ElastMan: Elasticity Manager for Elastic Key-Value Stores
in the Cloud

Ahmad Al-Shishtawy
Swedish Institute of Computer Science
KTH Royal Institute of Technology
Stockholm, Sweden
ahmad@sics.se, ahmadas@kth.se

ABSTRACT

The increasing spread of elastic Cloud services, together
with the pay-as-you-go pricing model of Cloud computing,
has led to the need of an elasticity controller. The con-
troller automatically resizes an elastic service in response
to changes in workload, in order to meet Service Level Ob-
jectives (SLOs) at a reduced cost. However, variable per-
formance of Cloud Virtual Machines and nonlinearities in
Cloud services, such as the diminishing reward of adding a
service instance with increasing the scale, complicates the
controller design. We present the design and evaluation
of ElastMan, an elasticity controller for Cloud-based elas-
tic key-value stores. ElastMan combines feedforward and
feedback control. Feedforward control is used to respond to
spikes in the workload by quickly resizing the service to meet
SLOs at a minimal cost. Feedback control is used to correct
modeling errors and to handle diurnal workload. To address
nonlinearities, our design of ElastMan leverages the near-
linear scalability of elastic Cloud services in order to build
a scale-independent model of the service. We have imple-
mented and evaluated ElastMan using the Voldemort key-
value store running in an OpenStack Cloud environment.
Our evaluation shows the feasibility and effectiveness of our
approach to automation of Cloud service elasticity.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distri-
buted Systems; 1.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—Control theory

Keywords

Cloud Computing; Elasticity Controller; Cloud Storage; Feed-
back Control; Feedforward Control; SLO

1. INTRODUCTION

The growing popularity of Web 2.0 applications, such as
wikis, social networks, and blogs, has posed new challenges

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CAC’13, August 5-9, 2013, Miami, FL, USA.

Copyright 2013 ACM 978-1-4503-2172-3/13/08 ...$15.00.

Vladimir Vlassov
KTH Royal Institute of Technology

Stockholm, Sweden
vladv@kth.se

on the underlying provisioning infrastructure. Many large-
scale Web 2.0 applications leverage elastic services, such
as elastic key-value stores, that can scale horizontally by
adding/removing servers. Voldemort [20], Cassandra [13],
and Dynamo [9] are few examples of elastic storage services.

Cloud computing [6], with its pay-as-you-go pricing model,
provides an attractive environment to provision elastic ser-
vices as the running cost of such services becomes propor-
tional to the amount of resources needed to handle the cur-
rent workload. The independence of peak loads for differ-
ent applications enables Cloud providers to efficiently share
the resources among the applications. However, sharing the
physical resources among Virtual Machines (VMs) running
different applications makes it challenging to model and pre-
dict the performance of the VMs [21, 12].

Managing the resources for Web 2.0 applications, in order
to guarantee acceptable performance, is challenging because
of the dynamic workload with gradual and sudden varia-
tions [5]. It is difficult to predict the workload especially
for a new application that can become popular within a few
days [1, 7]. Furthermore, the performance requirement is
usually expressed in terms of upper percentiles which is more
difficult to maintain than the average performance [22, 9].

The pay-as-you-go pricing model, elasticity, and dynamic
workload, call for the need for an elasticity controller that
automates the provisioning of Cloud resources. The elastic-
ity controller leverages the horizontal scalability of elastic
services by provisioning more resources under high work-
loads in order to meet the Service Level Objectives (SLOs).
The pricing model provides an incentive for the elasticity
controller to release resources once the workload decreases.

In this paper, we present the design and evaluation of
ElastMan, an Flasticity Manager for elastic key-value stores
in the Cloud. ElastMan automatically resizes an elastic ser-
vice in response to changes in workload, in order to meet
SLOs at a reduced cost. By combining feedforward control
and feedback control, ElastMan addresses the challenges of
the variable performance of Cloud VMs, dynamic workload,
and stringent performance requirements expressed in terms
of upper percentiles. The feedforward controller of ElastMan
monitors the workload and uses a logistic regression model
of the service to predict whether the workload will cause
the service to violate the SLOs, and acts accordingly. The
feedforward controller is used to quickly respond to sudden
large changes (spikes) in the workload. The feedback con-
troller monitors the service performance and reacts based on
the amount of deviation from the desired performance spec-
ified in the SLO. The feedback controller is used to correct

errors in the model used by the feedforward controller and
to handle gradual (e.g., diurnal) changes in workload.

Due to the nonlinearities in elastic services, resulting from
the diminishing reward of adding a service instance as a re-
sult of increasing the scale, we propose a scale-independent
model used to design the feedback controller. This enables
the feedback controller to operate at various scales of the ser-
vice without the need to use techniques such as gain schedul-
ing. To achieve this, our design leverages the near-linear
scalability of the elastic service. The feedback controller
controls the number of servers indirectly by controlling the
average workload per server. Thus, the controller decisions
become independent of the number of service instances.

The major contributions of the paper are as follows. First,
we leverage the advantages of both feedforward and feed-
back control to build an elasticity controller for elastic key-
value stores running in the Cloud. Second, we propose a
scale-independent feedback controller suitable for horizon-
tally scaling services of various scales. Third, we describe the
complete design of ElastMan including various techniques
required to automate elasticity of Cloud-based services. Fi-
nally, we evaluate effectiveness of ElastMan using the Volde-
mort [20] key-value store running in a Cloud environment
against both diurnal and sudden variations in workload.

The rest of this paper is organized as follows. Section 2
gives background necessary for the paper. In Section 3 we
describe the basic architecture of the target system we are
trying to control. We continue by describing the design of
ElastMan in Section 4. Evaluation results are presented in
Section 5. Related work is discussed in Section 6. We discuss
future work in Section 7 and conclusions in Section 8.

2. BACKGROUND

This section gives the necessary background for the pa-
per. This includes Web 2.0 applications, Cloud computing,
elastic services, feedback control, and feedforward control.

2.1 Web 2.0 Applications

Web 2.0 applications, such as Social Networks, Wikis, and
Blogs, are data-centric with frequent data access [18]. This
poses new challenges on the data-tier of multi-tier applica-
tions because the performance of the data-tier is typically
governed by strict SLOs [22]. With the rapid increase of the
number of users, the poor scalability of a typical data-tier
with ACID [19] properties limited the scalability of Web 2.0
applications. This has led to the development of NoSQL
databases with relaxed consistency guarantees and simpler
operations in order to achieve horizontal scalability and high
availability. Examples of NoSQL data-stores include, among
others, key-value stores such as Voldemort [20] and Dy-
namo [9], and wide column stores such as Cassandra [13]. In
this work, we focus on key-value stores, which typically pro-
vide simple key-value pair storage with eventual consistency
guarantees. The simplified data and consistency models of
key-value stores enable them to efficiently scale horizontally
by adding more servers and thus serve more clients.

Another problem facing Web 2.0 applications is that a
service or topic might quickly become popular resulting in a
spike in the workload [1, 7]. The fact that storage is a state-
ful service complicates the problem since only a subset of
servers host data of the popular item. For stateful services,
scaling is usually combined with rebalancing necessary to
redistribute the data among the new set of servers.

2.2 Cloud Computing and Elastic Services

Cloud computing [6], with its pay-as-you-go pricing model,
provides an attractive solution to host the ever-growing num-
ber of Web 2.0 applications. This is mainly because it is dif-
ficult, especially for startups, to predict the future load that
might be imposed on the application and thus to predict
the amount of resources needed to serve that load. Another
reason is the initial investment, in the form of buying the
servers, is avoided in the Cloud pricing model.

To leverage the Cloud pricing model and to efficiently han-
dle the dynamic workload, Cloud services are designed to be
elastic. An elastic service is able to scale horizontally at run-
time without disrupting the service. An elastic service can
be scaled up in the case of increasing workload by adding
resources in order to meet SLOs. In the case of decreasing
load, the service can be scaled down by removing resources
and thus reducing the cost without violating the SLOs.

2.3 Feedback versus Feedforward Control

In computing systems, a controller[10] or an autonomic
manager|[11] is a software component that regulates the non-
functional properties (performance metrics) of a target sys-
tem. Nonfunctional properties are properties of the system
such as the response time or CPU utilization. From the con-
troller perspective these performance metrics are the system
output. The regulation is achieved by monitoring the target
system through a monitoring interface and adapting the sys-
tem’s configurations, such as the number of servers, accord-
ingly through a control interface (control input). Controllers
can be classified into feedback or feedforward controllers de-
pending on what is being monitored.

In feedback control, the system’s output (e.g., response
time) is monitored. The controller calculates the control er-
ror by comparing the current system’s output to a desired
value set by the system administrators. Depending on the
amount and sign of the control error, the controller changes
the control input (e.g., number of servers to add or remove)
in order to reduce the control error. The main advantage of
feedback control is that the controller can adapt to distur-
bance such as changes in the behaviour of the system or its
operating environment. Disadvantages include oscillation,
overshoot, and possible instability if the controller is not
properly designed. Due to the nonlinearity of most systems,
feedback controllers are approximated around linear regions
called the operating region. Feedback controllers work prop-
erly only in the operating region they where designed for.

In feedforward control, the system’s output is not moni-
tored. Instead the feedforward controller relies on a model
of the system that is used to calculate the system’s output
based on the current system state. For example, given the
current request rate and the number of servers, the system
model is used to calculate the corresponding response time
and act accordingly to meet the desired response time. The
major issue of feedforward control is that it is sensitive to
unexpected disturbances that are not accounted for in the
system model. Addressing this issue results in a relatively
complex system model compared to feedback control. The
advantages of feedforward control include being faster than
feedback control and avoiding oscillations and overshoot.

3. TARGET SYSTEM

We are targeting multi-tier Web 2.0 applications (the left
side of Fig. 1). We are focusing on managing the data-tier

;ulti—"l"iier We%Z.O Aipplicatiion
NV

Presentation Tier

[P} []) [7]

l

Application Tier

L]

eloloiciziel |

Horizontal Scalability
(add more servers)

Deployed in a
Cloud Environment

Public / Private Cloud Environment

[o]
(]

Physical
Machine

Virtual

\Machine @
Servr

Each server executes in its own Virtual Machine, which
runs in a physical machine in a Cloud environment

Figure 1: Multi-Tier Web 2.0 Application with Elasticity Controller Deployed in a Cloud Environment

because of its major effect on the performance of Web 2.0 ap-
plications, which are mostly data centric [18]. For the data-
tier, we assume horizontally scalable key-value stores due to
their popularity in many large scale Web 2.0 applications
such as Facebook and LinkedIn. A typical key-value store
provides a simple put/get interface. This simplicity enables
efficient partitioning of the data among multiple servers and
thus to scale well to a large number of servers.

The minimum requirements to enable elasticity control of
a key-value store using our approach (described in Section 4)
are as follows. The store must provide a monitoring inter-
face to monitor the workload and the latency of put/get
operations. The store must also provide an actuation inter-
face that allows horizontal scalability by adding or removing
servers. As storage is a stateful service, actuation must be
combined with a rebalance operation, which redistributes
the data among the new set of servers. Many stores, such
as Voldemort [20] and Cassandra [13], provide rebalancing
tools. In this paper, we focus on the control problem and
rely on the built-in capabilities of the storage service to re-
balance the load. If the storage have no such capabilities,
existing techniques, e.g., [22, 15, 14], can be used.

We target applications running in the Cloud (right side of
Fig. 1). We assume that each service instance runs on its
own VM; each physical machine hosts multiple VMs. The
Cloud environment hosts multiple applications (not shown
in the figure). Such environment complicates the control
problem mainly due to the fact that VMs compete for the
shared resources. This environmental noise makes it difficult
to model and predict the performance of VMs [21, 12].

4. ELASTICITY CONTROLLER

In this section we describe the design of ElastMan, an
elasticity controller that allows to automate the elasticity
of key-value stores running in the Cloud. The objective of
ElastMan is to regulate the performance of key-value stores
according to a predefined SLO expressed as the 99th per-
centile of read operations latency over a fixed period of time.

Controlling a noisy signal, such as the 99th percentile,
is challenging [22]. The high level of noise can cause the
controller to make wrong decisions. Applying a smoothing
filter in order to filter out noise, may also filter out a spike
or delay its detection. One approach to control noisy signals

is to build a performance model of the system, thus avoiding
the need to measure the noisy signal [22]. The model is used
to predict the performance of the system given its current
state (e.g., current workload). However, due to the variable
performance of Cloud VMs (compared to dedicated physical
machines), it is difficult to accurately model the performance
of the services running in the Cloud.

To address the challenges of controlling a noisy signal and
variable performance of VMs, ElastMan consists of two com-
ponents, a feedforward controller and a feedback controller.
ElastMan relies on the feedforward controller to handle rapid
large changes in the workload (e.g., spikes). This enables
ElastMan to smooth the noisy 99th percentile signal and
use feedback controller to correct errors in the feedforward
system model in order to accurately bring the 99th percentile
of read operations to the desired SLO value. In other words,
the feedforward control is used to quickly bring the perfor-
mance of the system near the desired value and then the
feedback control is used to fine tune the performance.

4.1 The Feedback Controller

The first step in designing a feedback controller is to build
a model of the target system (the key-value store in our
case) that relates the control input to the system output
(i.e., how a change in the control input affects the system
output). A black-box approach is usually used for comput-
ing systems [10] that is a statistical technique used to find
the relation between the input and the output. The process
of building the model is called system identification.

System identification is a challenging step in controller de-
sign because a system can be modelled in different ways. The
choice of the model can dramatically affect the performance
and complexity of the controller. The model is usually a
linear approximation of the behaviour of the system around
an operating point (within an operating region). This makes
the model valid only around the predefined point.

In order to identify a key-value store, (i.e., to build a
model of the store) we need to define the control input and
the system output. In feedback control we typically monitor
the system output to be regulated, which is, in our case,
the 99th percentile of read operations latency over a fixed
period of time (called R99p thereafter). The feedback con-
troller calculates the error, which is the difference between

SLO (Desired
99th Percentile

Measured 99th Percentile

of Read Latency)

Controller | per Server

New Average New Number rea oo |
PI Throughput of Servers g of Read Latency
O S Actuator | Key-Value g
- ~ | Sstore v
Smoothing | ~
Fiter |

Figure 2: ElastMan Feedback Control

New Number Measured 99th

Measured Average New Average
FF
Throughput | Bi Throughput N
per Server > >nav per Server
Classifier

Actuator 101Servers s | Key-Value | Percentile of
~ | sStore [Read Latency >

Figure 3: ElastMan Feedforward Control

the setpoint, which in our case is the SLO value of R99p,
and the measured system output as shown in equation 1.

e(t) = Setpointgy o_ggg, — Measuredrogp (1) (1)

For the control input, an intuitive choice would be to use
the number of storage servers. In this case, to build a model
(identify the system) means to find how changing the num-
ber of servers affects the R99p of the key-value store. How-
ever, there are two drawbacks of using the number of servers
as a control input in the model. First, with this control in-
put, the model does not account for the current load on
the system. By load we mean the number of operations
processed by the store per second (i.e., throughput). The
latency is much shorter in an underloaded store than in an
overloaded store. In this case, the load is treated as distur-
bance in the model. Controllers can be designed to reject
disturbances but it might reduce the performance of the con-
troller. Using the number of servers (which we can control)
as a control input seems to be a natural choice since we
can not control the load on the system as it depends on the
number of end-users of the web application.

The second drawback of using the number of servers as
a control input is that the model becomes nonlinear. That
complicates the controller design. For example, adding one
server to a store having one server doubles the capacity of
the store; whereas adding one server to a store with 100
servers increases the capacity by only one percent. This
nonlinearity makes it difficult to design a controller because
the model behaves differently depending on the system size.
This might require multiple controllers responsible for differ-
ent operating regions corresponding to different system sizes.
In control theory, this approach is known as gain scheduling.

In the design of the feedback controller for ElastMan, we
propose to model the target store using the average through-
put per server as the control input. Although we cannot con-
trol the total throughput on the system, we can indirectly

control the average throughput of a server by adding/removing

servers. Adding servers reduces the average throughput per
server under the same load, whereas removing servers in-
creases the average throughput per server. Our idea to use
the average throughput per server as the control input is
motivated by the near linear scalability of elastic key-value
stores (as discussed in Section 5.2).

The major advantage of our proposed approach to model
the store is that the model remains valid as we scale the

store, and it does not depend on the number of servers. The
noise in our model is the slight nonlinearity of the horizontal
scalability of the elastic key-value store and the variable be-
haviour of the Cloud VMs. Note that this noise also exists
in the model using the number of servers as control input.
In our model, the operating point is defined as the value of
the average throughput per server (input) and correspond-
ing desired R99p (output); Whereas in the previous model,
using the number of servers as a control input, the operat-
ing point is the number of servers (input) and corresponding
R99p (output). Using our proposed model, the controller re-
mains in the operating region (around operating point) as
it scales the storage service. The operating region is defined
around the value of the average throughput per server that
produces the desired R99p regardless of the current size of
the store. This eliminates the need for gain scheduling and
simplifies the system identification and the controller design.
Given the current value of R99p, the controller uses the
error, defined in Equation 1, to calculate how much the cur-
rent throughput per server (called u) should be increased or
decreased in order to meet the desired R99p defined in the
SLO of the store. We build our controller as a classical PI
controller described by Equation 2. The block diagram of
our controller is depicted in Fig. 2. The controller design
step involves using the system model to tune the controller
gains, Ky and Kj, which is out of the scope of the paper.

u(t+1) = u(t) + Kpe(t) + Ki > _ e() (2)

The actuator uses the control output u(t 4+ 1), which is the
new average throughput per server, to calculate the new
number of servers according to Equation 3.

C t Total Th hput
New Number of Servers = urrent ~ota roughpu

New Average Throughput per Server
®3)
The actuator uses the Cloud API to request/release resources,
the elasticity API to add/remove new servers, and the re-
balance API to redistribute the data among servers.

4.2 The Feedforward Controller

In order to detect and quickly respond to spikes in work-
load, ElastMan employs a feedforward model predictive con-
troller that uses a model of the system to reason about the

Training Data and Model

- "Violate SLO +
5] | Satisfy SLO i
g 2000 i Model --------
o +
5 +
5 . F
g 1500 | X g g
(%} z e
g
5 1000 [g 7
g 2
S N
>
o
£ 500 - TS g
=

0 I I I I I I I | Sl w.\

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Read Throughput (ops/second/server)

Figure 4: Binary Classifier for One Server

status of the system and make decisions. The block dia-
gram of feedforward control is shown in Fig. 3. For the
model we use a binary classifier built using logistic regres-
sion as proposed by Trushkowsky et al. [22]. The model is
trained offline by varying the average intensity and the ratio
of read /write operations per server as shown in Fig. 4. The
final model is a line that splits the plane into two regions.
In the region on and below the line, the SLO is met. In the
region above the line, SLO is violated. Ideally, the average
measured throughput should be on the line, which means
that the SLO is met with the minimal number of servers.

In a very large system, averaging of throughput of servers
may hide a spike that can occur on a single server or a small
number of servers. This is caused by a possible presence
of data skews, e.g., where the workload is dominated by a
few popular keys. In order to deal with such bursty load
toward a single (or a few) server, and to detect such spikes,
the large system can be partitioned and each partition can
be monitored separately. Another approach to account for
skews in the workload would be to use the throughput vari-
ance in addition to the average value. Considering handling
of skews in workload is a subject for our future work.

The controller uses the model to reason about the current
status of the system and make control decisions. If the mea-
sured throughput is far below the line, this indicates that
the system is underloaded and servers (and VMs where the
servers run) could be removed and vice versa. When a spike
is detected, the feedforward controller uses the model to cal-
culate the new average throughput per server. This is done
by calculating the intersection point between the model line
and the line connecting the origin with the point that corre-
sponds to the measured throughput. The slope of the latter
line is equal to the ratio of the write/read throughput of the
current workload mix.

The calculated throughput is given to the actuator, which
computes the new number of servers (Equation 3) that brings
the storage service close to the desired operating point where
the SLO is met with the minimal number of storage servers.
Note that the feedforward controller does not measure the
R99p nor does make decisions based on error but relies on
the accuracy of the model to check if the current load will
cause an SLO violation. This makes it sensitive to noise
such as changes in the behavior of the Cloud VMs.

Measure Average Throughput per server (tp)
and 99 percentile of read latency (R99p)

| Filter the R99p: fR99p=f(R99p) |

Error in

Do nothing!
dead-zone 9

If storage supports
rebalance restart then
use Feedforward controller —
designed for the store
in rebalance mode FFR(tp)

Use Feedforward
FF(tp)
Binary Classifier

Large change
in throughput

Use Feedback FB(fR99p) PID Controller

v

Calculate the new number of servers
new_number_of_servers =
= total_throughput / new_throughput_per_server
subject to:
replication_degree <= new_number_of_servers <= max_servers

v

Start rebalance instance: rebalance(new_number_of_servers)

A

End

Figure 5: ElastMan Flow Chart

4.3 Elasticity Control Algorithm of ElastMan

ElastMan combines the feedforward and feedback con-
trollers, which complement each other. The feedforward
controller relies on the feedback controller to correct errors in
the feedforward model. The feedback controller relies on the
feedforward controller to quickly respond to spikes so that
the noisy R99p signal that drives the feedback controller can
be smoothed. The flowchart of ElastMan is shown in Fig. 5.

ElastMan starts by measuring the 99th percentile of read
latency (R99p) and the average throughput (¢p) per server.
The R99p signal is smoothed using a smoothing filter re-
sulting in a smoothed signal (fR99p). The controller then
calculates the error e as in Equation 1. If the error is in the
deadzone defined by a threshold around the desired R99p
value, the controller takes no action. Otherwise, the con-
troller compares the current ¢p with the value in the previous
round. A significant change in the throughput (workload)
indicates a spike. The elasticity controller then uses the feed-
forward controller to calculate the new average throughput
per server needed to handle the current load. On the other
hand, if the change in the workload is relatively small, the
elasticity controller uses the feedback controller which cal-
culates the new average throughput per server based on the
current error. In both cases the actuator uses the current
total throughput and the new average throughput per server
to calculate the new number of servers (Equation 3).

During the rebalance operation performed when adding or
removing servers, both controllers are disabled as proposed
by Lim et al. [14]. The feedback controller is disabled be-
cause the rebalance operation adds a significant amount of
load on the system that causes an increase in R99p. This
can mislead the feedback controller causing it to wrongly
add more servers. However if the system supports multi-
ple rebalance instances or modifying the running rebalance
instance, the feedforward controller can still be used. This
is because the feedforward controller relies on the measured
throughput of read/write operations (and it does not count
rebalance operations). Thus it will not be affected by the
extra load added by the rebalancing operation.

Because the actuator can only add complete servers in
discreet units, it will not be able to fully satisfy the con-
troller actuation requests which are continuous values. For
example, to satisfy the new average throughput per server,
requested by the elasticity controller, the actuator might cal-
culate that 1.5 servers are needed to be added (or removed).
The actuator solves this situation by rounding the calculated
value to get a discrete value. This might result in oscilla-
tion, where the controller continuously adds and removes
one server. Oscillations typically happen when the size of
the storage cluster is small, as adding or removing a server
have bigger effect on the total capacity of the storage ser-
vice. Oscillations can be avoided by using the proportional
thresholding technique as proposed by Lim et al. [14]. The
basic idea is to adjust the lower threshold of the deadzone,
depending on the storage cluster size, to avoid removing a
server that will result in SLO violation and thus will request
the server to be added back again causing oscillation.

5. EVALUATION

We have implemented ElastMan® in order to evaluate our
proposed approach to automation of Cloud service elasticity.

5.1 Experimental Setup

In order to evaluate ElastMan, we have chosen the Volde-
mort (version 0.91) Key-Value Store [20] which is used in
production in many applications such as LinkedIn. We kept
the core unmodified. We only extended the Voldemort client
that is a part of the Voldemort performance tool, which is
based on the YCSB benchmark [8]. Voldemort clients, rep-
resenting the application tier shown in Fig. 1, continuously
issue requests to the store and measure the throughput and
the 99th percentile of read latency (playing the role of sen-
sors). The controller periodically (every minute in our ex-
periments) pulls the monitoring data from clients and then
executes the control algorithm described in Section 4. The
ElastMan actuator uses the Voldemort rebalance tool to re-
distribute data when adding/removing Voldemort servers.

In our evaluation experiments, the distribution of the keys
in operations issued by clients is uniform. We use the re-
balancing tool to keep the distribution of the keys among
the servers close to uniform in order to balance the load
among the servers. We run our experiments on a cluster of
11 nodes each with two Intel Xeon X5660 processors (24 HW
threads), and 44 GB of memory. The cluster runs Ubuntu
11.10. We setup a private Cloud using OpenStack Diablo
release [2]. Each client runs in its own VM and generates

"https://elastman.svn.ict.kth.se/elastman/public/
ElastMan/

99 Percentile of Read Latency vs. Time

o 14 T T T T T T T

° 9 gervers

S 18 Servers

g 12f 27 Servers -+ b
= 36 Servers

E 1ol ... 45 Servers i
- + 54 Servers - - - -

g R

‘(-“‘ 8

-

®

S 6

o

ks

o 4

=

S 2

(9]

o

g 0 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180
Time (minutes)

Figure 6: 99th percentile of read operations latency
versus time under relatively similar workload for dif-
ferent number of Voldemort servers

99 Percentile of Read Latency vs. Average Throughput per Server

o 14 T T T T T T T T

° Qgervers +
S 18 Servers

o

o 12 ° 27 Servers x|
2 g ®1936 Servers ©
E 40 % o 45 Servers i
>

o

5

5 8 b
-

®

[] 6 7
o

ks

e 4 i
c

g 2 -
[

o

g 0 1 1 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Throughput (ops/second/server)

Figure 7: 99th percentile of read operations latency
versus average throughput per server for different
number of Voldemort servers

a workload of 3000 op/sec that consists of 90% read oper-
ations and 10% read-write transactions. The workload is
increased by adding client VMs and decreased by removing
client VMs. This mimics the horizontal scalability of the Ap-
plication Tier shown in Fig. 1. Each Voldemort server runs
in a VM with 4 cores and 6GB of memory. Each Voldemort
Client runs in a VM with 2 cores and 4GB of memory.

The evaluation was done on a private Cloud isolated from
unpredictable effects present in public Clouds; nevertheless,
variations in VM performance caused by changes in scale
(the increasing number of VMs competing for a fixed amount
of physical resources) are present in evaluation experiments,
as described in Section 5.2 and shown in Fig. 6 and Fig. 7.

5.2 Horizontal Scalability of Key-Value Stores

In this experiment series, we have evaluated the scala-
bility of the Voldemort store in a Cloud environment. We
gradually increase the cluster size and relatively scale the
workload. The parameters for the used resources and the

Input parameters Calculated parameters
Number of Number of Total target Target throughput | Total max memory | Total max number of | Cluster
Voldemort clients throughput per server used by clients virtual cores used by load
servers (K ops/sec) (K ops/sec) and servers (GB) clients and servers
n [Mmin - Mmaz] | [3Mmin - 3Mmaz] [Sm% . ?’m%] 6n + 4Mmas ¢ =4n + 2Mmax c/264
9 1. 12 3. 36] 03. 4 102 60 22.7%
18 2..24 6 .. 72] 03.. 4 204 120 45.5%
27 3..36 [9 .. 108] 03.. 4 306 180 68.2%
36 4 .. 48 [12 .. 144] 03 .. 4 408 240 90.9%
45 5.. 60 [15 .. 180] 0.3 .. 4 510 300 113.6%
54 6. 72 [18 .. 216] 03.. 4 612 360 136.3%

Table 1: Parameters for resources used in the scalability test. The cluster load is computed as a ratio of the
number of virtual cores used by clients and servers to the total number of physical cores (264 in our case)

cluster load are shown in Table 1. The cluster load shows
how the physical resources of the cluster are loaded with vir-
tual resources (virtual cores). The cluster load is computed
as a ratio of the number of virtual cores used by clients and
servers to the total number of physical cores in the cluster
(264 in our case). The value of load above 100% indicates
that there are more virtual cores than physical cores.

In each experiment of this series, the number of Volde-
mort servers is fixed (9, 18, 27, ...) whereas the workload
(the number of clients) is repeatedly increasing and decreas-
ing over time in the corresponding range from the mini-
mum number to the maximum number of clients according
to Table 1. The parameters are chosen in such a way that
target throughput per server is expected to be in the same
range ([0.3 .. 4] K ops/sec) for different configurations of the
second tier (clients) and the third tier (Voldemort servers)
as calculated in Table 1. Our assumption about the near
linear horizontal scalability of key-value stores is that the
more servers are used in a configuration, the proportion-
ally more clients can be served with about the same perfor-
mance measured as the 99th percentile of read latency and
throughput per server. However as clients and servers (vir-
tual cores) share physical resources (physical cores), which
can be also loaded with other applications, the above as-
sumption is unrealistic in some cases as illustrated in our
experiments (Fig. 6 and Fig. 7). The performance of a store
is mostly affected by two factors: the load on the cluster
caused by running VMs (contention for physical resources)
and the load on the store caused by clients.

Fig. 6 depicts the 99th percentile of read latency (R99p)
versus time for the different configurations specified in Ta-
ble 1. Changes in the workload (the number of clients) over
time cause changes in the R99p. However, these changes are
different for different configurations. The R99p is about the
same when both the cluster load (resource contention) and
workload (the number of clients) are minimal (e.g., at time
about 180 and 350 minutes). At time about 90 minutes, the
difference in R99p for different configuration is rather high.
The R99p for the high contended configuration (54 servers
plus 72 clients) is rather high (12 ms) compared to the R99p
of the uncontended configuration (9 servers plus 12 clients).

Fig. 7 depicts the R99p versus the average throughput
per server for the different fixed number of servers. The
throughput and the R99p are measured in 1 min intervals.

The results, depicted in Fig. 6 and Fig. 7, show the near
linear scalability of Voldemort around an operating point un-
der the normal cluster load. In this series of experiments, the
operating point (desired latency) is set to 5 ms for the 99th

percentile of read latency at a throughput of 2000 ops/sec
per server. The normal cluster load is in the range 45%-90%
(that corresponds to 18-36 servers) of the cluster’s physical
capacity. However, in the case when the cluster is under-
loaded at 22.7% (9 servers) or overloaded at 113.6%-136.3%
(45-54 servers), we notice a big change in the scalability of
the Voldemort storage servers. This shows that the variable
performance of the Cloud VMs can dramatically affect the
performance and thus the ability to accurately model the
system. This have motivated us to use the feedback con-
troller in ElastMan to compensate such inaccuracies.

5.3 Controller Design

In our experiments, we specify the 99th percentile of read
latency of 5 ms in 1 min period as the target performance
(SLO). In order to build models of the system for feedfor-
ward and feedback control, we choose a normally loaded con-
figuration of Voldemort with 27 servers that corresponds to
68.2% of the cluster load (Table 1). According to Fig. 7, the
operating point for this configuration is around 2000 ops/sec
per server for the specified SLO of 5 ms. In order to design a
feedback controller, we have performed the black-box system
identification and determined controller gains [10, 17].

5.4 Varying Workload

We have tested ElastMan with both gradual diurnal work-
load and sudden changes (spikes) in workload. The goal of
ElastMan is to keep the 99th percentile of the read operation
latency (R99p) at a predefined value (setpoint) as specified
in the service SLO. In our experiments we choose the value
to be 5 ms in 1 min period. Since it is not possible to achieve
the exact specified value, we defined a 0.5 ms region around
our setpoint with 1/3 above and 2/3 below. The controller
does not react in this region which is known as the deadzone.

We start by applying a gradual diurnal workload to the
Voldemort cluster (Fig. 8). The experiment starts with
9 Voldemort servers each running in its own VM. We set
the maximum number of Voldemort servers to 38. The
total measured throughput starts at about 35000 ops/sec
and then increases to about 80000 ops/sec by adding more
clients. ElastMan controller is started after 30 min warm-up
period. So far in this experiment, ElastMan relies mainly on
the PI feedback controller since there are no sudden changes
on the workload. As results show (Fig. 8), ElastMan is able
to keep the R99p within the desired region most of the time.

After 900 min (Fig. 8), we apply workload spikes with
various magnitudes. At the beginning of a spike, ElastMan
uses the feedforward control since it detects large change in

' Read 99 percentilé (ms)

Desired (ms) - - - -

8l i
6 i

AN - - A 1! ,:77 7:; A Vo ul IO L T IR e] i | "V U
o I i
2k i
0 L L L L L L L

0 200 400 600 800 1000 1200 1400

Time (min)

Total IHroughput (K requesté/sec)
Number of servers ---+---

Time (min)

Figure 8: Performance of Voldemort with ElastMan under gradual diurnal workload (0-900 min) and under
workload with spikes (900-1500 min)

‘ Read 99 percemilé (ms)
Desired (ms) - - - -

0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Time (min)

80

Total lHroughput (K requesté/sec)
Number of servers -

0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Time (min)

Figure 9: Performance of Voldemont without ElastMan with fixed number of servers (18 servers) under
gradual diurnal workload (0-900 min) and under workload with spikes (900-1500 min)

the workload. Then it uses the feedback controller to fine
tune the R99p at the desired value. For example, at time 924
min, the feedforward controller adds 18 servers whereas at
time 1024 min it adds 14 servers in order to quickly respond
to workload spikes. In another example, at time 1336 min,
the feedforward controller removes 15 servers after a spike.
Fig. 9 depicts the performance of Voldemort without Elast-
Man, i.e., with a fixed number of servers under the same
workload as in the previous experiment with ElastMan. Re-
sults of this experiment show that Voldemort without Elast-
Man can not meet required SLO most of the time as the
99th percentile read latency is strongly correlated with the
workload: the higher workload is the higher is the R99p.

6. RELATED WORK

There are many projects that use different techniques such
as control theory, machine learning, empirical modeling, or
a combination of them to achieve SLOs at various levels of
a multi-tier Web 2.0 application.

Lim et al. [14] proposed the use of two controllers. An
integral feedback controller is used to keep the average re-
sponse time at a desired level. A cost-based optimization
is used to control the impact of the rebalancing operation,
needed to resize the elastic storage, on the response time.
The authors also propose the use of proportional threshold-
ing, a technique necessary to avoid oscillations when dealing
with discrete systems. The design of the feedback controller
relies on the high correlation between CPU utilization and
the average response time. Thus, the control problem is
transformed into controlling the CPU utilization to indi-
rectly control the average response time. Relying on such
strong correlation might not be valid in Cloud environments
with variable VM performance nor for controlling using 99th
percentile instead of average. In our design, the controller
uses a smoothed signal of the 99th percentile of read opera-
tions directly to avoid such problems. It is not clear how the
controller proposed in [14] deals with the nonlinearity result-
ing from the diminishing reward of adding a service instance
with increasing the scale. Thus, it is not clear if the con-
troller can work at different scales, a property that is needed
to handle diurnal workload. In our approach we rely on the
near-linear scalability of horizontally scalable stores to de-
sign a scale-independent controller that indirectly controls
the number of servers by controlling the average workload
per server needed to handle the current workload. Another
drawback in using only feedback controller is that it has to
be switched off during rebalancing. This is because of the
high disturbance resulting from the extra rebalancing over-
head that can cause the feedback controller to incorrectly
add more servers. We avoid switching off elasticity control
during rebalancing, we use a feedforward controller tuned
for rebalancing. The feedforward controller does not mea-
sure latency and thus will not be disturbed by rebalancing
and can detect real changes in workload and act accordingly.

Trushkowsky et al. [22] were the first to propose a control
framework for controlling upper percentiles of latency in a
stateful distributed system. The authors propose the use
of a feedforward model predictive controller to control the
upper percentile of latency. The major motivation for using
feedforward control is to avoid measuring the noisy upper
percentile signal necessary for feedback control. Smoothing
the upper percentile signal, in order to use feedback control,
may filter out spikes or delay the response to them. The

major drawback of using only feedforward is that it is very
sensitive to noise such as the variable performance of Cloud
VMs. The authors rely on replication to reduce the effect of
variable VM performance, but in our opinion, this might not
be guaranteed to work in all cases. Our approach combines
both feedback and feedforward control, enabling us to lever-
age the advantages of both and avoid disadvantages. We rely
on feedforward to quickly respond to spikes. This enables
us to smooth the upper percentile signal and use feedback
control to handle gradual workload and deal with modeling
errors resulting from uncontrolled environmental noise. The
authors [22] also propose the use of fine grained monitoring
to reduce the amount of data transfer during rebalancing.
This significantly reduces the disturbance caused by the re-
balance operation. Fine grain monitoring can be integrated
with our approach to further improve the performance.

Malkowski et al. [16] focus on controlling all tiers on a
multi-tier application due to the dependencies between the
tiers. The authors propose the use of an empirical model
of the application constructed using detailed measurements
of a running application. The controller uses the model to
find the best known configuration of the multi-tier applica-
tion to handle the current load. If no such configuration
exists, the controller falls back to another technique such as
a feedback controller. Our work is different in a way that
we integrate and leverage the advantages of both feedfor-
ward and feedback control. Although the empirical model
will generally generate better results, it is more difficult to
construct. The binary classifier proposed by Trushkowsky
et al. [22] which we use together with feedback control to
compensate for modeling errors is simpler to construct and
might be more suitable for Cloud environments with vari-
able VM performance. However, the empirical model can be
used in our approach instead of the binary classifier.

7. FUTURE WORK

A Web 2.0 application is a complex system consisting of
multiple components. Controlling the system typically in-
volves multiple controllers, with different management ob-
jectives, that interact directly or indirectly [4]. In our future
work, we plan to investigate the controllers needed to con-
trol all tiers of a Web 2.0 application and the orchestration
of the controllers in order to correctly achieve their goals.

We plan to extend our implementation of ElastMan to
include the proportional thresholding technique [14] in or-
der to avoid possible oscillations in feedback control. We
also plan to provide the feedforward controller that operates
when the store is in rebalance mode. This will enable the
store to adapt to changes in workload during rebalancing.

Replication can be used to guarantee fault tolerance of
ElastMan. One possible way is to use Robust Management
Elements [3] based on replicated state machines, to replicate
ElastMan and guarantee fault tolerance.

8. CONCLUSIONS

The strict performance requirements posed on the data-
tier in a multi-tier Web 2.0 application together with the
variable performance of Cloud VMs and dynamic workload
make it challenging to automate elasticity.

We have presented the design and evaluation of ElastMan,
an Elasticity Manager for Cloud-based key-value stores, that
addresses these challenges. ElastMan automatically resizes

an elastic service in response to changes in workload, in or-
der to meet SLOs at a reduced cost. ElastMan combines
and leverages the advantages of both feedback and feedfor-
ward control. The feedforward control is used to quickly
respond to rapid changes in workload. This allows Elast-
Man to smooth the noisy signal of the 99th percentile of
read latency and thus to use feedback control. The feedback
control is used to handle gradual workload and to correct
errors in the feedforward control that occur due to the noise
caused mainly by the variable performance of Cloud VMs.
The feedback controller uses a scale-independent model by
indirectly controlling the number of servers through control-
ling the average workload per server. This enables the con-
troller, given the near-linear scalability of key-value stores,
to operate at various scales of the store.

We have implemented and evaluated ElastMan for the
Voldemort store in an OpenStack Cloud environment. Our
evaluation has shown that ElastMan can handle gradual
workload and quickly respond to rapid workload spikes.

Acknowledgements

This research is supported by the End-to-End Clouds project
funded by the Swedish Foundation for Strategic Research
under the contract RIT10-0043; the CLOMMUNITY project
funded by the European Commission under EU FP7 Grant
Agreement 317879; the Complex System Engineering project
in the ICT-TNG Strategic Research Areas initiative at KTH.

9. REFERENCES

[1] Animoto’s Facebook scale-up (visited June 2012).
http://blog.rightscale.com/2008/04/23/
animoto-facebook-scale-up/.

[2] Openstack: Open source software for building private
and public clouds. http://openstack.org/.

[3] A. Al-Shishtawy, M. A. Fayyaz, K. Popov, and
V. Vlassov. Achieving robust self-management for
large-scale distributed applications. In Self-Adaptive
and Self-Organizing Systems (SASO), 4th IEEE
International Conference on, pages 3140, Oct 2010.

[4] A. Al-Shishtawy, V. Vlassov, P. Brand, and S. Haridi.
A design methodology for self-management in
distributed environments. In Computational Science
and Engineering, CSE’09. IEEE International
Conference on, volume 1, pages 430436, Vancouver,
BC, Canada, August 2009.

[5] M. Arlitt and T. Jin. A workload characterization
study of the 1998 world cup web site. Network, IEEFE,
14(3):30 —37, May/June 2000.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Commun. ACM, 53(4):50-58, Apr. 2010.

[7] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and
D. A. Patterson. Characterizing, modeling, and
generating workload spikes for stateful services. In
Proceedings of the 1st ACM symposium on Cloud
computing, SoCC ’10, pages 241-252, USA, 2010.

[8] B. F. Cooper, A. Silberstein, E. Tam,

R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10,
pages 143-154, New York, NY, USA, 2010. ACM.

[9] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, SOSP ’07, pages
205-220, New York, NY, USA, 2007. ACM.

[10] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M.
Tilbury. Feedback Control of Computing Systems. John
Wiley & Sons, September 2004.

[11] P. Horn. Autonomic computing: IBM’s perspective on
the state of information technology, Oct. 15 2001.

[12] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao,
and D. Newell. VM3: Measuring, modeling and
managing VM shared resources. Computer Networks,
53(17):2873-2887, December 2009.

[13] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35-40, Apr. 2010.

[14] H. C. Lim, S. Babu, and J. S. Chase. Automated
control for elastic storage. In Proceedings of the 7th
international conference on Autonomic computing,
ICAC 10, pages 1-10, New York, NY, USA, 2010.

[15] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct:
Online data migration with performance guarantees.
In Proceedings of the 1st USENIX Conference on File
and Storage Technologies, FAST ’02, Berkeley, CA,
USA, 2002. USENIX Association.

[16] S. J. Malkowski, M. Hedwig, J. Li, C. Pu, and
D. Neumann. Automated control for elastic n-tier
workloads based on empirical modeling. In Proceedings
of the 8th ACM international conference on
Autonomic computing, ICAC ’11, pages 131-140, New
York, NY, USA, 2011. ACM.

[17] M. A. Moulavi, A. Al-Shishtawy, and V. Vlassov.
State-space feedback control for elastic distributed
storage in a cloud environment. In The FEighth
International Conference on Autonomic and
Autonomous Systems ICAS 2012, pages 18-27, St.
Maarten, Netherlands Antilles, March 2012.

[18] M. Ohara, P. Nagpurkar, Y. Ueda, and K. Ishizaki.
The data-centricity of web 2.0 workloads and its
impact on server performance. In ISPASS, pages
133-142. IEEE, 2009.

[19] R. Ramakrishnan and J. Gehrke. Database
Management Systems. Osborne/McGraw-Hill,
Berkeley, CA, USA, 2nd edition, 2000.

[20] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman,
and S. Shah. Serving large-scale batch computed data
with project voldemort. In The 10th USENIX
Conference on File and Storage Technologies
(FAST’12), February 2012.

[21] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell.
Modeling virtual machine performance: challenges and
approaches. SIGMETRICS Perform. Fval. Rev.,
37(3):55-60, Jan. 2010.

[22] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin,

M. I. Jordan, and D. A. Patterson. The SCADS
director: scaling a distributed storage system under
stringent performance requirements. In Proceedings of
the 9th USENIX conference on File and stroage
technologies, FAST’11, pages 12-12, USA, 2011.

