DESIGN OF A SELF-* APPLICATION USING P2P-
BASED MANAGEMENT INFRASTRUCTURE

Konstantin Popov, Joel Hoglund and Per Brand
Swedish Institute of Computer Science (SICS)
Stockholm, Sweden

{kost,joel,perbrand } @sics.se

Ahmad Al-Shishtawy

and Vladimir Vlassov
Royal Institute of Technology (KTH)
Stockholm, Sweden

{ahmadas,vladv}@kth.se

Nikos Parlavantzas
INRIA
Grenoble, France

nikolaos.parlavantzas@inria.fr

Abstract
We use a functionally simple distributed file storage sentw demonstrate

a framework for developing and managing self-* componeatda applications
for highly volatile Grid environments. The service repties data for reliabil-
ity, and provides for self-configuration, self-healing asdf-tuning. The frame-
work allows to develop application self-* behaviours assritiuted event-driven
management application that is independent from applioatifunctional code
yet can interact with it when necessary. The framework glesia small set
of abstractions that facilitate fault-tolerant applicatimanagement, and fault-
tolerance of the management itself. The framework uses xtedids the self-*
properties of the structured overlay network which it islbupon.

Keywords: Grid, component-based applications, self-managemeft, P2

1. Introduction

Deployment and run-time management of applications comsta signifi-
cant part of software’s total cost of ownership. These cogiease dramat-
ically for distributed applications that are deployed irlatde environments
such as peer-to-peer overlays which aggregate heteroggnewoorly managed
resources on top of relatively unreliable networks. Theoaaimic comput-
ing initiative [9] advocates self-configuring, self-hewjj self-optimizing and
self-protecting (self-* thereafter) systems as a way td déh the management
complexity. Architecture-based self-* management [8]adprmed at the level
of applications’ components and bindings. It has been shaseful for self-
repair of component-based applications [1]. Componesetbdrameworks
such as Fractal [3] provide for component reflection and rgameent facilities
that allow to separate applications’ functional and managyg aspects.

We present a design of a self-* Fractal component-basedcagiph to be
deployed in community-based Grids. Such Grids are enwsiaio fill the
gap between high-quality Grid environments and existingr{t@-peer systems
that are limited to one single application and provide nordimated resource
management. Our application, a storage service, is imegty simple from
the functional point of view: it implements the “store a fil@iid “read a file”
operations. Non-functionally, it provides for reliabl@sige using replication,
and can self-heal, self-configure and self-optimize itself

We use our application as a vehicle to demonstrate our maragerame-
work supporting self-* component-based applicationst firsoduced in [2].
The framework extends the Fractal-based Jade managenséstrsfor cluster
computing [1]. It allows to deploy Internet-based appiimas, and supports
their self-* behaviors by providing an execution platforndaa set of abstrac-
tions. The management framework relies on an external reeosnanagement
service that for the purposes of our prototype is providethieyGrid's Virtual
Organization (VO) management.

The management framework allows to program applicaticglis*9ehaviours
(self-* code thereafter) independently from applicat®ohinctional code. The
self-* code can manipulate the application in terms of tleerents of its archi-
tecture: it can add and remove components and bindings batthem using
operations provided by the component management subsystém self-*
codesenseshanges in the environment, such as failed resourcesnadbp
VO management, and information communicated by the funatioode.

Our management framework implements additional types mdibgs not
specified in the Fractal model, “one-to-all” and “one-tgrgrwhich support
scalable multicast communication essential for buildmgtftolerant self-healing
applications [2]. These bindings allow an application ¢éatra group of compo-
nents as a single entity. Membership management of suchua iggrovided

P2P-Based Self-* Management 3

by the self-* code and is transparent to the functional coflbese types of
bindings serve similar purpose to the multicast interfgmeposed in the Grid
Component Model (GCM) [7].

We see management self-* code to be organized into a setiofgement el-
ementswatchers aggregatorsandmanagersimplemented by the application
developer. Watchers monitor status of elements of the t@athire. Aggre-
gators maintain status information of an application byemting information
from differentwatchers. Managers monitor applicationistdy listening to ag-
gregators, and decide on and execute changes in the atahéteanagement
elements access and manipulate an architecture thiwagdiesthat represent
and provide access to architecture’s elements. Handlegbxerk-transparent,
thus management elements can be executed on any computiagimbe sys-
tem. The framework allows programmer to control the locattbmanagement
elements which can improve the performance of self-manageand simplify
handling of failures of nodes hosting management elements.

The management framework is self-* on its own: it can accom@chew
nodes joining a system, tolerate failures, and self-oginfollowing system
load. The management framework is implemented on the Nigbday net-
work [2]. Niche provides for reliable communication, inding multicast, and
distributed hash table functionality with symmetric replion. Niche’s repli-
cation and communication are used to implement failurerémit management
elements and reliable delivery and processing of events.

Our simple storage service, called YASS, contains usetfeods that are
connected to a group of storage elements. A front-end hasowlkdge about
actual configuration of the service. Individual file replcare grouped, so
the front ends access replicas independently of self-* ¢bdemaintains the
replication factor.

Our first contribution is a simple self-* management modeal amatching
framework that despite its simplicity is sufficient to suppihe demonstrated
self-* application behaviours. Our second contributiorthis implementation
model for the management framework, which leverages tlie¢ gebperties of
the Niche overlay network to provide failure-tolerant mgement elements.

In this paper we present our current prototype of the managéeframework
that is planned to be extended into a number of directionpaiticular, the cur-
rent prototype is limited in the following senses: (a) Setiede including code
for initial deployment is written in a low-level, imperaévstyle, while using
a declarative “architecture description language” coelduce the complexity
imposed to application developers; (b) we do not providersegd model for
ensuring coherency and convergence of distributed sel&hagement. Our
example application, however, demonstrates that thegepres are attainable
in practice.

RC, WC, DC = Read, Write,
Delete Component.
A,By,Cx = file components.

x = replica number.

Ovals = resources.

Dashed line = Resource
group.
Dotted line = File group.

Figure 1. The YASS Architecture

2. Application

Our application — “yet another storage service” (YASS) -owaH to store,
read and delete files. The service replicates files for the ehkobustness and
scalability. We target the service for highly volatile Gadvironments, where
resources can join, gracefully leave or fail at any time. ‘BA&utomatically
maintains the file replication factor upon resource chundl, scales itself based
on the load on the service and resource availability.

A YASS consists out dfont-end componenendstorage componenkg. 1.
The front-end components and deployed on user machines raniie the
read, write and delete components implementing the userface. Storage
components are composedfi® componentshat keep files. The ovalg; in
Fig. 1 represent resources contributed to a Virtual Orgaita (VO). Some of
the resources are used to deploy storage components, ssaectangles.

A user store request can be sent to any storage componentilitiat to find
somer — 1 more different storage components, wheie the file’s replication
degree, with enough free space to store a single file copyu3éewill send the
file in parallel to ther storage components, resulting in the dynamic creation
of r new file components, which together fornfile group Read and delete
requests can be sent to any of thile components in the group.

3. Component Model

Our management framework [2] supports an extended versithre é-ractal
componentmodel[3]. The Fractal model allows to define safémrchitectures
based on composition and binding of components. The Fraptdification
contains the notion of one-to-one bindings that we instémtioone-to-anyand
one-to-allbindings. With a one-to-any binding, a component can conicaim

P2P-Based Self-* Management 5

with a component randomly chosen at run-time from a certaoug With a
one-to-all binding, it will communicate with all elementftie group. In either
case, the content of the group can change dynamically witkftecting neither
the source component nor other elements of the destingtipoup.

4. The Management Framework

An application in the framework consists of a componentdamplementa-
tion of the application’s functional specification and aagpe part implement-
ing the application’s self-* behaviors. The framework implents component
hosting and intra-component communication, and providdistabuted plat-
form for reliable execution of self-* code.

Our work builds on the technical work on the Jade componeamtagement
system [1]. Jade’s self-* behaviors are implemented in ass® — manage-
ment decision making — actuation” loop. Jade utilizes the RMI, and is
limited to cluster environments as it relies on small andrislad communica-
tion latencies between nodes.

Self-* code in our management framework consistsiahagement elements
(MEs thereafter). We subdivide MEs int@tchersaggregatorsandmanagers
Self-* code can access information from tachitecture registry(AR there-
after). The framework’s run-time system (RTS thereafteovpes for reliable
hosting and communication between these entities.

Watchers monitor the status of individual architecturaine¢nts, or groups
of similar elements. A watcher is a stateful entity that snibes to and receives
events fromsensorghat are either implemented by the element, or provided
by the management framework itself. An aggregator is sutsgrto several
watchers and maintains partial information about the aptibn status at a
more coarse-grained level. A manager can be subscribed/¢évadevatchers
and aggregators. The manager uses the information to decidad execute
the changes in the architecture. Managers manipulate tétecture using
the managemergctuationAPI [1] implemented by the framework. The API
provides in particular functions to obtain resources, demglomponents, and
manage and bind components. The AR provides network-tesiesp storage
of handlesto elements of application architecture. A handle is antiiat
contains reference(s) to the corresponding element(bpdaichitecture —com-
ponents, bindings, and MEs. Functions of the aforementi@wtuation API
work on handles specified by their identifiers. Handles tbiggcture elements
are implemented bgets of network referenceescribed below.

MEs are first-class entities that are dynamically created] dgestroyed as
necessary, and recorded in the AR. A dedicated piece ofcghiglh-specific
management code performs initial deployment of the arctute and instanti-
ation of self-* code.

The management framework allows the developer of self-‘edmdcontrol
location of MEs. For every management element the develogeispecify a
containerwhere that element should reside. A container is a firstsotaity
which sole purpose is to ensure that entities in the contaieside on the
same physical node. This allows to eliminate network comioaiion latencies
between co-located MEs. The container’s location can bédicitkp defined
by a location of a resource that is used to host elements cdntigtecture,
thus eliminating the communication latency and overhe&aden architecture
elements and managers handling them.

The management run-time system provides for reliable hgsif watchers
and managers, and reliable delivery of events. The manageiraenework
provides for transparent replication of MEs for relialyiliand reliable delivery
of messages between replicated MEs. This is achieved bingldtEs inside
management element wrappek$EWSs, that intercept incoming and outgoing
events and invocations of actuation API, and coordinate WMIEWs hosting
other replicas of the same ME.

AR provides a weak consistency model: it is guaranteed #adg follow
writes only within a single watcher or manager. The managgrframework
assumes that the self-* code can recognize out-of-datenaftion, and repeat
the read operation until up-to-date data is read.

A Set of Network ReferencesSNR [2], is a primitive abstraction that is used
to associate aamewith a set ofreferences References are used to access
elements in the system and can be either direct or indiregtecDreferences
can be used without resolving, such as the location of a resoulndirect
references refer to other SNRs by names and needs to beaddmdiore use.
In its simplest form, the SNR associates a name to one dieéetence, such
as a reference to a component deployed on a resource. Weeteitlto such
simple SNRs by primitive SNRs. SNRs are also used to createogeneous
groups by associating a group name to a set of primitive SNRs.
One-to-any and one-to-all bindings are implemented byibhingh SNRs with
more than one reference. A binding to an SNR means that wheesaage
is sent through the binding, the SNR name is resolved and omeoce of
the current references are used to send the message dependine type of
binding. SNRs also enable mobility of elements pointed tahayreferences.
Management code can move components between resourcdsy apdating
their references other elements can still find the comparignhame. A group
can grow or shrink transparently from group user point ofwi&inally SNRs
are used to support sensing through associating watchérsSMRs. Adding
a watcher to an SNR will result in sensors being deployed &mheclement
associated with the SNR. Thus all elements will be sensedhé&ymMatchers

P2P-Based Self-* Management

m m

@ Deploy
Storage C(m iguration Allocate
\ 7 Aggregator Manager

‘ PCnding‘: my ‘ ‘ Pending: m;, mz‘ ‘ Pending: m> ‘ APPI““"""

Resource Component wide watchers.

Leave Load Change | One of each
Watcher Wa[cher type per YASS

|
I
I
M. M. M I
Element Element Element I instance
Replica 1 Replica 2 Replica 3 E@ é; % Load, Failur,
| load Change
e;T egT e4T E}T clT CzT wT CxT elT e:T mT ewT | probes
|
J

‘ Cc ‘ ‘ Cc ‘ ‘ Consensus ‘ S File watcher.
Resource Resource
Leave
Watcher

eresezeq 4€2€3 €1 eresese One of each type
[a— - : Deploy
el & €3 File Hile Allocate
Group Replica
Source 1 Source 2 Source 3 Aggregator Manager

Figure 2. Management element wrappers.Figure 3. YASS sensors, watchers, aggrega-
tors and managers.

Resource

m; sz m m my my
Fail

-—_——— — — —— -

Fail

er file grou
‘Watcher P group

associated with the SNR. Changing the references of an SNiRamsparently
deploy/undeploy sensors for the corresponding elements.

Robustness of Management Elements.Our framework supports failure-
tolerance of self-* code by providing a mechanism ensurhmg (@) events
are not lost during delivery and processed exactly once,(bndll actuation
commands generated by the managers are executed exacatly ©he self-*
code developer can decide whether a particular ME has toiloesfdolerant.

We achieve fault-tolerance through replication of MEs agléble messag-
ing for delivering events and commands. MEs are encapsulateMEWSs as
shownin Fig. 2. Replication of MEs is transparent from the’$fioint of view,
and ME is a black box from the MEW'’s point of view. A group of MEB®&ach
hosting an instance of the same ME form a replica group of tike MEWSs
in the replica group communicate with each other. MEWSs semeepurposes.
First, MEWSs order events coming to MEs such that all MEs irrépdica group
observe the same order of events. This is achieved by a caunsgmotocol
running by MEWSs in the replica group. Given the same inpuli replicas
will generate the same events/commands and will have the state if any.
Second, MEWSs intercept all outgoing events and actuatiomeands such that
the replica group behaves as one single ME. A MEW has a quepenafing
outgoing events and commands issued by MEs and not yet atdaiged by the
recipients. Only th@rimaryreplica really sends out the events and commands.
Acknowledgments are received by all replicas so that a slngreplica can
resume exactly where the failure occurred. This mechanigsaragtees also
reliable message delivery.

MEs uses the fail recovery model. In the case of a failuredesd a resource
where a ME is deployed, it is the responsibility of the infrasture to bring

YASSG Replica 4

l SNR o =

Compl

Comp2

RLW

RILW

Comp#

RFW

Resource

Comp5

CLCW

Leave

|
I Comp3
|

Watcher

YASSG Replica 1

SA |

FEB Replica 1
Front-End Binding

) FE ‘one:any‘YASSG

Compl Replica 1
8 | Re@ll

Rs

™ Tow T a7

Compl | Rpw
Comp?2
Comp3 | RFW

Comp4
Comp5 CLCW

. SA
Storage l
Leave Aggregator |
‘Watcher
Figure 4. Parts of the YASS application deployed on the managemerasméicture. The
replication of the main component group, labelASSGis shown. The filled black circles
represent physical nodes. Architectural entities are redpp ids. As there is always a physical
node responsible for a certain id, each entity will be mappeshe of the nodes in the system.
For instance th&ASSG replica onis mapped to id 4, which is the responsibility of the node

with id 5. Practically that means the management elemestscated with the replica will be
executed on node 5.

Leave
‘Watcher

the ME back. This is done by redeploying it and restoring assoaiated
state in the case of a stateful ME. Non-ME components, sudem@sors and
application’s components, use the fail stop model. If sucbraponent crash
then the infrastructure is not responsible for restoringThe restoration of
those components should be configured through managentrapboents. For
none-MEs we assume pseudo reliable message delivery. 4sothe source
does not crash, a message will eventually reach its destinat

5. Application Self-* behaviours

Configuration of application self-management.The Fig. 3 shows the archi-
tecture of the watchers, aggregators and managers use& aytication. In
the following description “one” is used to mean “functiogabne”, since for
each described management element there will be as mamndest as the
replication degree prescribes.

Associated with the YASSG are the following system-widechats created
at service initialization time: one ResourcelLeave-watcbhre ResourceFail-
watcher and one ComponentLoad-watcher. Subscribed td #flem is the
Storage-aggregator for the whole application. The Steeaggegator can trig-

P2P-Based Self-* Management 9

ger StorageAvailabilityChange-events, which the Conagion-managers is
subscribedto. The Configuration-managers can also quefydmponentLoad-
watcher to be informed about components with low load. Fighdws the
collocation of the management elements associated witABSG.

When new components are created by the functional partseofiplica-
tion, the management infrastructure can run scripts whiittates correspond-
ing new MEs. This is how the following watchers for file groupse cre-
ated. Associated with each file group is one ResourcelLeatehar and one
ResourceFail-watcher, which are created dynamicallyeegdime time as the file
group is created. Subscribed to both of them is a FileGragremator, which
can trigger ReplicaChange-events. Subscribed to the Filgisaggregator is
the FileReplica-manager. When MEs are created togethérthiét new file-
group, the management infrastructure registers the wetdioethe existing
sensors responsible for monitoring for resource leavesesalrce failures of
the resources associated with the file group.

Application Self-healing. Self-healing is concerned with maintaining the de-
sired replica degree for each stored item. Thisis achieséuollaws for resource
leaves and failures:

Resource leave A sensor signals that a resource is about to leave. For
each file stored at the leaving resource, the associateduRet@ave-watcher
is notified and issues a resourceLeave-event. The evenansfarmed by
the FileGroup-aggregator to a replicaChange-event wisdbrivarded to the
FileReplica-manager. The FileReplica-manager uses tidéaany binding of
the file group to issue a FindNewReplica-command to any aftre@ved com-
ponents. When a new replica is instantiated the FileReplianager signals to
the leaving resource that it is free to leave.

Resource failureOn a resource failure, the FileGroup-aggregator will ghec
if the failed resource previously signaled a Resourcel @awedid not wait long
enough to let the restore replica operation finish). In tlzesecthe aggregator
will do nothing, since it has already issued a replicaChamgmnt. Otherwise
the failure is handled the same way as the leave case.

Application Self-configuration. With self-configuration we mean the ability
to adapt the system in the face of dynamism, thereby maintgits capability
to meet existing functional requirements. This is achigvgdnonitoring the
total amount of allocated storage. The Storage-aggredgmiaitialized with
the amount of available resources at initial deploymengetimihereafter each
resource leave and resource failure is captured by the neaiource watch-
ers, and propagated to the Storage-aggregator. If the aotalunt of allo-
cated resources drops below the given requirements, thradet@ggregator
issues a storageAvailabilityChange-event, indicating dkailability is criti-
cally low, which is received and processed by the Configomathanager. The

10
Listing 1.1. Pseudocode for parts of the Storage-aggregator

upon event ResourceFailure(resouldg do

amountto_subtract = allocatedesources(resourcil)

total.storage := totabmount— amountto_subtract

currentload := update(currentipad, totalstorage)

if total_amount< initial_requirement or currentoad > high_limit then
trigger(availabilityChangeEvent(totaltorage, currentoad))

end

Configuration-manager will try to find and allocate a unusssburce to deploy
anew storage component, whichthenis added to the groupgfaoents. Parts
of the Storage-aggregator and Configuration-manager psedé is shown in
Listing 1.1, demonstrating how the stateful informatiorképt by the aggre-
gator and updated through sensing events, while the aotuatimmands are
initiated by the manager.

Application Self-optimization. With self-optimization we mean the ability to
adapt the system so that it, besides meeting functionailregants, also meets
additional non-functional requirements such as efficien¢is is achieved
by using the ComponentLoad-watcher to gather informatiorthe total sys-
tem load, in terms of used storage. The storage componguist their load
change. These load reports are propagated to the Storggegatpr. The ag-
gregator will be able to determine when the total utilizatie critically high,
in which case a StorageAvailabilityChange-event is gdedravhich will be
processed by the configuration manager in the same way ashdgbm the
self-configuration section. If utilization drops below &em threshold, and the
total amount of allocated resources is above the initialiregnents, another
storageAvailabilityChange-event is generated. In thiedhe event indicates
the availability is higher than needed, which will causedbefiguration man-
ager to query the ComponentLoad-watcher for the least bhattwage compo-
nent, and instruct it to deallocate itself, thereby fredimg resource. Parts of
the Configuration-manager pseudocode is shown in Listidgdemonstrating
how the number of storage components can be adjusted updn nee

6. Related Work

This work builds upon and extends the notation used in [2] revltlee con-
cepts of watchers and event handlers for enabling self-atielrs were intro-
duced. The main extension in this paper is the notation of SMR unifying
architectural elements supported by the infrastructure.

As the work here presented suggests a particular implertiemshmodel for
distributed component based programming, relevant klatak can be found
in research dealing specifically with autonomic computingyéneral and in
research about component and programming models forlaligtd systems.

P2P-Based Self-* Management 11

Listing 1.2. Pseudocode for parts of the Configuration-manager

upon event availabilityChangeEvent(totstlorage , newoad) do
if total_storage< initial_requirement or nevoad> high.limit then
new.resource:resourceiscover(componemequirements, compareriteria)
new.resource: allocate (nevesource, preferences)
newcomponent: deploy (storag@mponentyRL, newresource)
addto_group (newcomponent, componegroup)
elseif newload< low_limit then
if total_storage> initial_requirement then
leastloadedcomponent = componembdadwatcher. getleastloaded ()
leastloadedresource = leadbadedcomponent. getesource ()
trigger(resourceLeaveEvent(ledstadedresource))
end
end

We consider the area of distributed storage services orilyag@xtent that we
acknowledge there are functionally superior systems, loey &re generally
built and managed in more monolitical ways.

Autonomic Management he vision of autonomic management as presented
in [9] has given rise to a number of proposed solutions to etsps the prob-
lem. Many solutions adds self-management support thronglattions of a
centralized self-manager. One suggested system whichttriadd some sup-
port for the self-management of the management systenf issélnity [4].
Following the model proposed by Unity, self-healing and-eehfiguration are
enabled by building applications where each system compiésna autonomic
element, responsible for its own self-management. Unisyiaes cluster-like
environments where the application nodes might fail, betjpttoject only partly
addresses the issue of self-management of the managermastrircture itself.

Component ModelsAmong the proposed component models which target
building distributed systems, the traditional ones, sutna Corba Component
Model or the standard Enterprise JavaBeans were designeligiat-server re-
lationships assuming highly available resources. Theyigeovery limited
support for dynamic reconfiguration. Other component madrich as Open-
COM [5], allow dynamic flexibility, but their associated astructure lacks
support for operation in volatile environments. The Gridn@mnent Model,
GCM [7], is a recent component model that specifically targgid program-
ming. GCM is defined as an extension of Fractal and its feain@ude many-
to-many communications with various semantics and autimeomponents.
The support for autonomic components is minimal. The mod&l defines
simple “autonomic controllers” that embody autonomic hétar and expose
generic operations to retrieve and execute autonomic tipesato accept QoS
contracts, and to signal QoS violations. The model proviaeguidance for
developing and composing actual controllers, that is;’setfide. Moreover, it
does not prescribe a particularimplementation model archar@sms to ensure

12

the efficient operation of self-* code in large-scale ermiments. Thus, GCM
can be seen as largely complementary to our work and thartke toommon
ancestor, we believe that our results can be exploited mvatuture GCM im-
plementation. A component model designed specificallytfoctured overlay
networks and wide scale deployment is p2pCM, which extehdsDXERMI
object middleware platform [11, 10]. The model providesliegtion of com-
ponent instances, component lifecycle management ang@ gmamunication,
including anycall functionality to communicate with thesést instance of a
component. The model does not offer higher level abstmastoich as watchers
and event handlers, and the support for self-healing angssef consistency
are only partially addressed.

Distributed storages and file systen@@ur demo application does not try to
compete on a functional basis with existing distributedagie systems. For the
interested reader, one hash-based storage solutions hdschroven useful in
a real scenario is Dynamo, the storage system underlyinéth&zon service
infrastructure [6]. A recently suggested distributed fistem which suggest
loosening the consistency guarantees to instead provigieehperformance is
found in [12]. These system are functionally superior toademo application,
butthey are written as separate services, and thus theytdbow the separation
of functional and non-functional concerns that we illutgra

7. Conclusions

We used our component management framework to design ens@l&ging
application to be used in highly dynamic Grid environmenteTramework
allows to develop application self-* behaviours as a distied event-driven
management application that is independent from apphicatiunctional code
yet can interact with it when necessary. The framework glesia small set
of abstractions that facilitate fault-tolerant applicatimanagement, and fault-
tolerant execution of the management code itself. The freorieleverages the
self-* properties of the structured overlay network whitksibuilt upon.

Acknowledgments This researchis supported by the European project Grid4All
and the CoreGrid Network of Excellence.

References

[1] S.Bouchenak, F. Boyer, S. Krakowiak, D. Hagimont, A. MasB. Stefani, N. de Palma,
and V. Quema. Architecture-based autonomous repair mamage An application to
J2EE clusters. II8RDS '05: Proceedings of the 24th IEEE Symposium on Relible
tributed Systems (SRDS'Qpages 13-24, Orlando, Florida, October 2005. IEEE.

[2] P.Brand, J. Hoglund, K. Popov, N. de Palma, F. Boyer, &tlldvantzas, V. Vlassov, and
A. Al-Shishtawy. The role of overlay services in a self-mgimg framework for dynamic
virtual organizations. II€oreGRID Workshop, Crete, Greeckine 2007.

P2P-Based Self-* Management 13

(3]
[4]
[5]

(6]

[7]

(8]

[9]
(10]

(11]

(12]

E. Bruneton, T. Coupaye, and J.-B. Stefani. The fractehponent model. Technical
report, France Telecom R&D and INRIA, February 5 2004.

D. Chess, A. Segal, I. Whalley, and S. White. Unity: Exipaces with a prototype auto-
nomic computing systenProc. of Autonomic Computingages 140-147, May 2004.

G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and Jyafea. A component model
for building systems software. IRroceedings of IASTED Software Engineering and
Applications (SEA’04)Cambridge MA, USA, November 2004.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, &k$¢hman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: amazagtgyhavailable key-value
store. INSOSP ’07: Proceedings of ZIACM SIGOPS Symposium on Operating Systems
Principles pages 205-220, New York, NY, USA, 2007. ACM.

Basic features of the Grid component model. CoreGRIDiRehble D.PM.04, Core-
GRID, EU NoE project FP6-004265, March 2007.

J. Hanson, I. Whalley, D. Chess, and J. Kephart. An aechitral approach to autonomic
computing. INCAC '04: Proceedings of the First International Confereran Autonomic
Computing (ICAC’04)pages 2-9, Washington, DC, USA, 2004. IEEE Computer Societ

P. Horn. Autonomic computing: IBM’s perspective on thats of information technology,
October 15 2001.

C. Pairot, P. Garcia, and A. Gomez-Skarmeta. Dernmied distributed hash table-based
middleware frameworklEEE Internet Computingd8(3):74—84, 2004.

C. Pairot, P. Garcia, R. Mondgjar, and A. Gomez-8ieta. p2pCM: A structured peer-
to-peer Grid component model. International Conference on Computational Scignce
pages 246-249, 2005.

J. Stribling, E. Sit, M.F. Kaashoek, J. Li, and R. MorriBon't give up on distributed
file systems. IrProceedings of the 6th International Workshop on PeerderFSystems
(IPTPS07)Bellevue, WA, February 2007.

