties of the structured overlay network which it is built upon.
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1. Introduction

Deployment and run-time management of applications constitute a signifi-
cant part of software’s total cost of ownership. These costsincrease dramat-
ically for distributed applications that are deployed in volatile environments
such as peer-to-peer overlays which aggregate heterogeneous, poorly managed
resources on top of relatively unreliable networks. The autonomic comput-
ing initiative [9] advocates self-configuring, self-healing, self-optimizing and
self-protecting (self-* thereafter) systems as a way to deal with the management
complexity. Architecture-based self-* management [8] is performed at the level
of applications’ components and bindings. It has been shownuseful for self-
repair of component-based applications [1]. Component-based frameworks
such as Fractal [3] provide for component reflection and management facilities
that allow to separate applications’ functional and management aspects.

We present a design of a self-* Fractal component-based application to be
deployed in community-based Grids. Such Grids are envisioned to fill the
gap between high-quality Grid environments and existing peer-to-peer systems
that are limited to one single application and provide no coordinated resource
management. Our application, a storage service, is intentionally simple from
the functional point of view: it implements the “store a file”and “read a file”
operations. Non-functionally, it provides for reliable storage using replication,
and can self-heal, self-configure and self-optimize itself.

We use our application as a vehicle to demonstrate our management frame-
work supporting self-* component-based applications, first introduced in [2].
The framework extends the Fractal-based Jade management system for cluster
computing [1]. It allows to deploy Internet-based applications, and supports
their self-* behaviors by providing an execution platform and a set of abstrac-
tions. The management framework relies on an external resource management
service that for the purposes of our prototype is provided bythe Grid’s Virtual
Organization (VO) management.

The management frameworkallows toprogram applications’ self-* behaviours
(self-* code thereafter) independently from application’s functional code. The
self-* code can manipulate the application in terms of the elements of its archi-
tecture: it can add and remove components and bindings between them using
operations provided by the component management subsystem. The self-*
codesenseschanges in the environment, such as failed resources, actions by
VO management, and information communicated by the functional code.

Our management framework implements additional types of bindings not
specified in the Fractal model, “one-to-all” and “one-to-any”, which support
scalable multicast communicationessential for building fault-tolerant self-healing
applications [2]. These bindings allow an application to treat a group of compo-
nents as a single entity. Membership management of such a group is provided
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by the self-* code and is transparent to the functional code.These types of
bindings serve similar purpose to the multicast interfacesproposed in the Grid
Component Model (GCM) [7].

We see management self-* code to be organized into a set ofmanagement el-
ements, watchers, aggregatorsandmanagers, implemented by the application
developer. Watchers monitor status of elements of the architecture. Aggre-
gators maintain status information of an application by collecting information
from different watchers. Managers monitor application status by listening to ag-
gregators, and decide on and execute changes in the architecture. Management
elements access and manipulate an architecture throughhandlesthat represent
and provide access to architecture’s elements. Handles arenetwork-transparent,
thus management elements can be executed on any computing node in the sys-
tem. The framework allows programmer to control the location of management
elements which can improve the performance of self-management and simplify
handling of failures of nodes hosting management elements.

The management framework is self-* on its own: it can accomodate new
nodes joining a system, tolerate failures, and self-optimize following system
load. The management framework is implemented on the Niche overlay net-
work [2]. Niche provides for reliable communication, including multicast, and
distributed hash table functionality with symmetric replication. Niche’s repli-
cation and communication are used to implement failure-tolerant management
elements and reliable delivery and processing of events.

Our simple storage service, called YASS, contains user front-ends that are
connected to a group of storage elements. A front-end has no knowledge about
actual configuration of the service. Individual file replicas are grouped, so
the front ends access replicas independently of self-* codethat maintains the
replication factor.

Our first contribution is a simple self-* management model and matching
framework that despite its simplicity is sufficient to support the demonstrated
self-* application behaviours. Our second contribution isthe implementation
model for the management framework, which leverages the self-* properties of
the Niche overlay network to provide failure-tolerant management elements.

In this paper we present our current prototype of the management framework
that is planned to be extended into a number of directions. Inparticular, the cur-
rent prototype is limited in the following senses: (a) self-* code including code
for initial deployment is written in a low-level, imperative style, while using
a declarative “architecture description language” could reduce the complexity
imposed to application developers; (b) we do not provide a general model for
ensuring coherency and convergence of distributed self-* management. Our
example application, however, demonstrates that these properties are attainable
in practice.
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Figure 1. The YASS Architecture

2. Application

Our application – “yet another storage service” (YASS) – allows to store,
read and delete files. The service replicates files for the sake of robustness and
scalability. We target the service for highly volatile Gridenvironments, where
resources can join, gracefully leave or fail at any time. YASS automatically
maintains the file replication factor upon resource churn, and scales itself based
on the load on the service and resource availability.

A YASS consists out offront-end componentsandstorage componentsFig. 1.
The front-end components and deployed on user machines and provide the
read, write and delete components implementing the user interface. Storage
components are composed offile componentsthat keep files. The ovalsRi in
Fig. 1 represent resources contributed to a Virtual Organization (VO). Some of
the resources are used to deploy storage components, shown as rectangles.

A user store request can be sent to any storage component thatwill try to find
somer − 1 more different storage components, wherer is the file’s replication
degree, with enough free space to store a single file copy. Theuser will send the
file in parallel to ther storage components, resulting in the dynamic creation
of r new file components, which together form afile group. Read and delete
requests can be sent to any of ther file components in the group.

3. Component Model

Our management framework [2] supports an extended version of the Fractal
component model [3]. The Fractal model allows todefine software architectures
based on composition and binding of components. The Fractalspecification
contains the notion of one-to-one bindings that we instantiate toone-to-anyand
one-to-allbindings. With a one-to-any binding, a component can communicate
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with a component randomly chosen at run-time from a certain group. With a
one-to-all binding, it will communicate with all elements of the group. In either
case, the content of the group can change dynamically without affecting neither
the source component nor other elements of the destination’s group.

4. The Management Framework

An application in the framework consists of a component-based implementa-
tion of the application’s functional specification and a separate part implement-
ing the application’s self-* behaviors. The framework implements component
hosting and intra-component communication, and provides adistributed plat-
form for reliable execution of self-* code.

Our work builds on the technical work on the Jade component-management
system [1]. Jade’s self-* behaviors are implemented in a “sensing – manage-
ment decision making – actuation” loop. Jade utilizes the Java RMI, and is
limited to cluster environments as it relies on small and bounded communica-
tion latencies between nodes.

Self-* code in our management framework consists ofmanagement elements
(MEs thereafter). We subdivide MEs intowatchers, aggregatorsandmanagers.
Self-* code can access information from thearchitecture registry(AR there-
after). The framework’s run-time system (RTS thereafter) provides for reliable
hosting and communication between these entities.

Watchers monitor the status of individual architectural elements, or groups
of similar elements. A watcher is a stateful entity that subscribes to and receives
events fromsensorsthat are either implemented by the element, or provided
by the management framework itself. An aggregator is subscribed to several
watchers and maintains partial information about the application status at a
more coarse-grained level. A manager can be subscribed to several watchers
and aggregators. The manager uses the information to decideon and execute
the changes in the architecture. Managers manipulate the architecture using
the managementactuationAPI [1] implemented by the framework. The API
provides in particular functions to obtain resources, deploy components, and
manage and bind components. The AR provides network-transparent storage
of handlesto elements of application architecture. A handle is an entity that
contains reference(s) to the corresponding element(s) of the architecture – com-
ponents, bindings, and MEs. Functions of the aforementioned actuation API
work on handles specified by their identifiers. Handles to architecture elements
are implemented bysets of network referencesdescribed below.

MEs are first-class entities that are dynamically created and destroyed as
necessary, and recorded in the AR. A dedicated piece of application-specific
management code performs initial deployment of the architecture and instanti-
ation of self-* code.
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The management framework allows the developer of self-* code to control
location of MEs. For every management element the developercan specify a
containerwhere that element should reside. A container is a first-class entity
which sole purpose is to ensure that entities in the container reside on the
same physical node. This allows to eliminate network communication latencies
between co-located MEs. The container’s location can be explicitly defined
by a location of a resource that is used to host elements of thearchitecture,
thus eliminating the communication latency and overhead between architecture
elements and managers handling them.

The management run-time system provides for reliable hosting of watchers
and managers, and reliable delivery of events. The management framework
provides for transparent replication of MEs for reliability, and reliable delivery
of messages between replicated MEs. This is achieved by placing MEs inside
management element wrappers, MEWs, that intercept incoming and outgoing
events and invocations of actuation API, and coordinate with MEWs hosting
other replicas of the same ME.

AR provides a weak consistency model: it is guaranteed that reads follow
writes only within a single watcher or manager. The management framework
assumes that the self-* code can recognize out-of-date information, and repeat
the read operation until up-to-date data is read.

A Set of Network References, SNR [2], is a primitive abstraction that is used
to associate anamewith a set ofreferences. References are used to access
elements in the system and can be either direct or indirect. Direct references
can be used without resolving, such as the location of a resource. Indirect
references refer to other SNRs by names and needs to be resolved before use.
In its simplest form, the SNR associates a name to one direct reference, such
as a reference to a component deployed on a resource. We will refer to such
simple SNRs by primitive SNRs. SNRs are also used to create homogeneous
groups by associating a group name to a set of primitive SNRs.

One-to-anyandone-to-all bindings are implemented by binding toSNRs with
more than one reference. A binding to an SNR means that when a message
is sent through the binding, the SNR name is resolved and one or more of
the current references are used to send the message depending on the type of
binding. SNRs also enable mobility of elements pointed to bythe references.
Management code can move components between resources, andby updating
their references other elements can still find the components by name. A group
can grow or shrink transparently from group user point of view. Finally SNRs
are used to support sensing through associating watchers with SNRs. Adding
a watcher to an SNR will result in sensors being deployed for each element
associated with the SNR. Thus all elements will be sensed by the watchers
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associated with the SNR. Changing the references of an SNR will transparently
deploy/undeploy sensors for the corresponding elements.

Robustness of Management Elements.Our framework supports failure-
tolerance of self-* code by providing a mechanism ensuring that (a) events
are not lost during delivery and processed exactly once, and(b) all actuation
commands generated by the managers are executed exactly once. The self-*
code developer can decide whether a particular ME has to be failure-tolerant.

We achieve fault-tolerance through replication of MEs and reliable messag-
ing for delivering events and commands. MEs are encapsulated by MEWs as
shown in Fig. 2. Replication of MEs is transparent from the ME’s point of view,
and ME is a black box from the MEW’s point of view. A group of MEWs each
hosting an instance of the same ME form a replica group of the ME. MEWs
in the replica group communicate with each other. MEWs servetwo purposes.
First, MEWs order events coming to MEs such that all MEs in thereplica group
observe the same order of events. This is achieved by a consensus protocol
running by MEWs in the replica group. Given the same input allME replicas
will generate the same events/commands and will have the same state if any.
Second, MEWs intercept all outgoing events and actuation commands such that
the replica group behaves as one single ME. A MEW has a queue ofpending
outgoing events and commands issued by MEs and not yet acknowledged by the
recipients. Only theprimary replica really sends out the events and commands.
Acknowledgments are received by all replicas so that a secondary replica can
resume exactly where the failure occurred. This mechanism guarantees also
reliable message delivery.

MEs uses the fail recovery model. In the case of a failure/leave of a resource
where a ME is deployed, it is the responsibility of the infrastructure to bring
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Figure 4. Parts of the YASS application deployed on the management infrastructure. The
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For instance theYASSG replica oneis mapped to id 4, which is the responsibility of the node
with id 5. Practically that means the management elements associated with the replica will be
executed on node 5.

the ME back. This is done by redeploying it and restoring any associated
state in the case of a stateful ME. Non-ME components, such assensors and
application’s components, use the fail stop model. If such acomponent crash
then the infrastructure is not responsible for restoring it. The restoration of
those components should be configured through management components. For
none-MEs we assume pseudo reliable message delivery. As long as the source
does not crash, a message will eventually reach its destination.

5. Application Self-* behaviours

Configuration of application self-management.The Fig. 3 shows the archi-
tecture of the watchers, aggregators and managers used by the application. In
the following description “one” is used to mean “functionally one”, since for
each described management element there will be as many instances as the
replication degree prescribes.

Associated with the YASSG are the following system-wide watchers created
at service initialization time: one ResourceLeave-watcher, one ResourceFail-
watcher and one ComponentLoad-watcher. Subscribed to all of them is the
Storage-aggregator for the whole application. The Storage-aggregator can trig-
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ger StorageAvailabilityChange-events, which the Configuration-managers is
subscribed to. The Configuration-managers can alsoquery the ComponentLoad-
watcher to be informed about components with low load. Fig. 4shows the
collocation of the management elements associated with theYASSG.

When new components are created by the functional parts of the applica-
tion, the management infrastructure can run scripts which initiates correspond-
ing new MEs. This is how the following watchers for file groupsare cre-
ated. Associated with each file group is one ResourceLeave-watcher and one
ResourceFail-watcher, which are created dynamically at the same time as the file
group is created. Subscribed to both of them is a FileGroup-aggregator, which
can trigger ReplicaChange-events. Subscribed to the FileGroup-aggregator is
the FileReplica-manager. When MEs are created together with the new file-
group, the management infrastructure registers the watchers to the existing
sensors responsible for monitoring for resource leaves andresource failures of
the resources associated with the file group.

Application Self-healing. Self-healing is concerned with maintaining the de-
sired replica degree for each stored item. This is achieved as follows for resource
leaves and failures:

Resource leave. A sensor signals that a resource is about to leave. For
each file stored at the leaving resource, the associated ResourceLeave-watcher
is notified and issues a resourceLeave-event. The event is transformed by
the FileGroup-aggregator to a replicaChange-event which is forwarded to the
FileReplica-manager. The FileReplica-manager uses the one-to-any binding of
the file group to issue a FindNewReplica-command to any of theinvolved com-
ponents. When a new replica is instantiated the FileReplica-manager signals to
the leaving resource that it is free to leave.

Resource failure. On a resource failure, the FileGroup-aggregator will check
if the failed resource previously signaled a ResourceLeave(but did not wait long
enough to let the restore replica operation finish). In that case the aggregator
will do nothing, since it has already issued a replicaChangeevent. Otherwise
the failure is handled the same way as the leave case.

Application Self-configuration. With self-configuration we mean the ability
to adapt the system in the face of dynamism, thereby maintaining its capability
to meet existing functional requirements. This is achievedby monitoring the
total amount of allocated storage. The Storage-aggregatoris initialized with
the amount of available resources at initial deployment time. Thereafter each
resource leave and resource failure is captured by the main resource watch-
ers, and propagated to the Storage-aggregator. If the totalamount of allo-
cated resources drops below the given requirements, the Storage-aggregator
issues a storageAvailabilityChange-event, indicating the availability is criti-
cally low, which is received and processed by the Configuration-manager. The
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Listing 1.1. Pseudocode for parts of the Storage-aggregator

upon event ResourceFailure( resourceid ) do
amountto subtract = allocatedresources( resourceid )
total storage := totalamount− amountto subtract
current load := update (currentload , total storage )
i f total amount< initial requirement or currentload > high limit then
trigger(availabilityChangeEvent( totalstorage , currentload ))

end

Configuration-manager will try to find and allocate a unused resource to deploy
a new storage component, which then is added to the group of components. Parts
of the Storage-aggregator and Configuration-manager pseudocode is shown in
Listing 1.1, demonstrating how the stateful information iskept by the aggre-
gator and updated through sensing events, while the actuation commands are
initiated by the manager.

Application Self-optimization. With self-optimization we mean the ability to
adapt the system so that it, besides meeting functional requirements, also meets
additional non-functional requirements such as efficiency. This is achieved
by using the ComponentLoad-watcher to gather information on the total sys-
tem load, in terms of used storage. The storage components report their load
change. These load reports are propagated to the Storage-aggregator. The ag-
gregator will be able to determine when the total utilization is critically high,
in which case a StorageAvailabilityChange-event is generated, which will be
processed by the configuration manager in the same way as described in the
self-configuration section. If utilization drops below a given threshold, and the
total amount of allocated resources is above the initial requirements, another
storageAvailabilityChange-event is generated. In this case the event indicates
the availability is higher than needed, which will cause theconfiguration man-
ager to query the ComponentLoad-watcher for the least loaded storage compo-
nent, and instruct it to deallocate itself, thereby freeingthe resource. Parts of
the Configuration-manager pseudocode is shown in Listing 1.2, demonstrating
how the number of storage components can be adjusted upon need.

6. Related Work

This work builds upon and extends the notation used in [2] where the con-
cepts of watchers and event handlers for enabling self-* behaviours were intro-
duced. The main extension in this paper is the notation of SNR:s as unifying
architectural elements supported by the infrastructure.

As the work here presented suggests a particular implementational model for
distributed component based programming, relevant related work can be found
in research dealing specifically with autonomic computing in general and in
research about component and programming models for distributed systems.
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Listing 1.2. Pseudocode for parts of the Configuration-manager

upon event availabilityChangeEvent( totalstorage , newload) do
i f total storage< initial requirement or newload> high limit then
new resource: resourcediscover(componentrequirements , comparecriteria )
new resource: allocate (newresource , preferences )
newcomponent :deploy(storagecomponentURL, newresource)
add to group(newcomponent , componentgroup)

elsei f newload< low limit then
i f total storage> initial requirement then
leastloadedcomponent = componentload watcher . getleast loaded ()
least loadedresource = leastloadedcomponent . getresource ()
trigger(resourceLeaveEvent( leastloadedresource))

end
end

We consider the area of distributed storage services only tothe extent that we
acknowledge there are functionally superior systems, but they are generally
built and managed in more monolitical ways.

Autonomic Management. The vision of autonomic management as presented
in [9] has given rise to a number of proposed solutions to aspects of the prob-
lem. Many solutions adds self-management support through the actions of a
centralized self-manager. One suggested system which tries to add some sup-
port for the self-management of the management system itself is Unity [4].
Following the model proposed by Unity, self-healing and self-configuration are
enabled by building applications where each system component is a autonomic
element, responsible for its own self-management. Unity assumes cluster-like
environments where the application nodes might fail, but the project only partly
addresses the issue of self-management of the management infrastructure itself.

Component Models. Among the proposed component models which target
building distributed systems, the traditional ones, such as the Corba Component
Model or the standard Enterprise JavaBeans were designed for client-server re-
lationships assuming highly available resources. They provide very limited
support for dynamic reconfiguration. Other component models, such as Open-
COM [5], allow dynamic flexibility, but their associated infrastructure lacks
support for operation in volatile environments. The Grid Component Model,
GCM [7], is a recent component model that specifically targets grid program-
ming. GCM is defined as an extension of Fractal and its features include many-
to-many communications with various semantics and autonomic components.
The support for autonomic components is minimal. The model only defines
simple “autonomic controllers” that embody autonomic behaviour and expose
generic operations to retrieve and execute autonomic operations, to accept QoS
contracts, and to signal QoS violations. The model providesno guidance for
developing and composing actual controllers, that is, self-* code. Moreover, it
does not prescribe a particular implementation model and mechanisms to ensure
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the efficient operation of self-* code in large-scale environments. Thus, GCM
can be seen as largely complementary to our work and thanks tothe common
ancestor, we believe that our results can be exploited within a future GCM im-
plementation. A component model designed specifically for structured overlay
networks and wide scale deployment is p2pCM, which extends the DERMI
object middleware platform [11, 10]. The model provides replication of com-
ponent instances, component lifecycle management and group communication,
including anycall functionality to communicate with the closest instance of a
component. The model does not offer higher level abstractions such as watchers
and event handlers, and the support for self-healing and issues of consistency
are only partially addressed.

Distributed storages and file systems. Our demo application does not try to
compete on a functional basis with existing distributed storage systems. For the
interested reader, one hash-based storage solutions whichhas proven useful in
a real scenario is Dynamo, the storage system underlying theAmazon service
infrastructure [6]. A recently suggested distributed file system which suggest
loosening the consistency guarantees to instead provide higher performance is
found in [12]. These system are functionally superior to ourdemo application,
but they are written as separate services, and thus they do not show the separation
of functional and non-functional concerns that we illustrate.

7. Conclusions

We used our component management framework to design a self-managing
application to be used in highly dynamic Grid environment. The framework
allows to develop application self-* behaviours as a distributed event-driven
management application that is independent from application’s functional code
yet can interact with it when necessary. The framework provides a small set
of abstractions that facilitate fault-tolerant application management, and fault-
tolerant execution of the management code itself. The framework leverages the
self-* properties of the structured overlay network which it is built upon.
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