Cluster Comput
DOI 10.1007/s10586-017-0899-z

@ CrossMark

OnlineElastMan: self-trained proactive elasticity manager

for cloud-based storage services

Ying Liu!

Received: 10 March 2017 / Accepted: 2 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract The pay-as-you-go pricing model and the illusion
of unlimited resources in the Cloud initiate the idea to pro-
vision services elastically. Elastic provisioning of services
allocates/de-allocates resources dynamically in response to
the changes of the workload. It minimizes the service pro-
visioning cost while maintaining the desired service level
objectives (SLOs). Model-predictive control is often used
in building such elasticity controllers that dynamically pro-
vision resources. However, they need to be trained, either
online or offline, before making accurate scaling decisions.
The training process involves tedious and significant amount
of work as well as some expertise, especially when the model
has many dimensions and the training granularity is fine,
which is proved to be essential in order to build an accurate
elasticity controller. In this paper, we present OnlineElast-
Man, which is a self-trained proactive elasticity manager
for cloud-based storage services. It automatically evolves
itself while serving the workload. Experiments using Onli-
neElastMan with Cassandra indicate that OnlineElastMan
continuously improves its provision accuracy, i.e., minimiz-
ing provisioning cost and SLO violations, under various
workload patterns.

X Ying Liu
yinliu@kth.se

Daharewa Gureya
gureya.daharewa @ gmail.com

Ahmad Al-Shishtawy
ahmad @sics.se

Vladimir Vlassov
vladv @kth.se

KTH Royal Institute of Technology, Stockholm, Sweden

Swedish Institute of Computer Science, Kista, Sweden

Published online: 29 May 2017

- Daharewa Gureya! . Ahmad Al-Shishtawy?

. Vladimir Vlassov!

Keywords Elasticity controller - Cloud storage - Workload
prediction - SLO - Online training - Time series analysis

1 Introduction

Hosting services in the Cloud are becoming more and more
popular due to a set of desired properties provided by the
platform, such as low application setup cost, professional
platform maintenance and elastic resource provisioning.
Elastically provisioned services are able to use platform
resources on demand. Specifically, VMs are spawned when
they are needed for handling an increasing workload and
removed when the workload drops. Since users only pay for
the resources that are used to serve their demand, elastic pro-
visioning saves the cost of hosting services in the Cloud.

On the other hand, services are usually provisioned to
match a certain level of quality of service (QoS), which is
usually defined as a set of service level objectives (SLOs) in
Cloud context. Thus, there are two contradictory goals to be
achieved, i.e., saving the provisioning cost and meeting the
SLO, while services are elastically provisioned.

Elastic provisioning is usually conducted automatically by
an elasticity controller, which monitors the system status and
makes corresponding decisions to add or remove resources.
An elasticity controller needs to be trained, either online or
offline, in order to make it smart enough to make such deci-
sions. Generally, the training process allows the controller
to build up a model that correlates monitored parameters,
such as CPU or incoming workload, to controlled parame-
ters, i.e., the SLO, which could be, for example, percentile
request latency. The accuracy of the model, directly affects
the accuracy of the elasticity controller, which dominates
service provisioning cost and commitment of the SLO.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0899-z&domain=pdf
http://orcid.org/0000-0003-2929-6370
http://orcid.org/0000-0002-9546-4937

Cluster Comput

It is non-trivial to build an accurate and efficient elasticity
controller. Recent works have been focusing on improving
the accuracy of elasticity controllers by building different
control models with various monitored/controlled metrics
[1-8]. However, none of the works have considered the prac-
tical usefulness of an elasticity controller, which involves the
following challenges. First, an elasticity controller usually
needs to be tailored according to a specific application. To
be concise, sometimes, it requires complicated instrumenta-
tions to the provisioned application or even not possible to
obtain the metrics that are used to build the control model.
Furthermore, even with all the metrics, it requires tremen-
dous and tedious works to train the control model. A general
training procedure involves the redeployment and reconfigu-
ration of the application and collecting and analyzing data by
running various workloads against various configurations of
the application. Second, the hosting environment of the pro-
visioned application may change due to some unmonitored
factors, for example, platform interference or background
maintenance tasks. Then, even with well-trained control
models, it may not be able to adjust to these factors and leads
to inaccurate control decisions. Third, it is always too late for
the elasticity controller to react to a workload increase when
the workload is already saturating the application. Thus, we
argue that prediction of the workload is always a compulsory
element to an elasticity controller.

In this work, we propose OnlineElastMan, which is a
generic elasticity controller for distributed storage systems.
It excels its peers with its practical aspects, which includes
straightforward obtainable control metrics, automatically
online trained control models and embedded generic work-
load prediction module. It makes OnlineElastMan an “out-
of-the-box” elasticity controller, which can be deployed and
adopted by different storage systems without complicated
tailoring/configuring efforts. Specifically, OnlineElastMan
requires only monitoring on the two most generic metrics,
i.e., incoming workload and service latency, which is obtain-
able from most of the storage systems without complicated
instrumentation. Using the monitored metrics, OnlineElast-
Man analyzes the workload composition in depth, which
includes read/write request intensity and data size of the
requested item, which defines the dimensions of a control
model. OnlineElastMan can easily plug in more interested
dimensions if needed. After fixing the dimensions, a multi-
dimensional control model can be automatically built and
trained online while the storage system is serving requests.
After a sufficient amount of warm up on the control model,
OnlineElastMan is able to issue accurate control decision
based on the incoming workload. Furthermore, the con-
trol model continuously improves itself online to adjust to
unknown/unmodeled events of the operating environment.
Additionally, a generic workload prediction module is also
integrated to facilitate the decision making of OnlineElast-

@ Springer

Man. It allows OnlineElastMan to scale the storage system
well in advance to prevent SLO violations caused on work-
load increase and scaling overhead [7]. Specifically, the
prediction module aggregates multiple prediction algorithms
and chooses the most appropriate prediction algorithm based
on the current workload pattern using a weight majority
selection algorithm. Contributions of the paper are as fol-
lows.

— Implementation of an “out-of-the-box” generic elasticity
controller framework, which is easily applicable to most
of the distributed storage systems.

— Integration of an online self-trained control model to
OnlineElastMan, which avoids repetitive and tedious sys-
tem reconfiguring and model training.

— Proposal of a multi-dimensional control model based
on workload characteristics, which proves to have bet-
ter control accuracy.

— Realization of a generic workload prediction module in
OnlineElastMan, which is adjustable to multiple work-
load patterns.

— Open-source implementation' of OnlineElastMan frame-
work.

2 Problem statement

There is a large body of work on elasticity controllers for
the Cloud [2-8]. Most of them focus on improving the con-
trol accuracy of the controller by introducing novel control
techniques and models. However, none of them tackles the
practical issues regarding the deployment and application
of the controllers. We examine the usefulness of an elastic-
ity controller while deploying it in a Cloud environment.
Specifically, we investigate the configuration steps for an
elasticity controller before it starts provision services. Typ-
ically, it involves the following steps to setup an elasticity
controller.

1. Acquire metrics for the elasticity controller from the pro-
visioned application or the host platform.

2. Deploy the provisioned application in order to construct
a training case for the elasticity controller.

3. Configure the provisioned application according to the
deployment.

4. Configure and run a specific synthesized workload
against the application.

5. Collect training data from the training case and train the
control model accordingly.

6. Repeat step 2—5 until the control model is fully trained
before serving the real workload.

1" https://github.com/gureya/OnlineElasticityManager.

https://github.com/gureya/OnlineElasticityManager

Cluster Comput

It is intuitively clear that the more metrics considered in a
control model, the more accurate it will be. However, increas-
ing the metric dimensions of a control model comes with a
significant amount of overhead during the training phase.
Specifically, training a control model with only 3 dimen-
sions results in 27 (3%) training cases when only 3 trials/runs
are conducted for each dimension. This means that steps 2—
5 needs to be repeated 27 times to train the control model.
Obviously, it is extremely time consuming to train a con-
trol model manually, especially when the model has many
dimensions, which is needed for higher control accuracy.

OnlineElastMan alleviates the training process with online
training. Specifically, the model automatically trains and
evolves itself while serving the workload. After a short period
of warm up, the controller is able to provision the underly-
ing application accurately. Thus, it is no longer needed to
manually and repetitively reconfigure the system in order
to train the model. Furthermore, in order to make Onli-
neElastMan as general as possible, its input metrics are
easily obtainable from the application. Specifically, it directly
uses the information in the incoming workload, which does
not need application specific instrumentation, and service
latency, which is the most accurate and direct reflection of
QoS and can be easily sampled from system entry points or
proxies.

On the other hand, previous works [2,7] have demon-
strated that, in order to keep the SLO commitment, a
storage system needs to scale up in advance to tackle with a
workload increase since scaling a storage system involves
non-negligible overhead. Thus, we have made a design
choice to integrate a workload prediction module for Onli-
neElastMan. Again, to make it as general as possible, the
workload prediction module is able to produce accurate
workload prediction for various workload patterns. Specifi-
cally, it has integrated several prediction algorithms that are
designed to cope with different time series patterns. The most
appropriate prediction algorithm is chosen online using a
weight majority selection algorithm.

3 Background

In this section we lay out the necessary background for the
paper. This include Cloud computing, elastic services, state-
ful services, feedback control, and feedforward control.

3.1 Cloud computing and elastic services

Cloud computing, with its pay-as-you-go pricing model, pro-
vides an attractive solution to host the ever-growing number
of web applications [9]. This is mainly because it is difficult,
especially for startups, to predict the future load that might be
imposed on the application and thus to predict the amount of

resources needed to serve that load. Another reason is the ini-
tial investment, in the form of buying the servers, is avoided
in the Cloud pricing model.

To leverage the Cloud pricing model and to efficiently
handle the dynamic workload, Cloud services are designed
to be elastic. An elastic service is able to scale horizontally at
runtime, by provisioning additional resources, without dis-
rupting the service. An elastic service can be scaled up in the
case of increasing workload by adding resources in order to
meet SLOs. In the case of decreasing load, the service can
be scaled down by removing resources and thus reducing the
cost without violating the SLOs.

3.2 Stateful services

Modern applications, such as Social Networks, Wikis,
and Blogs, are data-centric, which require frequent data
access [10]. This poses new challenges on the data-tier of
multi-tier applications because the performance of the data-
tier is typically governed by strict SLOs [11]. With the
rapid increase of the number of users, the poor scalabil-
ity of a typical data-tier with ACID [12] properties limited
the scalability of web applications. This has led to the
development of NoSQL databases with relaxed consistency
guarantees and simpler operations in order to achieve hori-
zontal scalability and high availability. Examples of NoSQL
data-stores include, among others, key-value stores such as
Voldemort [13], Dynamo [14], and Cassandra [15]. In this
work, we focus on key-value stores, which typically pro-
vide simple key-value pair storage with eventual consistency
guarantees. The simplified data and consistency models of
key-value stores enable them to efficiently scale horizontally
by adding more servers and thus serve more clients.

Another problem facing web applications is that a certain
service, feature, or topic might suddenly become popular
resulting in a workload spike [16, 17]. The fact that storage is
a stateful service complicates the problem since only a par-
ticular subset of servers host data of the popular item. For
stateful services, scaling is usually combined with a rebal-
ancing step necessary to redistribute the data among the new
set of servers.

These challenges have led to the need for an automated
management of the data-tier, to make it capable to quickly
and efficiently respond to changes in the workload in order
to meet the required SLOs of the storage service.

3.3 Feedback versus feedforward control

In computing systems, a controller [18] or an autonomic
manager [19] is a software component that regulates the
nonfunctional properties (performance metrics) of a target
system. Nonfunctional properties are properties of the sys-
tem such as the response time or CPU utilization. From

@ Springer

Cluster Comput

the controller perspective these performance metrics are
the system output. The regulation is achieved by monitor-
ing the target system through a monitoring interface and
adapting the system’s configurations, such as the number
of servers, accordingly through a control interface (con-
trol input). Controllers can be classified into feedback or
feedforward controllers depending on what is being moni-
tored.

In feedback control, the system’s output (e.g., response
time) is monitored. The controller calculates the control error
by comparing the current system’s output to a desired value
set by the system administrators. Depending on the amount
and sign of the control error, the controller changes the con-
trol input (e.g., number of servers to add or remove) in order
to reduce the control error. The main advantage of feed-
back control is that the controller can tolerate noise and
disturbance such as unexpected changes in the behaviour
of the system or its operating environment. Disadvantages
include oscillation, overshoot, and possible instability if the
controller is not properly designed. Due to the nonlinear-
ity of most systems, feedback controllers are approximated
around linear regions called the operating region. Feedback
controllers work properly only in the operating region they
where designed for.

In feedforward control, the system’s output is not moni-
tored. Instead the feedforward controller relies on a model
of the system that is used to calculate the system’s output
based on the current system state. For example, given the
current request rate and the number of servers, the system
model is used to calculate the corresponding response time
and act accordingly to meet the desired response time. The
advantages of feedforward control include being faster than
feedback control in reaching the optimum point and avoiding
oscillations and overshoot.

;ulti—"l%er We; Appli;tioni
NV S/

Presentation Tier

bl [[[

Deployed in a
Cloud Environment

Application Tier

.

oleleloiolol

Horizontal Scalability
(add more servers)

\

The major drawback of feedforward control is that it is
sensitive to unexpected disturbances that are not accounted
for (modelled) in the system model. Addressing this issue
may results in a relatively complex system model, compared
to feedback control, that tries to capture all possible states
of the modelled system. Another approach is to apply online
training that continuously adapts the system model in order
to reflect changes in the physical system.

3.4 Target system

We are targeting multi-tier web applications (the left side of
Fig. 1). We are focusing on managing the data-tier because
of its major effect on the performance of web applications,
which are mostly data centric [10]. For the data-tier, we
assume horizontally scalable key-value stores due to their
popularity in many large scale web applications such as
Facebook and LinkedIn. A typical key-value store provides
a simple put/get interface. This simplicity enables efficient
partitioning of the data among multiple servers and thus to
scale well to a large number of servers.

The minimum requirements to enable elasticity control
of a key-value store are as follows. The store must provide a
monitoring interface to monitor the workload and the latency
of put/get operations. The store must also provide an actu-
ation interface that allows horizontal scalability by adding
or removing servers. As storage is a stateful service, actu-
ation must be combined with a rebalance operation, which
redistributes the data among the new set of servers. Many
stores, such as Voldemort [13] and Cassandra [15], provide
rebalancing tools.

We target applications running in the Cloud (right side
of Fig. 1). We assume that each service instance runs on its
own VM; each physical machine hosts multiple VMs. The

Public / Private Cloud Environment

[o]
]

Physical
Machine

Virtual

\Machine |E|
Serve

Each server executes in its own Virtual Machine, which
runs in a physical machine in a Cloud environment

Fig. 1 Multi-tier web application with elasticity controller deployed in a cloud environment

@ Springer

Cluster Comput

Cloud environment hosts multiple applications (not shown
in the figure). Such environment complicates the control
problem mainly due to the fact that VMs compete for the
shared resources. This environmental noise makes it difficult
to model and predict the performance of VMs [20,21].

3.5 Cassandra

We have chosen Cassandra as our targeted underlying dis-
tributed storage system. Cassandra [15] is open sourced
under Apache licence. Itis a distributed storage system which
is highly available and scalable. It stores column-structured
data records and provides the following key features:

— Distributed and decentralized architecture Cassandra
is organized in a peer-to-peer fashion. Specifically, each
node performs the same functionality in a Cassandra clus-
ter. However, each node manages a different namespace,
which is decided by the hash function in the DHT. Com-
paring to Master-slave, the design of Cassandra avoids
single point of failure and maximizes its scalability.

— Horizontal scalability The peer to peer structure enables
Cassandrato scale linearly. The consistent hashing imple-
mented in Cassandra allows it to swiftly and efficiently
locate a queried data record. Virtual node techniques are
applied to balance the load on each Cassandra node.

— Tunable data consistency level Cassandra provides
tunable data consistency options, which is realized
through different combinations of read and write APIs.
These APIs use ALL, EACH_QUORUM, QUORUM,
LOCAL_QUORUM, ONE, TWO, LOCAL_ONE, ANY,
SERIAL, LOCAL_SERIAL to describe read/write calls.
For example, the ALL option means the Cassandra
reads/writes all the replicas before returning to clients.
The explanation of each read/write option can be easily
found on Apache Cassandra website.

— An SQL like query tools—CQL The common access
interface in Cassandra is exposed using Cassandra Query
Language (CQL). CQL is similar to SQL in its semantics.
For example, a query to get a record whose id equals to
100 results the same statement in both of CQL and SQL
(SELECT * FROM USER_TABLE WHERE ID= 100). It
reduces the learning curve for developers to use CQLs
and get started with Cassandra.

4 OnlineElastMan design

In this section, we present the design of OnlineElastMan by
explaining its three major components, i.e., workload predic-
tion, online model training, and elasticity controller. Figure 2
presents the architecture of OnlineElastMan. Components
operate concurrently and communicate by message passing.

Workload Prediction

. \Workload (t+1)
— Tow |

Online Training -
Updated
.] . .

Controller

|Add/Remove
Resources

System
Model

Workload (t)

Data Size, ...

SLO
Violation

Cloud Storage Service

Fig. 2 OnlineElastMan architecture

Briefly, workload prediction module takes input from the cur-
rent workload and predicts workload for a near future (the
next control period). Online Model training module updates
the current model by mapping and analyzing the monitored
workload and the performance of the system. Then, the elas-
ticity controller takes the predicted workload and consults
the updated performance model to issue scaling commands
by calling the Cloud API to add or remove servers for the
underlying storage system.

4.1 Monitored parameters

Auto-scaling technique requires a monitoring component
that gathers various metrics that reflect the realtime status
of the targeted system at an appropriate granularity (e.g per
second, per minute, per hour). It is essential to review the
metrics that can be obtained from the target system and
the metrics that best reflect the status of the system. To
ease the configuration of OnlineElastMan framework and
to make it as general as possible, we consider the target
storage system as a black box. OnlineElastMan adopts the
most general and direct metrics that dominate the QoS of
the targeted storage system. Specifically, we take the work-
load, which causes the variations in those system metrics,
directly as the input. OnlineElastMan requires the workload
monitoring to provide the read/write intensity and the size
of the requested data in the workload in small intervals.
The monitored data can be obtained by sampling the traffic
passing through the entry points, e.g. proxies or load bal-
ancers, of the storage system. The percentile latency, which
defines and directly reflects the QoS, is collected either from
entry proxies or the storage system itself depending on the
design and workflows of storage systems. Then, the collected
percentile latency is used to adjust and improve control deci-
sions/models. In Sect. 5.1.1, we provide details on how we
obtain these metrics in a distributed storage system, such as,
Cassandra [15].

@ Springer

Cluster Comput

4.2 Multi-dimensional online model

One of the core components in OnlineElastMan is the multi-
dimensional SML (Statistical Machine Learning) model,
which is learnt online. It correlates the input metrics (work-
load characteristics) with the SLO (percentile latency). The
goal of the model is to keep the target system operating
with the percentile latency varying only in a small con-
trolled range. It is intuitively clear that with more provisioned
resources (VMs), the system is able to respond to requests
with reduced latency. However, on the other hand, we would
also like to provision as little VMs as possible to save the pro-
visioning cost. Thus, the controlled latency range is always
desired to be slightly under (just satisfying) the percentile
latency requirement defined in the SLO to minimize the
provisioning cost. We refer this region to be optimal oper-
ational region (OOR), where a system is not very much
over-provisioned but satisfying the SLO.

In order to keep the system operating in the OOR while
the incoming workload is dynamic, an elasticity controller
needs to react to the workload changes and allocating/de-
allocating VMs to the system. Previous works [3,4,7,22]
designs an elasticity controller based on an offline statistical
model. OnlineElastMan builds the model online and contin-
uously improves/updates the model while serving requests.
The online training feature frees system administrators from
the tedious offline model training procedure, which includes
repetitive system configurations, system deployments, model
updates, etc., before putting the controller online. Addi-
tionally, the continuous evolving model in OnlineElastMan
enables the system to survive with factors that are not con-
sidered in the model, e.g. platform interference [23,24].

Specifically, the online model is built with the monitored
parameters mentioned in Sect. 4.1. It classifies whether a
VM s able to operate in the OOR under the current workload,
which breaks down to the intensity of read and write requests
and the requested data size. Ideally, a storage node hosted in a
VM can be either operating under commitment to the SLO or
with violation to the SLO. Therefore, with a given workload
and VM flavor, the classifier model is a line that separates
the plane into two regions, in which the SLO is either met
or violated as shown in Fig. 5. Different models need to be
built for different VM flavors and different storage systems
hosted. While building the model as depicted in Fig. 3, there
are several configurable parameters that affect the accuracy
of the model.

Granularity of the model Since the collected data for the
model can be decimal, it is impossible to analyze the data
with infinite combinations. We group the collected data with
a pre-defined granularity, which makes a two-dimensional
plane to be separated to small squares or a three-dimensional
plane to be separated to small cubes. These squares and cubes

@ Springer

Model Granularity P mmm—
5 A -~
b= History Buffer
@
£
a Confidence
©
c
Q
153
2 /|
a N

earned Model

First Dimention

Fig. 3 Building the multi-dimensional online model

Model Inferencing
Online Training

|

I
4} Model Training

Offline profiled Labeled training Classifier: Support OnlineElastMan
examples examples Vector Machine model

Fig. 4 Classification using SVM

are the groups where data are accumulated and analyzed. The
granularity of data groups can be configured depending on the
memory limits and the precision requirements of the model.

Historical data buffer For data collected and mapped to
each group, we maintain a historical record for the most
recent n reads and writes.

Confidence level The historical data in each group is ana-
lyzed to define whether the workload that corresponds to
the data collected in this group violates the SLO or not. For
example, 95% confidence level implies that 95% of all the
Read/write percentile latency sampled satisfy the SLO.

Update frequency The model updates itself periodically
with a fixed configurable rate. A higher update frequency
allows the model to swiftly adapt to execution environment
changes while a lower update frequency makes the model
more stable and tolerate transient execution environment
changes.

4.2.1 SVM binary classifier

SVMs have become popular classification techniques in a
wide range of application domains [25]. They provide good
performance even in cases of high-dimensional data and a

Cluster Comput

small set of training data. Figure 4 shows the flow of a clas-
sification task using SVM. Briefly, we first train the model
offline using systematically profiled data. Then, we put the
model online to let it evolve itself.

Here, we describe the algorithm of SVM applied to build
the model of OnlineElastMan. Each instance of the training
set contains a class label and several features or observed
variables. The goal of SVM is to produce a model based
on the training set. More concretely, given a training set of
instance-label pairs (x;, y;),i = 1, ..., I where x; € R" and
yi € {1, =1}, the SVM classification solves the following
optimization problem:

mingp lw|*+CY & ()
i

subject to:

YO+ =1-&, i=12....m
5120, i=1527"‘7m (2)
After solving, the SVM classifier predicts 1 if w” x+b > 0
and —1 otherwise. The decision boundary is defined by the
following line:

wlix+b=0 3)

Generally, the predicted class can be calculated using the
linear discriminant function:

f(x)=wx+b 4

x refers to a training pattern, w as the weight vector and b
as the bias term. wx refers to the dot product, which cal-
culates the sum of the products of vector components w;x;.
For example, in case of training set with three features (e.g.
X, Y, 2), the discriminant function is simply:

f(x) =wix + w2y +w3zz+b %)

SVM provides the estimates for w, wy, w3 and b after train-
ing.

Given Eq. 3, the SML model is a line (Fig. 5) when only
monitoring read/write request intensity in the workload or
a plane (Fig. 6) when another dimension, i.e., data size, is
modeled. Figure 7 is a 2 dimensional projection of Fig. 6,
which shows that different data sizes cause different separa-
tions of the 2 dimensional model space. It indicates that data
size plays an essential role to build an accurate control model
for storage systems. The line/plane separation in the model
represents the maximum workload that a VM can serve under
the specified SLO (percentile latency).

Training Data and Model
1000 T e " r T : . . p
g -1 [Fa
800 -) Support 1
&

BOOD +

700 -

600 L

500

400 +

300 +

Writes per second

200

0 100 200 300 400 500 600 700 B0OO 900 1000
Reads per second

Fig. 5 2 dimensional SVM performance model

e
olate ..
== Model & Training Data and Model
X
(0]
N
0
W]
65
0o
1500
1000

Writes per second

0 200

Reads per second

Fig. 6 3 dimensional SVM performance model taking into account
request data size

Online model Training Using the SVM model train-
ing technique, the performance model is updated periodi-
cally according to the update frequency using the data in
the historical data buffer processed with the confidence
level.

We believe that every VM can have significant perfor-
mance difference even when they are spawned with the same
favor. This can be caused by the interference from the host
platform [23,24] or background tasks, such as data migra-
tion [7]. Thus, individual SML model is built for each VM
participating in the system. They automatically evolve and
update continuously while the system is serving workload.
Periodically, the updated SML models for each VM are sent
to the elasticity controller module to make scaling decisions.

@ Springer

Cluster Comput

X Satisfy SLO
+ Violate SLO
1 Model
1500 Training Data and Model

1000

500

Writes per second

0 200 400 600 800 1000
Reads per second

Fig. 7 Top angle view of the SVM model, where the model plane is
projected to a 2 dimensional surface and the shaded area is caused by
the varying data sizes

4.3 Elasticity controller

An elasticity controller makes scaling decisions in con-
figurable control periods/intervals to prevent system from
oscillations. When making a scaling decision, the elastic-
ity controller collects the aggregation of the input workload
of all VMs (W) and the aggregation of the capacity of all
VMs (C). The capacity of a VM is the maximum workload
that it can handle under the SLO, which is obtained from
the multi-dimensional SML model. The elasticity controller
also observes the input workload (w,) and capacity (c,) for
each VM individually to identify fine-grained SLO viola-
tions. Specifically, the capacity of each VM is calculated by
intersecting the plane of its SML model with a line from
the origin that points to the current workload representation,
which is a point corresponding to read and write workload
intensity and the averaged data size. The capacity of the VM
is the intersection point, which represents the capability to
serve workload with specific read/write request intensity of a
specific data size. If the current workload representation point
is beyond the capacity representation point in the model, the
SLO is violated.

The responsibility of an elasticity controller is to keep
the provisioned system operating with commitment to the
SLO. The strictest requirement is that each VM operates
with the commitment to the SLO, which can be denoted
by Vi € N,w; < c¢;, where N is the complete set of all
participating VMs. However, this is not trivial to achieve
without over-provisioning the system because of the imbal-
ance of workload distribution. It is challenging to balance
workload in storage systems with respect to each VM. This
is because that storage systems are stateful, i.e., usually each

@ Springer

VM is responsible only for a part of the total data stored.
Thus, a specific request can only be served by a specific set
of VMs, which host the requested data. Given that different
storage systems have different data distribution as well as
load balancing strategies and OnlineElastMan is designed to
be a generic framework to provision storage systems elasti-
cally, we choose not to manage workload/data distribution
for provisioned systems. Furthermore, managing data distri-
bution or rebalancing among VMs is orthogonal to the design
goal of OnlineElastMan. Nevertheless, OnlineElastMan pro-
vides/outputs suggestions for workload distributions to each
participating VMs based on their capacity learnt from our
SML models.

In order to tolerant load imbalance among VMs to some
extent, OnlineElastMan introduces an optional tolerance
factor « when computing scaling decisions to prevent too
much over-provisioning. Specifically, a scaling up decision
is issued when the SLO violation ¢, < w, is observed from
more than o VMs, where @« > 0. When o = 0, there is no
tolerance on load imbalance. The number of VMs to add is
calculated individually for each VM and aggregated glob-
ally. M number of VMs with the same flavor as ¢, is
expected to be added. Thus, when w* & < 0, it represents
that a VM has more capacity than the incoming workload.
We aggregate results of w*cx % on each VM flavors and ceil-
ing the aggregated results. When the result on a specific VM
flavor is negative, we do nothing because it is in a scaling
up procedure. When the result on a specific VM flavor is
positive, we add the number of VMs of that flavor accord-
ingly.

For scaling down, there is also a corresponding load imbal-
ance tolerance factor 8. 8 denotes the number of VMs, which
are over-provisioned, in each VM flavor. A scaling down pro-
cedure is triggered by first satisfying that there is no VM that
violates the SLO, which gives Vi € N, w; < ¢;, where N is
the complete set of all participating VMs. Then, the number
of VMs to de-allocate is calculated through similar process
comparing to scaling up. The aggregated results of w* £ on
each VM flavors are floored after subtracting . Last, the cor-
responding number of VMs are de-allocated when the floored
results are greater than zero.

When a scaling up/down decision is made, the elasticity
controller interact with Cloud/platform API to request/release
VMs. Where applicable, the elasticity controller also calls
the API to rebalance data to the newly added VMs or
to decommission the VMs that are about to be removed.
Adding/removing VMs to a distributed storage system intro-
duce a significant amount of data rebalance load in the
background. This leads to fluctuations on sensitive perfor-
mance measures, such as percentile latency. Usually, the extra
data rebalancing load is not long lasting. So, this fluctuation
can be filtered out in our SML model with proper setting on

Cluster Comput

the confidence level and update frequency introduced in
Sect. 4.2.

4.4 Workload prediction

An optional but essential component of OnlineElastMan is
the workload prediction module. It is always too late to
make a scaling out decision when the workload is already
increased since preparing VMs involve non-negligible over-
head, especially for storage systems, which require data to be
migrated to the newly added VMs. Thus, there is a prediction
module that facilitates OnlineElastMan to make decisions in
advance.

Often, there are patterns that can be found in the work-
load, such as the diurnal pattern [26]. These patterns become
vague when the workload is distributed to each VM. Thus,
we are not predicting the incoming workload for each
VM. Rather, the workload is predicted for the whole sys-
tem. Then, it is proportionally calculated for each VM
based on the current workload portion that is served by
the VM. Finally, instead of using the current incoming
workload to make a scaling decision in the previous sec-
tion, we are able to use the predicted workload as the
input.

However, even predicting the workload for the whole sys-
tem is not trivial since there are many factors that contribute
to the fluctuation of the workload [27]. Some workloads
have repetitive/cyclic pattern, such as diurnal patterns or
seasonal patterns while some other workloads experience
exponential growth over a short period of time, which can
be caused by market campaigns or special offers. Con-
sidering that there are no perfect predictors and different
applications’ workloads are distinct, no single prediction
algorithm is general enough to be suitable for most work-
loads. Thus, we have studied and analyzed several prediction
algorithms that are designed for different workload patterns,
i.e., the regression trees, first-order autoregressive, differ-
enced first-order autoregressive, exponential smoothing,
second-order autoregressive and random walk. Then, a
weighted majority algorithm (Sect. 4.4.3) is used to select
the best prediction algorithm.

4.4.1 Regression trees model

Regression trees predict responses to data and are considered
as a variant of decision trees. They specify the form of the
relationship between predictors and a response. We first build
a tree using the time series data through a process known as
recursive partitioning (Algorithm 1) and then fit the leaves
values to the input predictors like Neural Networks. Particu-
larly, to predict a response, we follow the decisions in the tree
from the root node all the way to a leaf node which contains
the response.

Algorithm 1: Recursive Partitioning Algorithm

Data: A set of N data points, x;,i=1,...,n

Result: A regression tree

if termination criterion exist then

Generate Leaf Node and allocate it a Given Value;
Return Leaf Node;

else

Identify Best Splitting test s3;

Generate node ¢ with sx;

Left_branch(z) =

RecursivePartitioning(< X;, yi >: Xj = §%);
Right_branch(z) =

RecursivePartitioning(< x;, yi >: Xj 7 $%);
Return Node ¢;

4.4.2 ARIMA

Autoregressive moving average (ARMA) is one of the most
widely used approaches to time series forecasting. ARMA
model is convenient for modelling time series data which
is stationary. In order to handle non-stationary time series
data, ARMA model adopts a differencing component to help
deal with both stationary and non-stationary data. This class
of models with differencing component is referred to as the
autoregressive integrated moving average (ARIMA) model.
Specifically, ARIMA model is made up of autoregressive
(AR) component of lagged observations, a moving average
(MA) of past errors and a differencing component (I) needed
to make a time series to be stationary. The MA component
is impacted by past and current errors while the AR com-
ponent shows the recent observations as a function of past
observations [28].

In general, an ARIMA model is parametrized as
ARIMA(p.d,q), where p is the number of autoregressive
terms (order of AR), d is the number of differences needed for
stationarity, and q is the number of lagged forecast errors in
the prediction equation (order of MA). The following equa-
tion represents a time series expressed in terms of AR(n)
model:

Y (1) = pten Y(t = 1)+ (1 =2)++ -+, Y (t —n) (6)

Equation 7 represents a time series expressed in terms of
moving averages of white noise and error terms.

Y (1) = p+Bie(t — 1) + Poe(t —2) + - - +pe(t —n) (7)

In OnlineElastMan, apart from regression tree, we have
integrated five ARIMA models, which are the first-order
autoregressive (ARIM A(1, 0, 0)), the differenced first-order
autoregressive (ARIMA(1, 1, 0)), the simple exponential
smoothing (ARIM A(0, 1, 1)), the second-order autoregres-
sive (ARIMA(,0,0)) and the random walk
(ARIMA(0, 1, 0)). In our view, they can capture almost all

@ Springer

Cluster Comput

the common workload patterns. For example, the first-order
autoregressive model performs well when the workload is
stationary and autocorrelated while, for non-stationary work-
load, a random walk model might be suitable. Then, the
challenge is to detect and select the most appropriate pre-
diction model during runtime.

4.4.3 The weighted majority algorithm

A Weighted Majority Algorithm (WMA) is implemented
to select the best prediction model during runtime. It is a
machine learning algorithm that is used to build a combined
algorithm from a pool of algorithms [29]. The algorithm
assumes that one of the known algorithms in the pool will per-
form well under the current workload without prior knowl-
edge about the accuracy of the algorithms. The WMA have
many variations suited for different scenarios including infi-
nite loops, shifting targets and randomized predictions. We
present our WMA implementation in Algorithm 2. Specif-
ically, the algorithm maintains a list of weights wi,...,w,
for each prediction algorithm. The prediction result from the
most weighted algorithm, based on a weighted majority vote,
is selected and returned.

Algorithm 2: The Weighted Majority Algorithm

1. Initialize the weights wy, ..., w, of all the prediction
algorithms to a positive weight (1).

2. Return the prediction result of the prediction algorithm with
the highest weight.

3. Compare the predicted value with the real value, penalize the
prediction algorithms, which missed the prediction more than a
predefined tolerance interval n, by multiplying their weights with
a fixed penalize factorm (0 <m < 1).

4. Wait until next prediction interval and go to 2.

The prediction module of OnlineElastMan is shown in
Fig. 8. Additional prediction algorithms can be plugged into
the prediction module to handle more workload patterns.

4.5 Putting everything together

OnlineElastMan operates according to the flowchart as illus-
trated in Fig. 9. The incoming workload is fed to two modules,

Plugged in
algorithms
Regression Tree-
ARIMA(1, 0, 0)

ARIMA(1, 1, 0)

WMA
ARIMA(0,1,1) ——
ARIMA(2,0,0) — .
ARIMA(0, 1, 0)

Recent time series
Workload(t) (workload pattern)

Workload(t+1)

Workload(t)

Fig. 8 Architecture of the workload prediction module

@ Springer

Data collector:
Workload intensity

Workload(t) Raw data

Multi-dimensional

TS SN Request data size data array
Request percentile latency
Controller:
Workload(t+1)| Calculate the commitment of | ypgated model 1
V\::;li(‘l:;);i tolerance factor a and B using S\:xi:;::lne
P the predicted workload and 9

the updated control model

<

Controller:
Calculate the number of VMs
to be added or removed

No

Actuator:
Spawn/terminate VMs by
calling the platform APIs

Fig. 9 Control flow of OnlineElastMan

i.e., the prediction module and the online training module.
The prediction module utilizes the current workload charac-
teristics to predict the workload in the next control period
using the algorithm described in Sect. 4.4. The online train-
ing module records the current workload composition and
samples the service latency under current workload. Then,
the module trains the performance model with the update
frequency. The actuation is calculated based on the pre-
dicted workload for the next control period using the updated
performance model according to the algorithm explained in
Sect. 4.3. Finally, the actuation is carried out on the Cloud
platform that hosts the storage service.

5 Evaluation

We evaluate OnlineElastMan from two aspects. First, we
show the accuracy of the prediction module, which consists
of six prediction algorithms. It directly influences the provi-
sion accuracy of OnlineElastMan since it is an essential input
parameter for the performance model. Then, we present the
evaluation results of OnlineElastMan when it dynamically
provisions a Cassandra cluster with the application of the
online multi-dimensional performance model.

Our evaluation is conducted in a private Cloud, which runs
OpenStack software stack. Our experiments are conducted
on VMs with two virtual cores (2.40 GHz), 4 GB RAM and
40 GB disk size. They are spawned to host storage services or
benchmark clients. OnlineElastMan is configured separately

Cluster Comput

Openstack cloud environment

Cassandra Cluster
Min: 3 Nodes
Max: 10 Nodes.

YCSB Cllent 1

= -
YCSB Client 2

- -

YCSB Client N

Fig. 10 Different number of YCSB clients are used to generate work-
load with different intensity. OnlineElastMan resizes the Cassandra
cluster according to the workload

on one of the VMs. The overview of the evaluation setup is
presented in Fig. 10.

5.1 Evaluation environment
5.1.1 Underlying storage system

Cassandra (version 2.0.9) is deployed as the underlying stor-
age system and provisioned by OnlineElastMan. Cassandra
is chosen because of its popularity to be used as a scalable
backend storage by many companies, e.g. Facebook. Brei-
fly, Cassandra is a distributed replicated database, which is
organized with distributed hash tables. Since a Cassandra
cluster is organized in a peer to peer fashion, it achieves lin-
ear scalability. Minimum instrumentation is introduced to
Cassandra’s read and write path as shown in Fig. 11. The
instrumented library samples and stores service latency of
requests in its repository. OnlineElastMan’s data collector
component periodically, every 5 min in our experiments,
pulls collected access latencies from the repository on each
Cassandra node. The collected request samples from each
Cassandra node are used by the prediction module and the
online training module of OnlineElastMan as shown in Fig. 9
The Cassandra rebalance API is called to redistribute data
when adding/removing Cassandra nodes.

5.1.2 Workload benchmark

We adopt YCSB (Yahoo! Cloud System Benchmark) (ver-
sion 0.1.4) to generate workload for our Cassandra cluster.
We choose YCSB because of its flexibility to synthesize
various workload patterns, including the varying read/write
request intensity and the size of the data propagated. Specifi-
cally, we configure YCSB clients with the parameters shown
in Table 1. In order to generate stable workload to Cassandra,
a fixed request rate (1200 req/s) is set to each YCSB client

CassandraDaemon JL ﬁ
Ea?a?o'l'le?n?r Server thread |

[Cassandraserver J

getMin(), getMax(),
getN(, getSum(),
getPercentile(99),

ptorageProxy

Local read path Remote read path | |Local write path Remote write path

ol At A i vice i | Messagingservice

y
|
Table iterators esponse Handler | Table
il BS0iNan Column
ueryFilter

Fig. 11 Cassandra instrumentation for collecting request latencies

Response Handler

[Hinting]

Table 1 YCSB configuration

Number of threads 16
Request distribution Uniform
Record count 100,000

Read proportion Varied (0.0-1.0)
Update proportion Varied (0.0-1.0)
Data size varied (1-20) KB
Replication factor 3

Consistency level level ONE

hosted on a separate VM. We vary the total amount of work-
load generated by adding or removing VMs that host YCSB
clients.

5.1.3 Multi-dimensional performance model

Our performance model is trained automatically when
the input workload varies. OnlineElastMan takes input from
the monitored parameters as specified in Sect. 4.1. Specifi-
cally, the workload features, including read and write request
intensity and request data size, and the corresponding ser-
vice latency, obtained from Cassandra instrumentation, are
associated to train the model. Details on model training is
presented in Sect. 4.2.

In practice, the model starts empty and needs to get trained
online automatically for some time. This is because that the
model is application and platform specific. Thus, it needs a
warm up training phase. According to our experiment experi-
ence, it takes approximately 20—-30 min to train a performance
model from scratch. After warm up, the model can be used to
facilitate the decision making process of the elasticity con-
troller while serving the workload.

Figure 12 depicts the model built and used in our eval-
uation. It consists of three input parameters or dimensions,
i.e., read/write request intensity and the data size. The con-
trolled parameter is the 99th percentile read latency, which
is set to be 35ms in our case. As shown in the figure, with
more training data, the model (the shaded surface) evolves

@ Springer

Cluster Comput

. . . . e X Satisfy SLO
Visualization of data and model training +_ Violate SLO

Data Size (KB)
ata Size (KB)

D:

1200

Writes per second 200

Reads per second

Data Size (KB)

1200

1200

Visualization of data and model training (projected view)

1200 1200

1000 1000

600

Writes per second

400

200

1200

600 800 1000 1200 9 200 00
Reads per second

(d)

600
Reads per second

800 1000 1200 (] 200 400 800 1000 1200

600
Reads per second

(e) ®

Fig. 12 The training illustration of the 3 dimensional performance model. a—c are ordered by the length of training period. d—f are the visualization

of a—(c with data size dimension projected on the other 2 dimensions

itself to a more accurate state. Practically, the performance
model is dynamic and evolves while serving the workload.
So, it can automatically evolves to a more accurate model
that reflects the changes of the operating environment and
the provisioned storage system. To be specific, the model
adapts to unknown factors, such as application interference
or platform maintenance, gradually using updated training
data. A more accurate model leads to better provision accu-
racy when the elasticity controller consults it.

In our experiments, we found out that the rate at which
the model evolves affects the accuracy of the decisions made
by the controller. The confidence level and update fre-
quency (as introduced in Sect. 4.2) dictates how fast the
model evolves. Ideally, we should have enough confidence
about the status (violate SLO or satisfy SLO) of a data point
before its status changes. Setting the confidence level low
and the update frequency high may result into the model
oscillating (unstable model) while the opposite settings of
these two parameters may delay the evolution of the model.
In our experiments, we set the confidence level as 0.5, i.e., if
50% of all read and write latency queue samples satisfy the

@ Springer

SLO then the corresponding data point satisfies SLO and vice
versa. The update frequency is set to S min. For applications
that have distinct phases of operations, to prevent frequent
retraining, one can maintain a set of models and dynamically
selects the best model for the current input pattern [30].

5.2 Evaluation on workload prediction

We evaluate the prediction accuracy of the workload pre-
diction module using a synthetic workload generated by
YCSB. We have synthesized workload with different shapes
of workload increase and decrease regarding the total request
intensity with a fixed read/write ratio. Figure 13 presents the
actual workload generated and the workload predicted by our
prediction module. In addition, the choice of the dominant
prediction algorithm proposed by the weight majority algo-
rithm is also shown in the figure. As a result, our prediction
module is able to achieve as low as 4.60% on the Mean Abso-
lute Percentage Error for such a dynamic workload pattern.

Cluster Comput

8000
7000

g 6000

2

§ 5000

g i

£ 4000 ++

é_ H

: 3000

£ 2000

3 1000

oo
© K
o=

180
190
200
210

0:ARIMA(0,1,1); 1:ARIMA(1,0,0); 2:ARIMA(0,1,0);
3:ARIMA(1.1,0); 4:ARIMA(2,0,0); 5:Reg_Trees

220 #--rerr1 TS

2303l N |

240 o

250

260 el
270 QZ'.‘_:‘_:'_'_'_.'””“_ N

280 R

290

300

Period (Minutes)

~~~~~~~ %------ Best Algorithm

Predicted Throughput (Cluster-wide)

Actual Throughput (Cluster-wide)

Fig. 13 Workload prediction: the actual workload V.S. the predicted workload

8000

7000

6000

5000

4000

2000

Total Throughput (requests/sec)

1000

Period (Minutes)

------- ke Number of Servers

Actual Throughput (Cluster-wide)

Predicted Throughput (Cluster-wide)

Fig. 14 VM:s allocated according to the predicted workload and the updated control model

5.3 Evaluation of OnlineElastMan over Cassandra

We set the goal of OnlineElastMan to keep the 99th percentile
of read latency to be 35ms as stated in the SLO. The evalua-
tion is conducted with control period set to be 5 min. Even the
workload of YCSB is configured to be uniform in our case,
we still observe a non-trivial difference on the amount of
workload served from different Cassandra storage VMs. To
make a tradeoff between the uneven workload served on each
VM and preventing over-provisioning, we set the tolerance
factora = 1 and 8 = 0.5.

As shown in Fig. 14, we start the experiment with 3
Cassandra VMs. From O to 40 min, the multi-dimensional
performance model is trained and warmed up. The elasticity
controller starts to function from 40 min. From 40 to 90 min,
the workload increases gradually. It is observable that from
40 to 70 min, the system is over-provisioned, as the percentile
latency is far below the SLO boundary as shown in Fig. 15.
This is because that the elasticity controller is set to operate
with a minimum number of 3 VMs, which corresponds to the
replication factor of Cassandra. With the increasing of work-
load, the elasticity controller gradually adds two VMs from

@ Springer



Cluster Comput

140

120

100

80

60

40

99 percentile latency (ms)

20

i)

e

9
8
7
X 6
5
4
3

M- e 0 == - e - e e

Period (Minutes)

------- #----- Number of Servers ————99th percentile(ms) -------%:------ Desired (ms)

Fig. 15 The aggregated 99th percentile latency from all Cassandra VMs with the allocation of VMs indicated by OnlineElastMan under the

dynamic workload

80min. Then, the workload experienced a sharp decrease
from 90min, but the controller maintains a minimum of 3
Cassandra VMs. We continue to evaluate the performance
of OnlineElastMan with another two rounds of workload
increase and decrease with different scales (shown from 150
to 220 min and from 220 to 360 min). The evaluation indi-
cates that OnlineElastMan is able to keep the 99th percentile
latency commitment most of the time. On the other hand,
we observe a small amount of SLO violations under the pro-
visioning of OnlineElastMan. It is because of the tolerance
factor  and B, which allows us to tolerate some imbalance
of workload distribution to Cassandra nodes.

6 Related work
6.1 Elasticity controllers in practice

Most of the elasticity controllers available in public Cloud
services and used nowadays in production systems are pol-
icy based and rely on simple if-then threshold based triggers.
Examples of such systems include Amazon Auto Scaling
(AAS) [31], Rightscale [32], and Google Compute Engine
Autoscaling [33]. The wide adoption of this approach is
mainly due to its simplicity in practice as it doesn’t require
pre-training or expertise to get it up and running. Policy based
approaches are suitable for small-scale systems in which
adding/removing a VM when a threshold is reached (e.g.,
CPU utilization) is sufficient to maintain the desired SLO.
For larger systems, it might be non-trivial for users to set the
thresholds and the correct number of VMs to add/remove.
Scryer [34] is a Netflixs predictive auto-scaling engine. It
allows them to provision the right number of instances needed

@ Springer

to handle the traffic of their customers. Unlike systems such
as AAS, Scryer predicts what the needs will be prior to the
time of need and provisions the instances based on those
predictions. However, its genesis was triggered more by their
relatively predictable traffic patterns, which is not always true
in a dynamic environment such as Cloud.

6.2 Research on elasticity controllers

Most of the elasticity controllers, which go beyond a simple
threshold based triggers, require a model of the target system
in order to be able to reason about the status of the system
and decide on control actions needed to improve the system.
The system model is typically trained offline using histor-
ical data and the controller is tuned manually using expert
knowledge of the expected workload patterns and service
behavior.

Work in this area focuses on developing advanced models
and novel approaches for elasticy control such as, Elast-
Man [4], SCADS Director [3], scaling HDFS [2], ProRe-
nata [7], and Hubbub-scale [8]. Although achieving very
good results, most of these controllers ignore the practical
aspects of the solution which slowed down the adoption of
such controllers in production systems. For example, SCADS
Director [3] is tailord for a specific storage service with
pre-requisits that are not common in storage systems (fine
grained monitoring and migration of storage buckets). Elast-
Man [4], uses two controllers in order to efficiently handle
diurnal and spiky workloads but it requires offline man-
ual training of both controllers. Lim et al. [2] on scaling
Hadoop distributed file system (HDFS) adopts CPU utiliza-
tion, which highly correlates request latency, for scaling but it
relies on the data migration API integrated in HDFS. ProRe-



Cluster Comput

naTa [7] minimizes the SLO violation during scaling by
combining both proactive and reactive control approaches
but it requires a specific prediction algorithm and the con-
trol model needs to be trained offline. Hubbub-Scale [8] and
Augment Scaling [35] argue that platform interference can
mislead an elasticity controller during its decision making,
however, the interference measurement needs the access of
many low level metrics, e.g. cache counters, of the plat-
form.

OnlineElastMan, on the other hand, focuses on the
research of the practical aspects of an elasticity controller.
It relies only on the most generic and obtainable metrics
from the system and alleviates the burden of applying an
elasticity controller in production. Specifically, the auto-
training feature of OnlineElastMan makes its deployment,
model training and configuration effortless. Furthermore, an
generic and extendable prediction model is integrated to pro-
vide workload prediction for various workload patterns.

6.2.1 Elastic scaling

The goal of an auto-scaling system is to automatically fine-
tune acquired resources of a system to minimize resource pro-
visioning costs while meeting SLOs. An auto-scaling tech-
nique automatically scales resources according to demand.
Different techniques exist in the literature that addresses the
problem of auto-scaling. As a result of the wide diversity
of these techniques, that are sometimes combination of two
or more methods, it is a challenge to find a proper clas-
sification of auto-scaling techniques [36]. However, these
techniques could be divided into two categories: reactive and
proactive. In outline, reactive approach reacts toreal time sys-
tem changes such as incoming workload while a proactive
approach relies on historical access patterns of a system to
anticipate future needs so as to acquire or release resources
in advance. Each of these approaches have its own merits
and demerits [7]. Under the proactive and reactive cate-
gories, the following are some of the widely used auto-scaling
techniques: threshold-based policies, reinforcement learn-
ing, queuing theory, control theory and time series analysis.
Time series analysis is purely a proactive approach, whereas
threshold-based rules (used in Amazon and RightScale) is a
reactive approach. Contrary, reinforcement learning, queuing
theory and control theory could be used with both proactive
and reactive approaches, But they also exhibit the following
demerits:

— Reinforcement learning: This technique is efficient when
used against slowly changing conditions. Therefore, it
cannot be applied to real applications that usually suf-
fer from sudden traffic bursts. The elasticity controller
presented in [37] integrates several empirical models
and switches among them to obtain better predictions.

Diego [38] presents an elasticity controller that uses ana-
lytical modeling and machine-learning. They explained
that by combining both approaches, it results in better
controller accuracy.

— Queuing theory: Impose hard assumptions that may not
be valid for real, complex systems. They are intended
for stationary scenarios, thus models need to be recal-
culated when conditions of the application change. For
example, [39] model a cloud service using queuing the-
ory. Using that model they build two adaptive proactive
controllers that estimate the future load on a service.

— Control theory: Setting the gain parameters can be a
difficult task. Previous works [4,40,41] have exten-
sively studied applying control theory to achieve fine
grained resource allocations that conform to a given
SLO. However, the offline training feature of the existing
approaches, makes the deployment, model training and
configuration of the elasticity controller difficult.

In time series techniques, a given performance metric is
sampled periodically at fixed intervals and analysed to make
future predictions. Typically these techniques are utilized
for workload or resource usage prediction and are used to
derive a suitable scaling action plan. For example, [42] used
a Fourier transform-based scheme to perform offline extrac-
tion of long-term cyclic workload patterns. CloudScale [43]
and PRESS [22] perform long-term cyclic pattern extraction
and resource demand prediction to scale up. The techniques
used in these works complement our work.

6.2.2 Online profiling and prediction

A significant amount of literature exists that can be applied
for predicting the traffic incident on a service i.e. [3,7,22,
34,44]. In most cases, to support different workload sce-
narios, more than one prediction algorithms are used. To
support different workload scenarios, at least more than one
prediction algorithm is used. In most cases the pattern of
the workload to be predicted is defined or known, which is
not in our case. The most important aspect is how switch-
ing is carried out among the prediction algorithms which
is not clear in most of these previous works. We therefore
propose a simple weighted majority algorithm to handle
this.

For instance, AGILE [30] provides online, wavelet-based
medium-term (up to 2 min) resource demand prediction with
adequate upfront time to start new application servers before
performance degrades i.e. before application SLO is affected
by the changing workload pattern. In addition, AGILE uses
online profiling to obtain a resource pressure model for each
application it controls. This model calculates the amount of
resources required to maintain an applications SLO violation
rate at a minimal level. Unlike our model, AGILE derives

@ Springer



Cluster Comput

resource pressure models for just CPU without considering
other resources such as memory, network bandwidth, disk
1/0, applications workload intensity etc. A multi-resource
model can be built in two ways. Each resource can have a
separate resource pressure model or a single resource pres-
sure model can represent all the resources. In this work, we
adopt the latter approach.

In this paper, since we do not know the pattern of our
workload, we have chosen some of the types of ARIMA
models that are commonly encountered. For a time series
that is stationary and autocorrelated, a possible model for it
is a first-order autoregressive model. On the other hand, if
the time series is not stationary, the simplest possible model
for it is a random walk model. However, if the errors of a
random walk model are autocorrelated, perhaps a differenced
first-order autoregressive model may be more suitable. [45]
presents a detailed explanation of these models.

7 Conclusions and future works

In this paper, we have designed, implemented and open-
sourced? OnlineElastMan, which is an “out-of-the-box” elas-
ticity controller for distributed storage systems. It includes a
self-training multi-dimensional performance model to alle-
viate model training efforts and provide better provision
accuracy, a self-tuning prediction module to adjust the predic-
tion to various workload patterns, and an elasticity controller
to calculate and carry out the scaling decisions by ana-
lyzing the inputs from the performance model and the
prediction module. The evaluation results of OnlineElast-
Man on Cassandra show that OnlineElastMan is able to
provision a Cassandra cluster efficiently and effectively with
respect to the percentile latency SLO in the showcase exper-
iment.

For future work, the OnlineElastMan framework can be
extended in two directions. First, it would be useful to extend
the control model of OnlineElastMan with comprehensive
metrics, e.g., CPU utilization, network statistics, disk I/Os,
etc. Second, OnlineElastMan is essentially stateless. States
are only preserved and used in the prediction and model train-
ing modules, which can be generated/trained during runtime.
Thus, it is not difficult to decentralize OnlineElastMan for
better scalability and fault tolerance.

Acknowledgements This work was supported by the Erasmus Mundus
Joint Doctorate in distributed computing program funded by the
EACEA of the European Commission under FPA 2012-0030 and the
End-to-End Clouds project funded by the Swedish Foundation for
Strategic Research under the contract RIT10-0043. The authors would
also like to thank the reviewers for their constructive comments and
suggestions to improve the quality of the paper.

2 https://github.com/gureya/OnlineElasticityManager.

@ Springer

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of
auto-scaling techniques for elastic applications in cloud environ-
ments. J. Grid Comput. 12(4), 559-592 (2014)

2. Harold, C. Lim, S.B., Jeffrey, S.C.: Automated control for elastic
storage. In: Proceedings of the 7th International Conference on
Autonomic Computing (ICAC ’10), pp. 1-10. ACM, New York
(2010)

3. Beth, T., Peter, B., Armando, F., Michael, J.F., Michael, 1.J., David,
A.P.: The scads director: scaling a distributed storage system under
stringent performance requirements. In: Proceedings of the 9th
USENIX Conference on File and Stroage Technologies (FAST’11),
pp- 12-12. USENIX Association, Berkeley, CA (2011)

4. Al-Shishtawy, A., Vlassov, V.: Elastman: autonomic elasticity man-
ager for cloud-based key-value stores. In: Proceedings of the 22Nd
International Symposium on High-Performance Parallel and Dis-
tributed Computing (HPDC ’13), pp. 115-116. ACM, New York
(2013)

5. Al-Shishtawy, A., Vlassov, V.: Elastman: elasticity manager for
elastic key-value stores in the cloud. In: Proceedings of the 2013
ACM Cloud and Autonomic Computing Conference (CAC ’13),
pp- 7:1-7:10. ACM, New York (2013)

6. Moulavi, M.A., Al-Shishtawy, A., Vlassov, V.: State-space feed-
back control for elastic distributed storage in a cloud environ-
ment. In: The 8th International Conference on Autonomic and
Autonomous Systems (ICAS 2012), pp. 589-596 (2012)

7. Liu, Y., Rameshan, N., Monte, E., Vlassov, V., Navarro, L.: Prore-
nata: proactive and reactive tuning to scale a distributed storage
system. In: 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 453-464 (2015)

8. Navarro, L., Vlassov, V., Rameshan, N., Liu, Y.: Hubbub-scale:
towards reliable elastic scaling under multi-tenancy. In: 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid) (2016)

9. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Kon-
winski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, 1., Zaharia,
M.: A view of cloud computing. Commun. ACM 53(4), 50-58
(2010)

10. Moriyoshi, O., Peter, N., Yohei, U., Kazuaki, I.: The data-centricity
of web 2.0 workloads and its impact on server performance. In:
IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pp 133-142 (2009)

11. Beth, T., Peter, B., Armando, F., Michael, J.F., Michael, 1.J.,
David, A.P.: The SCADS director: scaling a distributed storage
system under stringent performance requirements. In: Proceedings
of the 9th USENIX conference on File and stroage technologies
(FAST’11), pp. 12-12 (2011)

12. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 2nd
edn. Osborne/McGraw-Hill, Berkeley, CA (2000)

13. Roshan, S., Jay, K., Lei, G., Alex, F., Chinmay, S., Sam, S.: Serv-
ing large-scale batch computed data with project voldemort. In:
The 10th USENIX Conference on File and Storage Technologies
(FAST’12) (2012)

14. Giuseppe, D., Deniz, H., Madan, J., Gunavardhan, K., Avinash,
L., Alex, P., Swaminathan, S., Peter, V., Werner, V.: Dynamo:
amazon’s highly available key-value store. In: Proceedings of


https://github.com/gureya/OnlineElasticityManager
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Cluster Comput

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Twenty-First ACM SIGOPS Symposium on Operating Systems
Principles (SOSP *07), pp. 205-220. ACM, New York (2007)

. Lakshman, A., Malik, P.: Cassandra: a decentralized structured

storage system. SIGOPS Oper. Syst. Rev. 44(2), 35-40 (2010)
Animoto’s Facebook scale-up. http://blog.rightscale.com/2008/
04/23/animoto-facebook-scale-up/ (2012)

Peter, B., Armando, F., Michael, J.F., Michael, 1.J., David A.P.:
Characterizing, modeling, and generating workload spikes for
stateful services. In: Proceedings of the 1st ACM Symposium on
Cloud Computing (SoCC ’10), pp. 241-252 (2010)

Joseph, L., Hellerstein, Y.D., Sujay, P., Dawn, M.T.: Feedback Con-
trol of Computing Systems. Wiley, New York (2004)

Horn, P.: Autonomic computing: IBM’s perspective on the state of
information technology. October 15 (2001)

Tickoo, O., Iyer, R., Illikkal, R., Newell, D.: Modeling virtual
machine performance: challenges and approaches. SIGMETRICS
Perform. Eval. Rev. 37(3), 55-60 (2010)

Iyer, R., Illikkal, R., Tickoo, O., Zhao, L., Apparao, P., Newell, D.:
VM3: measuring, modeling and managing VM shared resources.
Comput. Netw. 53(17), 2873-2887 (2009)

Zhenhuan, G., Xiaohui, G., Wilkes, J.: Press: predictive elastic
resource scaling for cloud systems. In: International Conference
on Network and Service Management (CNSM), pp. 9-16 (2010)
Vasié, N., Novakovié, D., Miudin, S., Kostié¢, D., Bianchini, R.:
Dejavu: accelerating resource allocation in virtualized environ-
ments. ACM SIGARCH Comput. Archit. News 40(1), 423-436
(2012)

Novakovic, D., Vasic, N., Novakovic, S., Kostic, D., Bianchini, R.:
Transparently identifying and managing performance interference
in virtualized environments. Technical report, Deepdive (2013)
Gunn, S.R.: Support vector machines for classification and regres-
sion. Technical report, University of Southampton (1998)

Arlitt, M., Jin, T.: A workload characterization study of the 1998
world cup web site. IEEE Netw. 14(3), 30-37 (2000)

Gusella, R.: Characterizing the variability of arrival processes with
indexes of dispersion. IEEE J. Sel. Areas Commun. 9(2), 203-211
(1991)

Box, G.E.P, Jenkins, G.: Time Series Analysis, Forecasting and
Control. Holden-Day, Incorporated (1990)

Littlestone, N., Warmuth, M.K.: The weighted majority algorithm.
Inf. Comput. 108(2), 212-261 (1994)

Nguyen, H., Shen, Z., Gu,X., Subbiah, S., Wilkes, J.: AGILE: elas-
tic distributed resource scaling for infrastructure-as-a-service. In:
Proceedings of the 10th International Conference on Autonomic
Computing (ICAC 13), pp. 69-82. USENIX, San Jose (2013)
Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/
Right Scale. http://www.rightscale.com/

Google Compute Engine. https://cloud.google.com/compute/
docs/load-balancing-and-autoscaling

Yuan, D., Joshi, N., Jacobson, D., Oberai, P.: Scryer: Netflix’s Pre-
dictive Auto Scaling Engine. http://techblog.netflix.com/2013/12/
scryer-netflixs-predictive-auto-scaling.html. Accessed June 2015
Navarro, L., Vlassov, V., Rameshan, N., Liu, Y.: Augmenting
elasticity controllers for improved accuracy. In: 13rd IEEE Inter-
national Conference on Autonomic Computing (ICAC) (2016)
Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of
auto-scaling techniques for elastic applications in cloud environ-
ments. J. Grid Comput. 12(4), 559-592 (2014)

Malkowski, S.J., Hedwig, M., Li, J., Pu, C., Neumann, D.: Auto-
mated control for elastic n-tier workloads based on empirical
modeling. In: Proceedings of the 8th ACM International Confer-
ence on Autonomic Computing, (ICAC ’11), pp. 131-140. ACM,
New York (2011)

Didona, D., Romano, P., Peluso, S., Quaglia, F.: Transactional auto
scaler: elastic scaling of in-memory transactional data grids. In:

39.

40.

41.

42.

43.

44,

45.

Proceedings of the 9th International Conference on Autonomic
Computing (ICAC ’12), pp. 125-134. ACM, New York (2012)
Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elas-
ticity controller for cloud infrastructures. In: The 13th IEEE/IFIP
Network Operations and Management Symposium (NOMS’12).
Hawaii (2012)

Zhu, X., Young, D., Watson, B.J., Wang, Z., Rolia, J., Singhal, S.,
Hyser, C., Gmach, D., Gardner, R., Christian, T., Cherkasova, L.,
etal.: 1000 islands: Integrated capacity and workload management
17 the next generation data center. In: In Proceedings of the 5th
International Conference on Autonomic Computing (ICAC), pp.
172-181

Lim, H.C., Babu, S., Chase, J.S.: Automated control for elastic
storage. In: Proceedings of the 7th International Conference on
Autonomic Computing (ICAC *10), pp. 1-10. New York (2010)
Cherkasova, L., Gmach, D., Rolia, J., Kemper, A.: Capacity man-
agement and demand prediction for next generation data center.
In: IEEE International Conference on Web Services (ICWS), pp.
43-50. (2007)

Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic
resource scaling for multi-tenant cloud systems. In: Proceedings
of the 2Nd ACM Symposium on Cloud Computing (SOCC ’11),
pp- 5:1-5:14. ACM, New York (2011)

Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud
using predictive models for workload forecasting. In: IEEE Inter-
national Conference on Cloud Computing (CLOUD), pp. 500-507
(2011)

Nau, R.: Statistical forecasting: notes on regression and time series
analysis. http://people.duke.edu/~rnau/411home.htm. Accessed
June 2015

Ying Liu is a post-doc researcher
focusing on deep learning at
Stockholm University. He rece-
ived his Ph.D. from KTH Royal
Institute of Technology, Stock-
holm, Sweden, in October 2016.
Earlier, He completed his double
master degrees at Royal Insti-
tute of Technology, Stockholm,
Sweden and Universitat Politec-
nica de Catalunya, Barcelona,
Spain. His research interests
include, Machine Learning, Big
Data Analytics, Large-Scale Dis-
tributed Systems and Algo-

rithms, Distributed Storage Systems, Clouds, Autonomic Computing,
Elasticity Management, and Auto-Scaling.

Daharewa Gureya is a Ph.D.
Researcher at INESC-ID Lis-
boa/Instituto Superior Técnico.
He holds a Master of Science
degree (Erasmus Mundus Euro-
pean Master in Distributed Com-
puting, a double degree master
program) from Instituto Superior
Técnico, Lisbon, Portugal, and
KTH Royal Institute of Tech-
nology, Stockholm, Sweden. He
also holds a Bachelor of Science
(Hons) degree, majoring Com-
puter Science, with a first class
from the University of Nairobi,

Kenya. His current research focus is performance issues in data-
intensive applications on Multi-core Architectures.

@ Springer


http://blog.rightscale.com/2008/04/23/animoto-facebook-scale-up/
http://blog.rightscale.com/2008/04/23/animoto-facebook-scale-up/
http://aws.amazon.com/ec2/
http://www.rightscale.com/
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
http://techblog.netflix.com/2013/12/scryer-netflixs-predictive-auto-scaling.html
http://techblog.netflix.com/2013/12/scryer-netflixs-predictive-auto-scaling.html
http://people.duke.edu/~rnau/411home.htm

Cluster Comput

Ahmad Al-Shishtawy is a
senior researcher in the Com-
puter Systems Laboratory (CSL)
at the Swedish Institute of
Computer Science (SICS). He
received his Ph.D. from KTH
Royal Institute of Technology,
Stockholm, Sweden, in Novem-
ber 2012. Earlier, He completed
his B.Sc. and M.Sc. at the Fac-
ulty of Computer and Informa-
tion Sciences (FCIS), Ain Shams
University, Cairo, Egypt. His
research interests include, Large-
Scale Distributed Systems and

Algorithms; Big Data Analytics, Streaming Analytics, and Data Inten-
sive Computing; Clouds, Multi-Clouds, Edge-Computing, and P2P
Systems; Autonomic Computing, Elasticity Management, and Auto-

Scaling.

@ Springer

Vladimir Vlassov is an Asso-
ciate Professor of Computer
Systems at the Department of
Software and Computer Sys-
tems, School of Information
and Communication Technol-
ogy, KTH Royal Institute of
Technology in Stockholm, Swe-
den. He worked as a visit-
ing scientist and researcher at
UMASS (2004) and at MIT,
USA (1998). He has partici-
pated in a number of Euro-
pean projects, projects funded by
Swedish funding agencies and a
project funded by NSF USA. His research interests include data
intensive computing and big-data analytics, autonomic computing,
distributed and parallel computing. His current research focus is on
data-intensive computing and stream processing; Cloud resource man-
agement; self-management of cloud-based services and applications.



	OnlineElastMan: self-trained proactive elasticity manager  for cloud-based storage services
	Abstract
	1 Introduction
	2 Problem statement
	3 Background
	3.1 Cloud computing and elastic services
	3.2 Stateful services
	3.3 Feedback versus feedforward control
	3.4 Target system
	3.5 Cassandra

	4 OnlineElastMan design
	4.1 Monitored parameters
	4.2 Multi-dimensional online model
	4.2.1 SVM binary classifier

	4.3 Elasticity controller
	4.4 Workload prediction
	4.4.1 Regression trees model
	4.4.2 ARIMA
	4.4.3 The weighted majority algorithm

	4.5 Putting everything together

	5 Evaluation
	5.1 Evaluation environment
	5.1.1 Underlying storage system
	5.1.2 Workload benchmark
	5.1.3 Multi-dimensional performance model

	5.2 Evaluation on workload prediction
	5.3 Evaluation of OnlineElastMan over Cassandra

	6 Related work
	6.1 Elasticity controllers in practice
	6.2 Research on elasticity controllers
	6.2.1 Elastic scaling
	6.2.2 Online profiling and prediction


	7 Conclusions and future works
	Acknowledgements
	References




